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Abstract: Highly efficient drug delivery systems with excellent tumor selectivity and minimal toxicity
to normal tissues remain challenging for tumor treatment. Although great effort has been made to
prolong the blood circulation and improve the delivery efficiency to tumor sites, nanomedicines
are rarely approved for clinical application. Bacteria have the inherent properties of homing to
solid tumors, presenting themselves as promising drug delivery systems. Escherichia coli Nissle 1917
(EcN) is a commonly used probiotic in clinical practice. Its facultative anaerobic property drives it
to selectively colonize in the hypoxic area of the tumor for survival and reproduction. EcN can be
engineered as a bacteria-based microrobot for molecular imaging, drug delivery, and gene delivery.
This review summarizes the progress in EcN-mediated tumor imaging and therapy and discusses the
prospects and challenges for its clinical application. EcN provides a new idea as a delivery vehicle
and will be a powerful weapon against cancer.

Keywords: E. coli Nissle 1917; microrobot; tumor colonization; bacteria-mediated tumor imaging;
bacteria-mediated tumor therapy

1. Introduction

At present, traditional chemotherapy shows unsatisfactory clinical efficacy due to the
low tumor accumulation and severe side damage to normal tissues. Although conventional
nanomedicine has made significant progress in improving tumor accumulation, most of
the nanoparticles are captured by the reticuloendothelial system (RES), with only 0.7%
(median) of the administered dose accumulated in the tumor site [1]. In addition, the poorly
vascularized microenvironment and high interstitial fluid pressure of the tumor impede the
arrival of nanoparticles to the hypoxic regions, leading to a significantly reduced antitumor
effect [2,3]. Exploring new drug delivery systems with improved tumor targeting efficiency,
deepened tumor penetration, and decreased tissue toxicities are urgently demanded.

More than 100 years ago, bacteria were identified in human tumors [4,5]. Since
William B. Coley first used bacteria as an anticancer agent to treat malignant tumors, it
has opened up a new field of bacteria-mediated tumor treatment. Nowadays, various
bacterial species, such as Escherichia [6,7], Clostridium [8,9], Salmonella [10,11], and
Bifidobacterium [12,13], have been found to selectively colonize and preferentially replicate
within solid tumors, piquing increasing interest for tumor-targeted diagnosis and therapy.
At present, the mechanism of tumor-targeting bacteria remains unclear. However, the
following interactions have been identified to contribute to bacteria’s tumor-homing [14,15]:
the hypoxic area of solid tumors provides the necessary survival environment for obligate
anaerobes and facultative anaerobes, and the necrotic region provides enough nutrients
needed for growth. In addition, the leaky vasculatures of the tumor facilitate the entering
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of bacteria, while the immunosuppressive tumor microenvironment inhibits their clearance.
Preferential tumor accumulation and continuous growth make the bacteria a promising
delivery vehicle. Bacteria can load chemotherapeutic drugs directly or integrate drug-
carrying vehicles to achieve enhanced antitumor efficacy. In addition, the genes of bacteria
can be engineered to express exogenous therapeutic genes and reporter genes for tumor
therapy and in vivo imaging (Figure 1A).
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dose increases, the number of bacteria colonized in the tumor increases, but the bacteria 
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the bacteria crossed the gastrointestinal tract and colonized hepatic metastases [25]. There-
fore, preferential tumor colonization of EcN may allow for flexible administration choices 
to meet specific clinical needs. 
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biological or pathological barriers to deliver therapeutic payloads [27]. The whole-genome 
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and the L-arabinose–ParaBAD system showed the highest induce efficiency [33]. After 
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reporter gene luciferase in EcN colonized tumor reached its maximum after 6 h and 
stopped when L-arabinose was removed. Therefore, the controllable expression of EcN 
may provide a highly flexible and suitable treatment for individualized therapy. Precise 
regulation of the ECN number to control its proliferation in the tumor and expression of 

Figure 1. EcN-mediated tumor imaging and therapy. (A) Schematic illustration of the ability of preferential tumor
colonization in hypoxic regions. EcN can be designed to load drugs or integrate nanoparticles and express exogenous genes;
(B) Schematic diagram of the strategies of various imaging modalities and treatment patterns for EcN, EcN minicell, and
EcN ghost.

