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Abstract: The left atrial appendage (LAA) of the adult heart has been shown to contain cardiac and
myeloid progenitor cells. The resident myeloid progenitor population expresses an array of pro-
regenerative paracrine factors. Cardiac constructs have been shown to inhibit deleterious remodeling
of the heart using physical support. Due to these aspects, LAA holds promise as a regenerative
transplant. LAAs from adult mT/mG mice were transplanted to the recipient 129X1-Sv] mice
simultaneously as myocardial infarction (MI) was performed. A decellularized LAA patch was
implanted in the control group. Two weeks after MI, the LAA patch had integrated to the ventricular
wall, and migrated cells were seen in the MI area. The cells had two main phenotypes: small F4/80+
cells and large troponin C+ cells. After follow-up at 8 weeks, the LAA patch remained viable, and
the functional status of the heart improved. Cardiac echo demonstrated that, after 6 weeks, the mice
in the LAA-patch-treated group showed an increasing and statistically significant improvement in
cardiac performance when compared to the MI and MI + decellularized patch controls. Physical patch-
support (LAA and decellularized LAA patch) had an equal effect on the inhibition of deleterious
remodeling, but only the LAA patch inhibited the hypertrophic response. Our study demonstrates
that the LAA transplantation has the potential for use as a treatment for myocardial infarction. This
method can putatively combine cell therapy (regenerative effect) and physical support (inhibition of
deleterious remodeling).
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1. Introduction

Myocardial infarction (MI) is a common cause of heart failure (HF), which is one of
the leading causes of death in Western countries [1]. After an MI, a permanent fibrotic
scar is formed, leading to deleterious ventricular remodeling and the contractile demise of
the heart. As heart transplantation is currently the only viable treatment for heart failure,
novel therapies are being pushed forward with considerable effort. The mammalian heart
can regenerate cardiomyocytes during the neonatal period, but loses this ability soon
after birth [2,3]. Two main strategies are used to achieve regeneration and diminish the
fibrotic response in the failing heart: cardiac gene therapy and cardiac stem cell/tissue
transplantation [4]. The results of meta-analyses have demonstrated that cell therapy has a
consistent therapeutic effect on cardiac function after MI and encourages large-scale clinical
studies [5]. The mechanisms behind the observed improvement in heart function after cell
therapy administration have been under debate. Recent long-term studies demonstrate
that a number of cells remain in the tissue, but they do not differentiate to cardiomyocytes,
a strong suggestion for a mechanism via, for example, paracrine actions [6-9].
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Following cardiac tissue injury, such as MI, the immune system plays an important
role in acute inflammatory response and the following regenerative or fibrotic response [10].
Macrophages are an integral part of the regenerative response in mammals. Immune
system development and regenerative response are closely intertwined [11]. It has been
shown that mouse neonates that were depleted of macrophages were unable to regenerate
myocardium [12]. Specifically, the resident, embryonic-derived macrophage subsets have
been shown to have pro-regenerative capabilities that were lost during maturation or bone
marrow activation after tissue injury [13,14]. Macrophages are also shown to be crucial
for myocardial healing through a fibrotic response in the adult heart [15]. In addition,
the essential functions of resident macrophages have been revealed for normal heart
homeostasis. During cardiac development, macrophages are required for coronary vessel
development and function [16], and it has been shown that tissue-resident macrophages
are important mediators of electrical conduction in the adult heart [17].

The atrial appendages are often considered as mere volume reservoirs of the heart
and part of the atria. However, they have several unique features, which differentiate them
from the atria [18,19]. In clinical medicine, the left atrial appendage (LAA) presents with
some problematic features, because it is the most common site for thrombus formation in
the setting of atrial fibrillation, and because the structure of the LAA is complex, making
ultrasound evaluation difficult [20]. Our studies on the tissue composition of the murine
LAA at the cellular level revealed cellular potential for cardiac regeneration in the LAA,
putatively stemming from de novo cardiomyocyte formation and/or the paracrine effect
by resident heart tissue macrophages [21,22]. Atrial-appendage-derived cells have been
studied, by us and others, in animal models [23] and humans with promising results [24-27].
Atrial appendage tissue or micrograft transplants provide an autologous cardiac cell source
and include all cardiac cell populations with their relevant extracellular matrix support.
Moreover, they have a high capacity to produce paracrine therapeutic factors [22,26]. They
can also be readily clinically harvested during open heart surgery.

