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Role of connexin 43 in odontoblastic differentiation and
structural maintenance in pulp damage repair
Jiaxin Yin1,2, Jue Xu3, Ran Cheng1, Meiying Shao3, Yuandong Qin1, Hui Yang1 and Tao Hu1

Dental pulp can initiate its damage repair after an injury of the pulp–dentin complex by rearrangement of odontoblasts and
formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in
multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to
determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro
experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast
arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function
of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were
arranged along the pulp–dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast
arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly
arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-
like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments
demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or
overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast
arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
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INTRODUCTION
The pulp–dentin complex is a unique tissue that can respond to
external stimuli and repair itself because the monolayer odonto-
blasts surrounding dental pulp can secrete mineralized matrix
(tertiary dentin) to defend against injury.1,2 Under moderate injury,
odontoblasts can secrete reactionary dentin (a type of tertiary
dentin) to isolate the injury and protect the pulp.1,3 When the pulp
is stimulated by severe injury, odontoblasts are destroyed, and the
progenitor cells in the dental pulp, including dental pulp stem
cells,4,5 Höhl cells,6 dental pulp pericytes,7 or smooth muscle actin-
positive (SMA+) progenitors,8 are recruited to the injury site and
differentiate into odontoblast-like cells that secrete reparative
dentin (another type of tertiary dentin) to eventually repair all or
part of the damaged areas.1,3,9–11 In some cases, osteodentin is
formed from differentiated dental pulp cells (DPCs) surrounded by
extracellular mineralized matrix. Osteodentin is characterized by
lacunar bone-like tissue and is histologically considered immature
mineralized tissue, which is a type of reparative dentin.12,13

However, the specific regulatory mechanism of the formation of
reparative dentin is unclear.
Odontoblasts are highly polarized cells perpendicular to the

inner surface of dentin.14–16 Cell polarity endows the cells with
variable structure and function, which is required for the
migration, development, and intercellular communication of the
majority of the human cells.17 Cell polarity and palisade structure

of odontoblasts are the basis for the formation of the odontoblast
arrangement patterns and tubular dentin.18 Therefore, the
arrangement pattern of odontoblasts and maintenance of the
odontoblast structure play fundamental roles in primary dentin
and in the formation of tertiary dentin during damage repair.
Cell arrangement relies on the cell–cell junctions. Gap junction,

one of the cell junctions, is considered important for the
maintenance of homeostasis of the internal environment and is
involved in the directional differentiation of the target cells.19–21

Gap junctions are composed of proteins encoded by the connexin
gene family; connexin 43 (Cx43) is the most common and
abundant connexin. Cx43 expression and phosphorylation levels
influence the function of the gap junctions.22 A previous study
demonstrated that Cx43 is involved in the maintenance of the
tissue structure in several human organs.23 Cx43 may be essential
for the formation and maintenance of cell polarity.24 Mutation of
the human Cx43-encoding gene GJA1 leads to oculodentodigital
dysplasia, an autosomal dominant genetic disease characterized
by craniofacial anomalies involving teeth and skull.25 Hashida et al.
demonstrated that Cx43-mediated intercellular gap junctions are
involved in the differentiation of osteoblasts, and silencing GJA1
can directly cause a decrease in the mineralization of osteo-
blasts.26 Moreover, GJA1 knockout in zebrafish leads to abnormal
skeletal development and short fin phenotype.27 Cx43 was also
shown to be associated with odontoblastic differentiation.28
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However, the role of Cx43 in the formation of reparative dentin and
maintenance of odontoblast arrangement is poorly understood.
In this study, we initially investigated the normal odontoblast

arrangement and Cx43 expression patterns in human, rat, and dog.
A pulp damage repair rat model and an in vitro model were used to
investigate the relationships between Cx43 and the odontoblast
arrangement pattern and odontoblastic differentiation.