Although bacteria-mediated tumor treatment demonstrates great promise in animal
models, many challenges remain before their clinical translation. The most significant hur-
dle is clinical safety and effectiveness. Many bacteria, such as S. typhimurium and Listeria
monocytogenes, are human pathogens that often require the deletion of the virulence genes
to minimize toxicity. Despite the attenuation procedure, a problem with attenuated living
bacteria as anticancer agents is that toxicity at the dose required for effective therapy and
reducing the dose results in poor clinical efficacy [16]. The same problem has occurred in a
Phase I clinical trial of attenuated S. typhimurium strain VNP20009 in cancer patients. The
clinical results were disappointing, and none of the patients achieved tumor elimination as
expected at the maximum tolerable dose of VNP20009, but the maximum tolerable dose is
still much lower than the dose required for effective therapy [17]. It is of great importance
to providing bacteria-mediated vehicles for clinical application with improved efficiency
and enhanced safety.

More attention has been focused on the promising potential of nonvirulent bacteria for
tumor therapy. One of the most intensely studied non-pathogenic strains is Escherichia coli
Nissle 1917 (EcN), an intestinal probiotic isolated from a soldier who resisted a severe out-
break of diarrhea during World War I [18]. It has been applied to treat various dysfunctions
and diseases of the intestinal tract for almost 100 years [19]. EcN does not produce any
secretion toxins and exhibits good tolerance at all ages, even in full/pre-term babies [20],
proving it to be a safe agent in humans. Compared with S. typhimurium and Listeria
monocytogenes, EcN can be directly applied to the human body without any attenuation
process, showing a better safety profile. Robust tumor colonization is a prerequisite for
bacteria-mediated tumor treatment. One study compared different enterobacterial strains
for their ability to colonize solid breast tumors [21]. In contrast to S. Typhimurium (namely,
S. typhimurium 14,028 and S. typhimurium SL1344) and other E. coli (E. coli 4608–58, E. coli
CFT073, and E. coli Top10), the number of EcN colonized in the tumor was the same, but the
number of EcN in liver and spleen was significantly reduced to almost no infected. In other
words, EcN exhibits better tumor specificity and does not cause any harm to normal tissues
compared with other bacteria. Based on its proven clinical safety and high tumor-specific
replication, we selected EcN for further study.



Pharmaceutics 2021, 13, 1226 3 of 12

Here in this review, we highlight the recent progress of EcN as a promising and versa-
tile platform for biomedical applications, where EcN is engineered to be a bacterium-based
microrobot for cancer imaging and therapy (Figure 1B). We then discuss the opportunities
and challenges regarding its potential translation, hoping that future efforts can be gathered
to facilitate EcN’s clinical practice.

2. Characteristics of EcN

EcN is a facultative anaerobic organism that proliferates mainly in the interface be-
tween the necrotic and hypoxic regions of tumors [22] and exists in rich oxygen areas [23],
expanding their potential applications for various tumor types. Moreover, the special
serum-sensitive lipopolysaccharide on the membrane of EcN promotes quick clearance
from normal organs [24]. Researchers have systematically studied the biodistribution and
quantitative tumor colonization of EcN in vivo [21]. It was found that the tumor/liver ratio
of EcN colonization after intravenous injection was at least 10,000:1 in 4T1 tumor-bearing
BALB/c mice, giving EcN a massive edge over traditional nanomedicine in terms of tumor
accumulation and overall biodistribution profile. Interestingly, the average number of EcN
found in tumors was significantly higher than the injected dose due to the colonization
and proliferation of EcN. The minimum bacterial dose for successful colonization was
20,000 CFU, at which the average number in the tumor reached 108 CFU. As the injection
dose increases, the number of bacteria colonized in the tumor increases, but the bacteria
in the liver and spleen grow accordingly. Moreover, the route of EcN injection, such as
intravenous (i.v.), intraperitoneal (i.p.), and intertumoral (i.t.) injection, did not influence
the tumor targeting and tumor-to-organ ratios. Oral administration of EcN confirmed
that the bacteria crossed the gastrointestinal tract and colonized hepatic metastases [25].
Therefore, preferential tumor colonization of EcN may allow for flexible administration
choices to meet specific clinical needs.