The detached stem cells that are injected into the hostile microenvironment after MI
have a very low survival rate. Engineered heart tissue skills have overcome many of the
problems related to the cell injections [28,29]. The results improved when multicellular
preparations were used, and vascularization increased in the grafts [30]. An interesting
option is to seed the cells to a decellularized native myocardial matrix, which enables the
bioengineering of functional human myocardial-like tissue of multiple complexities [31]. A
much less-used approach is to perform whole-tissue transplantation, either autologously
or non-autologously. In this study, we demonstrate that the whole LAA transplantation
inhibits scar formation and adverse remodeling of the heart after an MI. The transplant-
derived cells migrate to the host tissue and remain viable in the tissue at least for 8 weeks.

2. Results

Based on our previous findings, we hypothesized that the LAA could serve as a
regenerative tissue transplant after an MI [21-27]. The LAA is thin, exhibits a complex
structure, and boasts many trabeculae, thus resembling ventricles more than the atria
(Figure 1A,B and Supplementary Video S1). In this study, we performed a transplantation
of the LAA from mTomato+ mouse to the nearest background strain (129X1-Sv]) mouse
to track the cell survival and migration without using immunosuppressants (Figure 1C
and Supplementary Video S2). Simultaneously, an MI was performed. The operation is
described in more detail in the Supplementary Data (Figure S1). We have also successfully
performed an autologous transplantation of the LAA in a murine model by ligating the
LAA through an upper thoracotomy.
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Figure 1. Left atrial appendage transplantation operation and 3D visualization of the transplant.
(A) Visualization of a detached LAA before transplantation. (B) 3D image of the attached LAA
using autofluorescence. (C) Visualization of the LAA attached to the border-zone of myocardial
infarction. (D) H&E staining 2 weeks after operation showing LAA attached to the ventricular
wall; the fibrotic scar is also seen. (E) LAA transplant (mTomato) with MI 2 weeks after opera-
tion. (F-H) Whole mount images of the same specimen using the iDisco clearing and immunos-

taining protocol. (mTomato =red, mTomato (migrated cells) = blue, troponin C = green, and
autofluorescence = yellow).

Within one or two weeks after the operation, the transplanted LAA was viable
and attached to the ventricular wall (Figure 1D,E). Three-dimensional imaging using
the iDisco protocol revealed a border zone on the mTomato+ transplant and a consider-
able infarct scar. Some cells were seen migrating to the infarct area (Figure 1F-H and
Supplementary Videos 52-54). A closer post-operational histological analysis revealed
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clusters of migrating cells with different phenotypes as early as 1 week after the oper-
ation (Figure 2A-D). After 1 week, immunostaining revealed two main cellular pheno-
types in migrating transplant-originated cells: troponin C positive myocyte-like cells and
F4/80 positive macrophages. At 2 weeks, the LAA explant is solidly integrated to the
left ventricle. Most of the migrated mTomato+ cells express F4/80, a macrophage marker
(Figure 2E-H).

T C
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Figure 2. Tissue section analysis 1-2 weeks after the LAA transplantation. (A-D) 1 week after trans-
plantation, a large number of cells is observed migrating from the transplant (mTomato = red). Most
of the cells are stained with troponin C (green) or with the macrophage marker (F4/80 = magenta).
(EF) 2 weeks after transplantation, the LAA transplant (mTomato = red) is solidly integrated to the
left ventricle. Some of the transplant-originated cells express troponin C (green). (G,H) Clusters
of small transplant-originated cells are seen in the infarct zone further away from the transplant