RESULTS
Odontoblast arrangement and Cx43 expression pattern in healthy
teeth
The palisade-like structure was detected in the odontoblastic layer
in the healthy teeth of rat, beagle dog, and human (Fig. 1a).
Polarized odontoblasts have higher expression of Cx43 compared
with that in the pulp tissue (Fig. 1a).
Coexpression of a tight junction protein zonula occludens-1

(ZO-1) and Cx43 was detected in hDPCs in vitro (Fig. 1b); however,
the expression of Cx43 was barely detectable in the ZO-1-enriched
cytoplasmic pseudopodia (Fig. 1b).

Odontoblast arrangement and Cx43 expression in the carious
human teeth
Compared to the healthy human teeth (Fig. 2), the odontoblast
arrangement pattern was slightly changed concomitant to an
increase in the expression level of Cx43 in teeth with moderate
caries (Fig. 2). Although the arrangement pattern was slightly
changed, the odontoblast layer was detected, and the arrange-
ment of the cells was organized. These data suggest that the cells
might be original odontoblasts, and their function was stimulated.

Odontoblast arrangement and Cx43 expression in the rat teeth
with inflammatory or necrotic dental pulp
In the control group, odontoblasts were arranged in a regular
pattern surrounding the pulp tissue (Fig. 3a1–a3), and Cx43
(labeled by red fluorescence) and DSPP (labeled by green
fluorescence) were coexpressed in the odontoblast layer.
In the pulpitis group (inflammatory pulp), the distinct odonto-

blastic layer apparently disappeared (Fig. 3b1–b3). Additionally,
the formation of reactionary or reparative dentin was barely
detectable. Furthermore, odontoblasts were completely absent as
shown in the left part of Fig. 3b2. Immunofluorescence staining
demonstrated the disarranged nuclei of odontoblasts (Fig. 3b3).
The odontoblastic layer was also completely absent in the

necrotic dental pulp compared with that in the control group.
Cellular structure and Cx43/DSPP expression beneath the dentin
were absent (Fig. 3c1–c3).

Odontoblast arrangement and Cx43 expression in different pulp
repair models
In our damage repair animal model, three different repair models
of the newly formed dentin were detected. To investigate the
characteristics of the reparative dentin, we assessed odontoblast
arrangement and determined the expression pattern of Cx43 in
odontoblasts and pulp tissue.

Model 1: Formation of acellular reparative dentin. A large area of
acellular reparative dentin (tubular or atubular dentin), most of
which was tubular dentin, was formed with relatively regularly
arranged odontoblast-like cells on the inner surface (Fig. 3d1–d3).
Immunofluorescence staining demonstrated elevated expression
of Cx43 in newly formed odontoblast-like cells compared to that
in other regions of the pulp tissue (Fig. 3d1–d3).

Model 2: Formation of osteodentin. Osteodentin was formed by
newly differentiated odontoblast-like cells adjacent to the injured
area (Fig. 3e1, e2). Cell bodies were scattered in osteodentin
and were encapsulated in it (Fig. 3e2). Moreover, there was no

boundary or regular margin of osteodentin. The pulp tissue was
slightly hyperemic, and regularly arranged odontoblast-like cells
were not detected beneath osteodentin (Fig. 3e1–e3).
Distinct Cx43 expression was not observed in the cells beneath

osteodentin. Osteodentin was different from the tubular dentin
described above and was lacunar without tubular structures. Cell
polarization or palisade-like structures were not detected.

Model 3: Formation of acellular reparative dentin and osteodentin.
Coexistence of acellular reparative dentin and osteodentin was
detected in some instances. Acellular reparative dentin was
formed adjacent to the damaged region (Fig. 3f1), and disorga-
nized tubular dentin or atubular dentin was also detected (Fig. 3f1,
f2). Osteodentin was detected between acellular reparative dentin
and dental pulp (Fig. 3f2). Regularly aligned odontoblast-like cells
were barely detectable beneath osteodentin (Fig. 3f2). Immuno-
fluorescence staining showed lower expression level of Cx43 in
the cells beneath osteodentin. These data suggest that Cx43 has a
certain regulatory effect on the odontoblastic differentiation of
DPCs and arrangement pattern of odontoblast-like cells to further
influence the dentin formation (Fig. 3f1–f3).