EcN has multiple peritrichous flagella that may drive it forward as a bio-engine [26].
Therefore, EcN can be developed into a self-propelled microrobot to break through the
biological or pathological barriers to deliver therapeutic payloads [27]. The whole-genome
sequencing of EcN has been completed [28], and methods for genetic modification of
genomes and transformation of plasmid have been established to engineer EcN for heterol-
ogous gene expression [29–31]. Therefore, the therapeutic payloads can be drugs, expressed
proteins, antigens, and immunoregulatory factors. However, constitutive expression of
therapeutic factors may cause undesirable adverse effects, such as hepatic and splenic
injury, so it is necessary to control the heterologous gene expression temporally and quanti-
tatively. Weiss’s group established an in vivo remote control (IVRC) system to deliberate
the external control of gene expression [32]. Three inducible promoter systems enabled
EcN to remotely control and precisely regulate the kinetics of gene expression, and the
L-arabinose–ParaBAD system showed the highest induce efficiency [33]. After oral ad-
ministration or intraperitoneal injection of inducer L-arabinose, the expression of reporter
gene luciferase in EcN colonized tumor reached its maximum after 6 h and stopped when
L-arabinose was removed. Therefore, the controllable expression of EcN may provide a
highly flexible and suitable treatment for individualized therapy. Precise regulation of
the ECN number to control its proliferation in the tumor and expression of therapeutic
agents will be of great significance to achieve spatiotemporal and quantitative imaging and
treatment response. However, the underlying mechanisms of tumor targeting, and colo-
nization of bacteria are complex and remain unclear. The influential factors may include
the bacterial species used, types of tumor treated, and the tumor microenvironment [34].
Therefore, regulating the expression of bacteria may be a more practical means.

3. EcN-Mediated Tumor Imaging

To investigate the biological behaviors of EcN in vivo, close monitoring of its physical
distribution and metabolic fate is essential. Since the distribution of bacteria in vivo,
including normal organs and tumors, is mostly heterogeneous, invasive tissue sampling
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(such as biopsy) proved suboptimal to obtain a comprehensive overview of bacteria location
and proliferation in living organisms. Researchers have developed many non-invasive
imaging techniques for the visualization and repetitive monitoring of bacteria.

3.1. Optical Imaging

Optical imaging is highly efficient and sensitive and can be used for real-time observa-
tion of bacteria distribution in living bodies. Several studies have described the imaging of
EcN by expressing green fluorescent protein (GFP) [35], red fluorescent protein (RFP) [31],
and luciferase [36,37]. Choy et al. constructed a vector containing the luxCDABE operon
for bioluminescent labeling of Gram-negative bacteria, allowing for accurate real-time
tracking of bacteria in the living body [38]. Based on this technology, EcN demonstrated
its specific tumor-seeking ability after i.v. administration [39]. Their findings set the basis
of EcN-based microrobot for tumor imaging and the subsequent cancer treatment using
gene-modified EcNs. However, it is difficult to adopt optical imaging widely as it suffers
from limited penetration depth in clinical practice for human bodies.