(magnification from the red frame in E and F). Migrated cells co-express F4/80 (magenta) with
mTomato (red). DAPI = blue.
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After promising initial short-term observations, we performed a long-term follow-up
at 8 weeks. Three different controls were used. The main control group received a decellular-
ized LAA transplant after MI. The other two groups were MI and sham. Both LAA patches
and decellularized LAA patches had a comparable size (Figure 3A). In the sham group, the
pericardium was cut open. We performed an echocardiography follow-up to investigate
functional differences between the groups and to verify the initial similarity between the
treatment (n = 6) and main control group (n = 6). Two weeks after the operation, the treat-
ment group (LAA patch) and the main control group (decellularized patch) demonstrated
similar characteristics using several functional parameters (Figure 3B-G). This confirmed a
good standardized operational outcome, with comparable MI sizes. At 4 weeks, there was
no statistically significant improvement in the functional status of the heart in the treatment
group, when compared to the decellularized patch control group. From 4 to 8 weeks, the
contractility of the anterior wall of the left ventricle (patch-attached area) in the LAA patch
transplant group demonstrated a gradual improvement, which was obvious, even when
using an approximate on-site echo examination (Supplementary Video S5). This improve-
ment was only seen in the treatment group. At 7 weeks, there was a statistically significant
difference seen in longitudinal strain (long-axis) and circumferential strain (short-axis)
measurements (Figure 3C,D). At 8 weeks, the improvement of the ejection fraction (EF)
reached statistical significance as well (Figure 3B). Interestingly, the structural support
gained from the decellularized patch similarly contributes to the inhibition of adverse
ventricular remodeling, as demonstrated by diastolic (EDV) and systolic (ESV) ventricular
volume measurements (Figure 3EG).

After 8 weeks, we sacrificed the mice and analyzed the whole-mount hearts using
iDisco 3D imaging. We performed a double staining using RFP (mTomato) and troponin C
antibodies. We evaluated the amount of scar tissue (MI size) by subtracting the troponin-C-
positive tissue volume from total left ventricular tissue volume (Figure 4A). The amount
of scar tissue was significantly lower in the treatment group (n = 6) when compared to
the decellularized patch control group (n = 3). We also calculated the total heart tissue
volume to compare the amount of hypertrophic response in different groups (Figure 4B).
The hypertrophic response was significantly attenuated in the treatment group. The
number of migrated mTomato+ transplant-originated cells was similar between subjects in
the treatment group; a small amount of unspecific signal was seen in the decellularized
patch control group (Figure 4C). The mTomato+ LAA patch was visualized 8 weeks after
transplantation and the migrated cells were concentrated in the infarct area/border zone
(Figure 4D-G and Supplementary Video S5). A closer histological analysis revealed that
the mTomato+ transplant is engulfed by the left ventricular wall 8 weeks after MI. The
surviving transplant is mostly troponin-C-negative (Figure 5A-C). Many of the remotely
located migrated cells express macrophage marker F4/80 (Figure 5D,E). Another significant
portion of the mTomato+ cells were in vessel-like structures next to the infarct zone, together
with some troponin C+ cells (Figure 5EG).
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Figure 3. Patch comparisons and functional (echocardiography) follow-up after the LAA transplan-
tation. (A) Comparison of the widths and heights of LAA and decellularized patches. (B) Ejection
fractions were similar at 2 weeks, but during the follow-up, the difference between the two treatment
groups increased, reaching a statistical significance at the 8w time point (p = 0.02). (C) The longitudi-
nal strain analysis (long axis) demonstrates similar characteristics of two treatment groups before and
2 weeks after MI, but their difference reaches a statistical significance at 7 weeks (p = 0.03) and further
increases at 8 weeks (p = 0.01). (D) The radial strain analysis (longitudinal axis) demonstrates an
increasing difference between the two treatment groups, but statistical significance was not reached.
(E) The circumferential strain analysis (short axis) demonstrates results similar to longitudinal strain.
Statistical significance is at 7 weeks (p = 0.02) and at 8 weeks (p = 0.01). (F,G) End-diastolic and
end-systolic volumes at indicated times after MI. LAA patch (n = 6), decellularized LAA patch (1 = 6),
MI (n = 3), and Sham (n = 3). * p < 0.05.
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Figure 4. 3D analysis 8 weeks after the LAA transplantation. (A) Scar tissue size comparison of the
LAA-transplanted hearts (1 = 6) vs. the decellularized patch controls (n = 6) demonstrating a smaller
infarct area in the treated group. Scar volume is calculated by subtracting the troponin-C-positive
signal from the autofluorescence of the left ventricle. Single measurements from the MI-group and
Sham-group are shown as a reference. (B) Comparison of the size of the left ventricles after LAA
transplants or the decellularized transplants before operation. (C) Heart tissue volume comparison of
the LAA-transplanted-hearts vs. controls. Whole tissue volume of the hearts is calculated to evaluate
the hypertrophic response. (D) Number of migrated mTomato+ cells compared to the control
(false positive signal). (E-H) Whole mount images of the mTomato+ LAA-transplant-treated hearts.
A comparison of light images and Imaris-processed 3D images. E + F and G + H are from the same
specimen. Autofluorescence (green); cells migrated from the transplant (red); LAA patch (magenta).
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Figure 5. Tissue section analysis 8 weeks after the LAA transplantation. (A) Cross-sectional image
from mitral valve level demonstrating a clear mTomato signal 8 weeks after operation. Troponin
C = green, mTomato = red, and DAPI = blue. The following images are zoomed from frames 1,
2, and 3. (B,C) Frame 1: an image from LAA transplant zone demonstrating a strong mTomato
signal, mostly in non-troponin-C-stained tissue. (D,E) Frame 2: an image from the remote infarct
area demonstrating mTomato+ migrated cells, which co-express F4/80 (magenta). (F,G) Frame 3:
an image from the remote infarct area demonstrating a strong mTomato signal in a vessel structure,
together with some co-stained troponin-C-positive cells.