Cx43 expression is associated with odontoblastic differentiation
Culture of hDPCs in mineralization solution for 7 and 14 days
induced an increase in the number of mineralized nodules in a
time-dependent manner (Fig. 4a). However, the expression of
DSPP and Cx43 proteins (Fig. 4b), and DSPP gene (Fig. 4c) was the
same as in control groups after 7-day mineralization induction.
The expression of DSPP gene and the proteins increased only after
14-day induction (Figs. 4c, d). The expression patterns of Cx43 and
DSPP have a similar trend during the odontoblastic differentiation
of hDPCs.

Silencing or overexpression of Cx43-encoding gene GJA1 is closely
associated with odontoblastic differentiation of hDPCs
To investigate whether the expression level of Cx43 influences the
odontoblastic differentiation of hDPCs, GJA1 was silenced or
overexpressed; the results confirmed the inhibition and over-
expression of GJA1 (Fig. 5a). The GJA1 silencing and control groups
had similar DSPP transcription levels when mineralization was not
induced. After mineralization induction in the culture, the DSPP
gene (Fig. 5a) and protein (Fig. 5b, c) levels in the GJA1 silencing
group were lower than those in the control group. Notably, with or
without mineralization induction for 7 or 14 days, the DSPP
transcript levels were higher in the GJA1 overexpression group
than that in the control group (Fig. 5a). Therefore, Cx43
overexpression resulted in upregulation of DSPP under miner-
alization induction and normal culture conditions, but Cx43
inhibition led to DSPP downregulation only under mineralization
induction. Thus, the results indicate that Cx43 may play an
indispensable role in the odontoblastic differentiation of hDPCs.
We could also find that the Cx43 in the overexpression and
silencing groups was stably expressed after 7, 14, and 21 days
culture (Fig. 5c).

DISCUSSION
Tertiary dentin can be formed in specific loci at the pulp–dentin
interface in response to external stimuli. The structure of tertiary
dentine can vary from a regular tubular matrix to a very dystrophic
pattern; the tubular matrix possibly contains entrapped cells.1 The
process of reparative dentin formation is completely different
from that of reactionary dentin.29 Reactionary dentin is formed by
the original postmitotic odontoblasts, which are responsible for
primary dentinogenesis, and the reparative dentin is secreted by a
new generation of odontoblast-like cells, which are differentiated
from pulp precursor cells.30 In the case of severe damage,
progenitor cells in the dental pulp are recruited to the injury site
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and differentiate into odontoblast-like cells to repair the tissue
after the death of original odontoblasts.30–34 The source of
odontoblast-like cells has not been determined. A generally
accepted theory suggests that these cells originate from the

dental pulp stem cells, which are also the progenitor cells of
odontoblasts.35 Another theory suggests that Höhl cells may serve
as progenitors to form odontoblast-like cells during tertiary
dentinogenesis. These cells are of mesenchymal origin and are
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referred to as preodontoblast progenitor cells or simply as
fibroblasts. In the case of an injury or a decline of primary
odontoblasts, Höhl cells may differentiate into odontoblast-like
cells and form reactionary dentin.6 DPCs have stem cell
characteristics and odontoblastic differentiation potential;36–38

hence, we directly used DPCs in our in vitro study. Many studies
have attempted to determine the mechanism of tertiary dentin
formation; however, the mechanism is poorly understood. Thus,
determination of the potential mechanism of initiation of
odontoblastic differentiation and formation of a specific arrange-
ment pattern is important for dental pulp repair.
Human odontoblasts are highly polarized cells with a palisade-like

structure, which provides for dentin secretion and perception of the
stimuli.39 However, it is unclear whether the odontoblast arrange-
ment patterns play a role in the odontoblast function. The results of
the present study indicate that the odontoblast palisade-like
structure is common in the mammalian dental pulp tissues.
Regularly arranged cells along the edges of the reactionary dentin
and reparative dentin were detected; however, these cells were not
detected in osteodentin. This result suggests that the odontoblast
arrangement pattern may directly influence the function of
odontoblast-like cells and subsequent secretion of the dentin matrix.
Cx43 is the most ubiquitously expressed connexin detected in