3.2. MRI Imaging

Compared with optical imaging and nuclear imaging, MRI has higher spatial reso-
lution and can simultaneously obtain anatomical and physiological information without
ionizing radiation. Therefore, MRI has been used to image several kinds of tumor-targeted
bacteria. MRI can be used to detect Clostridium novyi-NT spores labeled with iron oxide
nanoparticles [40,41]. Magnetotactic bacteria AMB-1 injected intravenously can accumulate
in the tumor and significantly enhance the magnetic resonance signal [42]. Ferritin is a
type of protein for iron storage that widely exists in microorganisms, plants, animals, and
other species. The H-chain of ferritin presents ferroxidase activity, which can turn Fe2+ into
Fe3+ to form a superparamagnetic iron oxide particle [43]. Thus, the T2 relaxation time in
MRI was shortened, and the final MR imaging showed a low signal area. At least seven
systems related to iron absorption in EcN [44] make it very competitive in iron uptake. In a
study that evaluated the function of three ferritins from bacteria as MRI reporter genes,
when compared with archetypal ferritin and the smaller Dps-type ferritin, bacterioferritin
expressed by EcN showed the highest contrast change in tumor-bearing mice, suggesting
the most promise as a reporter gene for MRI imaging [45].

3.3. Nuclear Imaging

Radionuclide-based molecular imaging, namely, PET and SPECT, is a powerful tool to
assess physiological and pathological processes in vivo without penetration depth limita-
tion. Currently, radiopharmaceuticals for bacterial imaging focus on tracking bacteria to
differentiate sterile inflammation from infection [46]. Based on the tumor-specific coloniza-
tion nature of EcN, radiopharmaceuticals monitoring EcN can be used for tumor imaging.
The living body itself contains various background bacteria, so radiotracers must be highly
specific to target injected EcN. The endogenous bacterial thymidine kinase gene (TK gene)
of EcN has been shown to be an effective reporter gene for nuclear medicine imaging
using radiolabeled pyrimidine nucleoside analogs, such as [18F]-FEAU, [124I]-FIAU, and
[125I]-FIAU [39,47]. Since the substrate of bacterial TK presents poorly binding affinity with
mammalian TK, the radiotracers mentioned above can selectively identify and locate bacte-
ria in vivo [48]. PET Imaging with [18F]-FEAU exhibited high accumulation in tumors and
a linear correlation with the number of colonized EcNs, offering precise information about
the survival, proliferation, and number of the bacteria. A strategy of engineered EcN with
exogenous reporter genes hSSTR2 has been reported for in vivo tumor visualization [49].
The outer membrane protein receptor FyuA of EcN can selectively recognize the 64Cu and
89Zr labeled metallophore yersiniabactin (YbT), which has a high affinity for transition
metals [50]. A substantially higher PET signal was also observed in the EcN colonized
tumor than that without the bacterial injection. PET tracers targeting bacteria-specific
sugar metabolism have also been developed, and [18F]-FDS is the most representative
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one. [18F]-FDS, a synthetic analog of [18F]-FDG, has been shown to accumulate in Gram-
negative Enterobacteriaceae selectively but not in mammalian or cancer cells. In PET
imaging, the uptake of radioactivity in the tumor had a positive relationship with the
number of viable bacteria, allowing a semiquantitative measure of bacterial density in
the tumor [51] (Figure 2). The successful visualization and quantification of therapeutic
E. coli by [18F]-FDS will make it possible to predict the therapeutic response, which could
facilitate the clinical translation of bacteria-mediated tumor therapy.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 5 of 12 
 

 

imaging using radiolabeled pyrimidine nucleoside analogs, such as [18F]-FEAU, [124I]-
FIAU, and [125I]-FIAU [39,47]. Since the substrate of bacterial TK presents poorly binding 
affinity with mammalian TK, the radiotracers mentioned above can selectively identify 
and locate bacteria in vivo [48]. PET Imaging with [18F]-FEAU exhibited high accumula-
tion in tumors and a linear correlation with the number of colonized EcNs, offering precise 
information about the survival, proliferation, and number of the bacteria. A strategy of 
engineered EcN with exogenous reporter genes hSSTR2 has been reported for in vivo tu-
mor visualization [49]. The outer membrane protein receptor FyuA of EcN can selectively 
recognize the 64Cu and 89Zr labeled metallophore yersiniabactin (YbT), which has a high 
affinity for transition metals [50]. A substantially higher PET signal was also observed in 
the EcN colonized tumor than that without the bacterial injection. PET tracers targeting 
bacteria-specific sugar metabolism have also been developed, and [18F]-FDS is the most 
representative one. [18F]-FDS, a synthetic analog of [18F]-FDG, has been shown to accumu-
late in Gram-negative Enterobacteriaceae selectively but not in mammalian or cancer cells. 
In PET imaging, the uptake of radioactivity in the tumor had a positive relationship with 
the number of viable bacteria, allowing a semiquantitative measure of bacterial density in 
the tumor [51] (Figure 2). The successful visualization and quantification of therapeutic E. 
coli by [18F]-FDS will make it possible to predict the therapeutic response, which could 
facilitate the clinical translation of bacteria-mediated tumor therapy. 