3. Discussion

Atrial appendage transplantation has the potential to deliver autologous cardiac cells,
including various progenitor cells, in their native environment to the injured tissue for
cardiac regeneration [21-27]. In terms of the LAA, transplantation is further supported
based on its characteristics; the most clinically relevant are its size and its potential for
extensibility over the infarct area. In this preclinical study, we have provided evidence that
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the detached LAA has the potential to serve as a pro-regenerative source of autologous
tissue in an acute ischemic setting.

We demonstrated that the LAA transplants can remain viable in the long-term, even
without pre-vascularization procedures, and that the migrated cells from the transplant
remain in the host tissue. The functional improvement in the hearts of the treatment group
gained significant momentum 4 weeks after the transplantation operations. This could be
related to the time required for neovascularization to reach its required maturity to enhance
the blood flow in the ischemic heart. Only small areas of the transplanted mTomato+ LAA
patch and some migrated cells remained troponin-C-positive 8 weeks after the operations.
This suggests that factors other than the direct differentiation of transplanted cells are
the main contributors to the functional improvement. The F4/80+ resident macrophages
of the LAA are the source of a wide array of paracrine factors, including VEGF-A and
IGF-1 [22]. Interestingly, the same observation of a secretome-mediated effect and an
array of paracrine factors was seen in human atrial-appendage-derived cardiac progenitor
cells [7-9,26]. The conclusion of a paracrine-mediated beneficial effect is further supported
in the current study by the infarct area localization and the long-term survivability of
F4/80+ transplant-derived migrated cells.

Previously, in a single study, a piece of the LAA was used as a tissue patch on top
of the MI area [32]. The patch transplantation was performed 3 weeks after MI, and
omentopexy [33] was performed to enhance transplant vascularization. At the 4-week
follow-up, positive results were acquired on the contractile function of the heart and the
inhibition of cardiac remodeling. The observed beneficial effect was considered to be caused
mainly by paracrine activity, which is in accordance with our study. The atrial appendages
are also a rich source of natriuretic peptides, for example, type A atrial natriuretic peptide
(ANP), which have been demonstrated to exert antifibrotic and cardioprotective effects on
the myocardium [34,35].

A major translational shortcoming of this study is that we performed LAA transplanta-
tion simultaneously with the MI, which is not applicable to a clinical setting. We decided to
complete the trial using single thoracotomy, because in a mouse model, two thoracotomies
in a week would have caused too high a mortality rate. However, our results are promising
because we did not use an allogenic transplantation model or an immunosuppressant.
This suggests that the functional outcome could be improved by using an autologous
transplantation. Further investigation is required, preferably using a large animal model
and, to more closely resemble a clinical setting, a closed-chest coronary balloon occlusion of
the left anterior descending artery, followed by autologous LAA tissue or LAA micrograft
transplantation a few days later.

4. Materials and Methods
4.1. Mouse Strains and Patch Transplantation

LAAs from adult mT/mG mice (JAX 007576, The Jackson Laboratory, Bar Harbor,
ME, USA) were transplanted to the recipient 129X1-Sv] mice (JAX 000691) as myocardial
infarction (MI) was performed. A decellularized LAA patch was implanted into the control
group. Prolene (Ethicon Inc., Raritan, NJ, USA) 8-0 was used for LAD ligation and Vicyl
Rapide (Ethicon) 7-0 for patch attachment. A detailed description of the operation is
included in Figure S1.