various organs, tissues, and cells.40 Couve et al. found that Cx43
expression in odontoblasts beneath the carious lesions is lower
than that in the healthy pulp tissues; however, no explanation was
given for this phenomenon.41 Farahani et al. found that Cx43
expression is elevated in odontoblasts under caries.42 Muramatsu
et al. found that Cx43 expression in the dental pulp tissues is
gradually decreased with age and suggested that Cx43 expression
is related to the activity of the dental pulp tissue.43 Additionally,
Cx43 is downregulated during apoptosis.44 These results suggest
that Cx43 expression is closely related to the odontoblast function.
In our study, Cx43 protein expression was upregulated in
odontoblasts in caries. These odontoblasts maintained the cell
polarity with a palisade arrangement pattern (Fig. 2) but had
elevated expression of Cx43. We suggest that these cells are the
original odontoblasts with activated function. Since Cx43 is
involved in maintenance of cellular polarity,24,45,46 Cx43 may
interact with other junction proteins, such as ZO-1, to form a

connection complex or to modulate the cell junctions47 to assist
the cells in the maintenance of the integrity of the palisade barrier
structure.48 The data of in vitro immunofluorescence staining
demonstrated that Cx43 is mainly expressed at the cell–cell
interface and is coexpressed with ZO-1; thus, we suggest that
Cx43 participates in the maintenance of the odontoblast structure
and in tertiary dentin formation. Our results obtained in the pulp
damage repair models confirm this hypothesis. Regularly aligned
odontoblast-like cells have elevated Cx43 expression associated
with the formation of mature acellular reparative dentin. However,
immature osteodentin is formed without typical odontoblastic
arrangement pattern suggesting that Cx43 may be involved in the
maintenance of the arrangement pattern and regulation of the
odontoblastic differentiation of newly formed ondontoblast-like
cells. These results suggest that Cx43 may be associated with the
selection of a pulp damage repair mode.
To verify our hypothesis, an in vitro study was performed, and the

data indicate that Cx43 gene transcription and protein expression
are upregulated concomitant to an increase in the DSPP expression
during odontoblastic differentiation. DSPP is an important and
routinely used marker of odontoblastic differentiation with essential
biological functions in dentinogenesis.49,50 Therefore, Cx43 may
participate in odontoblastic differentiation and matrix mineraliza-
tion. Cx43 is expressed at a high level adjacent to the mineralized
nodules in the cultured DPCs compared with that in other regions.51

Cx43 silencing results in reduced ALP activity of DPCs.52 In our study,
Cx43 overexpression promoted DSPP expression with or without
odontoblastic induction. Cx43 inhibition induced a decreased DSPP
expression compared with that in the control group after
odontoblastic induction. Since DSPP is considered an important
marker for odontoblastic differentiation,8,37,53 and we found same
expression trend of DSPP and Cx43 both in protein and gene levels,
we suggest that Cx43 is an indispensable protein for odontoblastic
differentiation of hDPC.
From this study, we found Cx43 is involved in odontoblastic

differentiation and is closely associated with the structural
maintenance of odontoblasts and newly differentiated
odontoblast-like cells. Differences in the expression level of Cx43
may result in different pulp damage repair modes. However,
specific role and mechanism of Cx43 require further studies.
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MATERIALS AND METHODS
Sample preparation
This study was approved by the ethics committee of the West China
Hospital of Stomatology, Sichuan University. Impacted human third
molars were collected from adults (between 18 and 25 years of age),
and an informed consent was obtained from all participants. Healthy
tooth specimens from beagle dogs and Sprague-Dawley (SD) rats
were acquired. The tooth samples were fixed in 4% paraformalde-
hyde for two weeks and decalcified with 0.5mol·L−1 ethylenediami-
netetraacetic acid (EDTA) solution for 6 months before paraffin
embedding.