Looking at the existing imaging technology, PET imaging or multimodal imaging 
with PET will be the most promising for the visualization of EcN in future human clinical 
trials due to its high sensitivity, unlimited penetration. Therefore, more efforts are needed 
to develop specific radiotracers that selectively target EcN rather than normal microbiotas 
or mammalian cells. Simple and faster synthetic approaches of radiolabeling for tracers 
are also required for clinical translation. 

 
Figure 2. (A) [18F]-FDS PET imaging in CT26-bearing mice treated with E. coli. (A) PET imaging was performed at day 0, 
1, 3, 5 after intravenous injection of E. coli. The radioactivity uptake of the tumor was significantly higher at day 1, 3, 5 
than in pre-treatment. (B) Positive correlation between SUVmax and the number of viable bacteria. (C) Schematic illustration 
of the synthesis of [18F]-FDS from [18F]-FDG. Reproduced with permission from Jung-Joon Min, Theranostics; published by 
Ivyspring International Publisher, 2020. 

Figure 2. (A) [18F]-FDS PET imaging in CT26-bearing mice treated with E. coli. (A) PET imaging was performed at day 0, 1,
3, 5 after intravenous injection of E. coli. The radioactivity uptake of the tumor was significantly higher at day 1, 3, 5 than in
pre-treatment. (B) Positive correlation between SUVmax and the number of viable bacteria. (C) Schematic illustration of
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Looking at the existing imaging technology, PET imaging or multimodal imaging with
PET will be the most promising for the visualization of EcN in future human clinical trials
due to its high sensitivity, unlimited penetration. Therefore, more efforts are needed to
develop specific radiotracers that selectively target EcN rather than normal microbiotas or
mammalian cells. Simple and faster synthetic approaches of radiolabeling for tracers are
also required for clinical translation.

4. EcN-Mediated Tumor Therapy

The specific tumor targeting of EcN facilitates the establishment of a live platform for
the delivery of cancer therapeutics. Three main strategies have been employed to achieve
EcN-based tumor treatment: (1) to load the drug or nanoparticles as a microrobot for
specific tumor delivery; (2) to engineer the EcN to express anticancer proteins for tumor
management, and (3) to deliver the immuno-regulatory agent for cancer immunotherapy.

4.1. Direct Drug Delivery

For cancer treatment, the concentration of drugs in the tumor plays a key role in
regulating the therapeutic effect. The EcN vehicles with self-propulsion ability may enhance
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the drug accumulation in tumor sites compared with passive drug diffusion. Once it
reaches the tumor tissue, EcN drives itself to swim against the barriers of the tumor
microenvironment and seek the hypoxic regions for colonization. Therefore, EcN-mediated
drug delivery would penetrate the depth of the tumor to improve the antitumor efficacy.
Doxorubicin (DOX) has been conjugated to EcN via acid-labile linkers, realizing a high
DOX concentration in the tumor at the uptake value of ~12.9% of the injected dose per
gram tissue (%ID/g) after 3 h of intravenous injection, which is much higher than the
conventional nanocarriers [23].