4.2. Ethics

All animal experiments were conducted according to the European Community guide-
lines for the use of experimental animals. The experiments were approved by the Finnish
National Animal Experiment Board (permit numbers ESAVI/6718/04.10.03/2012 and
ESAVI/8054/04.10.07 /2016).
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4.3. Left Atrial Appendage Decellularization

To produce an acellular, extracellular matrix LAA patch for the control group treatment,
ten LAAs were decellularised in 20 mL of 1% (w/v) sodium deoxycholate (Sigma-Aldrich,
St. Louis, MO, USA, 264101) in PBS, pH 7.4 for 2 x 24 h under constant agitation at
RT. Distinctly translucent LAAs were washed four times with 20 mL PBS during a 24-h
incubation at RT to rinse out the detergent. Tissues were sterilised in cold, freshly prepared
0.1% (w/w) peracetic acid (Sigma-Aldrich, 433241) in PBS at pH 7.0 for 10 min, and stored
in sterile PBS, pH 7.4, until transplantation.

4.4. Cardiac Ultrasound and Analysis

Serial cardiac ultrasound experiments were conducted under isoflurane anesthesia
using Vevo 2100 (FUJIFILM VisualSonics Inc., Toronto, ON, Canada) by an experienced
lab technician. Acquired data were analyzed using Vevo LAB Vevostrain 1.7.1 (FUJIFILM
VisualSonics) software from the longitudinal and short axis perspective [36,37].

4.5. 3D Imaging (iDisco)

Before removing the heart, the mouse was first infused with PBS, followed by PFA-
infusion. After that, iDisco staining and clearing were preformed, according to methods
previously published [38]. The finalized whole-heart specimen (week 8) was imaged with
a LaVision Ultramicroscope II lightsheet microscope (LaVision BioTec GmbH, Bielefeld,
Germany). Samples from 1 and 2 weeks after operation were imaged using a Bioptonics 3001
OPT (Bioptonics Microscopy, Edinburgh, UK) scanner and optical projection tomography
(OPT); tomographic data were reconstructed using N-Recon software (SkyScan, Kontich,
Belgium). The acquired images were analyzed using Imaris 8 (Bitplane, Oxford Instruments
plc, Abingdon, UK). The volume of infarcted tissue (scar) was calculated using surface
rendering of the autofluorescence signal of the left ventricle subtracted with a troponin-C-
positive section of the left ventricle. Migrated mTomato+ cells were calculated using Imaris
8 Spots object detection model. The threshold was standardized in all measurements.

4.6. Immunohistochemistry

Immunohistochemistry was performed on tissue sections cut from snap-frozen hearts.
Air-dried 10-um tissue sections were fixed for 3 min in ETOH 70%, 3 min in ETOH 95%,
and 3 min in ETOH 100%. Primary antibodies were incubated overnight in +4 °C and
secondary antibodies for 40 min in room temperature. Washes were performed using PBS.
Prolong Gold antifade with DAPI (Thermo Fisher Scientific Inc., Waltham, MA, USA) was
used as an imaging mountant.

4.7. Antibodies

Primary antibodies: anti-RFP (600-401-379 Rockland Immunochemicals Inc., Pottstown,
PA, USA) 1:500, anti-Cardiac Troponin C (ab30807 Abcam, Cambridge, UK) 1:500, anti-
F4/80 (ab6640 Abcam) 1:200. Secondary antibodies: Alexa Fluor 488, 594 and 647 (donkey-
anti goat, rat and rabbit, Thermo Fisher Scientific, Waltham, MA, USA) were used at a
concentration of 1:200. The same concentrations were used in the iDisco protocol and
standard immunohistochemistry.

4.8. Statistical Methods

Statistical analysis between two groups was performed using two-tailed unpaired
t-test; p-values < 0.05 were considered significant. Data are presented as mean =+ SD.

5. Conclusions

In conclusion, our results provide evidence of effectiveness and insight into the molec-
ular mechanisms of left atrial appendage transplantation for heart failure. The therapy can
easily be clinically administered, either as an epicardial tissue transplant or as epicardial
left atrial appendage micrograft transplants, when mechanically minced during open heart
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surgery, as reported previously by us using the right atrial appendage [24,25]. Given the
excellent clinical applicability of atrial appendage epicardial therapy, further clinical trials
evaluating therapy efficacy are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms23094661/s1.
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