However, nanomaterials have the advantages of multi-functionalization and mod-
ification. The integration of bacteria with nanomaterials offers a new combinational
and synergistic therapeutic approach to reduce their respective limitations and achieve
complementary advantages. An amphiphilic copolymer PMTOS/PMDOX was obtained by
conjugating poly(ethylene glycol) with doxorubicin (DOX) or α-tocopheryl succinate (TOS),
and then immobilizing it onto the EcN through acid-labile linkers (namely EcN-PMD/T). In
response to the acidic environment of the tumor, copolymers were released from EcN and
self-assembled into hybrid micelles (MD/T) in situ. Then the GSH releases TOS and DOX to
achieve tumor suppression. In treatment with free EcN, DOX/TOS mixtures, MD/T hybrid
micelles, and EcN-PMD/T, the EcN-PMD/T conjugates exhibited enhanced tumor growth
inhibition with a longer survival rate [52]. EcN can be successfully embedded into micro-
tubes (MTdox@EcN) as a biorocket [53], which was confirmed by confocal laser scanning
microscope (CLSM) images (Figure 3). The motion of EcN enhanced the extravasation of
MTdox@EcN from the blood vessel, resulting in the high accumulation of DOX in the tumor.
As shown in Figure 3E, the tumor inhibition ratio of MTdox@EcN (75.6%) is remarkably
more prominent in vivo compared to EcN(20.6%), free DOX(36.1%), and MTdox(60.9%).
Furthermore, MTdox@EcN exhibited a higher survival rate with a median survival time
of 42 days, demonstrating stronger antitumor efficiency than other treatments. However,
the microtubes also restricted the flagella movement, resulting in the lower velocity of
MTdox@EcN (6.8 µm/s) than that of free EcN (9.8 µm/s) [23]. Reduction in motion ability
directly influenced tumor targeting and penetration efficiency, which may be one reason
MTdox@EcN did not eliminate tumor tissues in the antitumor experiment. The balance
between the loading of nano cargos and the mobility of bacteria should be considered
in the construction of the bacteria-nanomaterials system. In general, the integration of
drug-carrying micro/nanomaterials with bacteria will enable them to work synergistically
to achieve advanced antitumor effects.

To avoid the insecure factors caused by live bacteria and meet diverse medical needs,
EcN can be prepared as minicells and bacterial ghosts (BGs). Minicells are the nanosized
forms of bacteria that retain the same cytoplasmic components but lose the ability to
proliferate due to genome deficiency [54]. BGs are the nonliving membranes shells of
bacteria without cytoplasmic and DNA content [55]. Minicells and bacterial ghosts still
retain the same tumor-targeting properties as their parent bacteria. The EcN-derived
minicells displaying pHLIP could be used for delivering DOX and successfully invade the
necrotic and hypoxic regions of orthotopic breast cancer [56]. EcN BGs were reported to be
foreign antigen carriers and drug carriers for treating eye diseases [57].

4.2. Gene Therapy

EcN is a programmable vehicle designed to carry exogenous genes via Red/ET re-
combination or CRISP-Cas9 to express therapeutic proteins. EcN successfully expressed
Tum-5, a powerful angiogenesis inhibitor. In mice bearing B16F10 mouse melanoma tu-
mors, EcN (Tum-5) demonstrated remarkable tumor suppression after the upregulation of
Tum-5 expression [58]. Then the Tum-5-p53 bifunctional proteins were constructed and
engineered into EcN [59]. The decreased tumor volume and tumor weight indicated that
the antitumor effect of EcN (Tum-5-p53) was significantly better than that of EcN (Tum-5)
and EcN (p53) alone. Because of the powerful capacity of gene editing and packaging, EcN
will play an important role in gene therapy.
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4.3. Immunotherapy

Cancer immunotherapy aims to activate and harness the body’s immune system to
attack malignant cells. However, more than 50% of patients failed to show a durable
response to immunotherapy [60] but have immune-related adverse effects [61]. There is an
urgent need for a targeted, localized, and sustained delivery of immunotherapeutic agents.
Programmable EcN provides a convenient approach to meet the demand for immunother-
apy. Gurbatri et al. [62] demonstrated PD-L1 and CTLA-4 antagonists expressed in EcN,
enabling continuous and intratumoral checkpoint inhibitor production to induce a durable
therapeutic response by a single injection. Due to its local delivery, the risk of systemic
toxicities was greatly reduced. EcN has also been studied for its potential utility in vaccine
development. Leventhal [63] designed an engineering EcN strain named SYNB1891 that
expresses the STING-agonist cyclic di-AMP (CDA) to activate antigen-presenting cells
(APCs) in the tumor. As shown in Figure 4, in B16F10 tumor-bearing mice with three i.t.
injections over a week, SYNB1891 treatment resulted in complete tumor rejection compared
to EcN alone. SYNB1891 treatment also exhibited greater long-term efficacy (40% survival)
compared to treatment with the smSTING agonist (10% survival). Furthermore, the cured
mice remained tumor-free after re-challenge for at least 60 days. It indicated that SYNB1891
treatment triggered efficacious antitumor immunity and immunological memory.

Localized administration of tumor-targeted EcN provides a distinctive option for
tumor immunotherapy, inducing local immune responses to suppress tumor growth while
avoiding systemic toxicity. Although the studies of live bacteria in tumor immunotherapy
are still in their infancy, it opens up new opportunities and provides guidance for the
development of future approaches to improve cancer immunotherapy.
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5. The Challenges and Prospects

EcN emerges as a promising delivery platform for tumor-targeted imaging and therapy.
Although significant progress has been made in preclinical studies, there are still challenges
before extensive clinical translation. First, safety is the primary consideration for clinical use.
Although EcN has been used as probiotics, the potential immunogenicity or autoimmune
reactions must not be ignored, which may threaten immunocompromised patients with
advanced-stage tumors. Recently, EcN has been reported to encode genes for colibactin,
which may induce mutagenic DNA damage [64]. Deletion of certain virulence genes is a
routine procedure to increase the safety of bacteria. It is noted that the attenuation process
should be achieved without compromising the antitumor efficiency. After deleting the gene
for colibactin, it is necessary to assess whether the ability of tumor-targeted colonization
and self-replication has been affected. Another way to avoid the risk of colibactin is to use
nonliving EcN in the form of bacterial ghosts, which do not contain DNA but retain tumor-
targeting properties. Of course, more clinical observations are needed to assess the safety of
long-term EcN use. Second, the genetic instability of exogenous genes introduced by gene
transfer and plasmid mutation is another concern. Chromosome-plasmid balanced lethal
system [65] or genome modification could improve the genetic stability. Third, live bacteria
cannot be sterilized by conventional heating or filtration, bringing technical difficulty to
clinical mass production. Thus, the whole production and purification process must be
performed in dedicated clean rooms with good manufacturing practice (GMP) standards,
following strict aseptic protocols for process monitoring.

The research on EcN is still in its infancy, but it provides broad research space for
researchers to expand its application in biomedicine. In the future, EcN may serve as a
flexible platform to perform more complex tasks in a made-to-order fashion. Emerging
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imaging modalities, such as photoacoustic imaging [66], ultrasound imaging [67], and near-
infrared (NIR) fluorescence imaging [68], could be installed in the EcN system for integrated
imaging. Meanwhile, EcN-based therapeutic platforms are highly modular and may allow
for convenient engineering of multiple payloads delivered as a microrobot for tumor
therapy. In addition, we predict that the strategy of combining functional nanoparticles
with EcN will be a possible direction for future research in this emerging field. In the
past decades, the rapid development of nanomaterials has made a continuous effort to
promote the progress of tumor treatment. The diversity of the nanomaterials endows EcN
more functionality to achieve a variety of therapeutic paradigms, such as radionuclide
therapy [69], photothermal therapy [70], and photodynamic therapy [71] (Figure 5). The
combination therapy of EcN and nanomaterials will establish a nano-bacteria hybrid
system that could reduce their respective limitations and exceed the advantages offered by
each to maximize the therapeutic effect [72,73]. At the same time, further clinical trials are
necessary to evaluate the safety, distribution, and metabolism of the nano-bacteria hybrid
system. In summary, EcN shows excellent potential and brings new hope as an emerging
treatment against tumors.
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