Cx43 expression assay
Demineralized human and dog tooth samples were cryoprotected
successively in 15% and 30% sucrose in phosphate-buffered saline
for 24 h and frozen in tissue-freezing medium (Tissue-Tek, Sakura
Finetek, Torrance, CA, USA); 20-µm-thick dental pulp sections
were cut using a cryostat (Leica CM-1900, Nussloch, Germany) at
−20 °C. The sections were rehydrated in phosphate-buffered
saline and incubated for 1 h in blocking solution containing 5%
bovine serum albumin and 0.25% Triton X-100. Primary anti-
bodies, including rabbit anti-Cx43 (1:1 000; Abcam, Cambridge,
MA, USA) and mouse anti-α-tubulin (1:1 000; Abcam, Cambridge,
MA, USA) were diluted in blocking solution and incubated
overnight at 4 °C. Secondary antibodies were incubated for 1 h
at room temperature. All tissue sections were mounted using the

Fluomount mounting medium (Dako Industries, Carpenteria, CA,
USA). The immunolabeled sections of the dental pulp were
imaged using a confocal microscope (Nikon C1 plus, Nikon, Japan)
with 409, 488, or 555 nm laser lines. Image stacks were processed
by CZ software (Nikon, Japan). Adjustments of the brightness and
contrast were performed using Photoshop CS4 software (Adobe
Systems, Mountain View, CA, USA).

Animal models (pulp injury repair models)
Healthy SD rats of specific pathogen-free (SPF) grade weighing
250~350 g were used in this study. Each animal was treated with
various pulp capping materials on the first molar of the ABCD
region, and the animals were grouped as follows. Blank control: 3
SD rats with no surgery. Negative control: 6 SD rats with saline
solution as capping material. Mineral trioxide aggregate (MTA):
6 SD rats with MTA as capping material.
After intraperitoneal injection of chloral hydrate for anesthesia, the

rat oral cavities were disinfected with 75% alcohol. A tungsten steel
drill and 15# K-files were used to drill to the pulp. A gelatin sponge
containing normal saline was placed in the perforation. MTA
(Dentsply Maillefer, Switzerland) was mixed as recommended by
the manufacturer and used to directly seal the perforation; the
perforation was filled with glass ionomer cement. Acetaminophen
was given for 2 days after the surgery. The rats were euthanized
30 days after the surgery, and their upper and lower jaws were
acquired.
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Tissue preparation and staining
The rat jaw samples were fixed in 4% paraformaldehyde and
decalcified with 0.5mol·L−1 EDTA solution for 6 weeks before paraffin
embedding. Tissue blocks were cut using a type 820 Spencer
microtome at 5–7 µm. For histological analysis, sections were placed in
an oven at 60 °C for 30min, deparaffinized in xylene, and rehydrated
in a decreasing ethanol gradient before staining with hematoxylin and
eosin (H&E) or used for immunofluorescence analysis.

Cell culture, treatment, and transfection
Human DPCs were isolated and cultured according to the
previously described method.54,55 Cells between passages 3

and 6 were used. hDPCs were treated with 50 μg·mL−1 ascorbic
acid (Sigma-Aldrich, St. Louis, MO, USA), 10 mmol·L−1 glycer-
ophosphate (Sigma-Aldrich, St. Louis, MO, USA), and
100 nmol·L−1 dexamethasone (Sigma-Aldrich, St. Louis, MO,
USA) for 7, 14, and 21 days.
The human Cx43-encoding gene GJA1 (reference number:

NM_000165) was overexpressed and inhibited by lentivirus
transfection. The lentiviral vectors pLenti-EF1a-EGFP-P2A-Puro-
CMV-GJA1-3Flag and pLKD-CMV-G&PR-U6-shRNA(GJA1) were con-
structed (Obio Technology (Shanghai) Corp., Ltd., China) to
overexpress or inhibit GJA1, respectively. For transfection, the
cells were seeded in a six-well plate and cultured to 30%–50%
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Fig. 5 Odontoblastic differentiation of dental pulp cells with overexpressed or inhibited Cx43 in vitro. a Gene expression of GJA1 and DSPP,
and b, c protein expression of DSPP and Cx43 at 7, 14, and 21 days were detected after inhibition or overexpression of the Cx43-encoding
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confluence. Twenty-four hours later, the cells were transfected
with a virus concentration of 20 MOI in serum-free Dulbecco’s
modified Eagles medium (DMEM) according to the manufacturer’s
instructions. The medium was replaced with DMEM plus 10% fetal
bovine serum after 8 h. The dental pulp cells were then induced to
differentiate into odontoblasts as described above. Cells with
stable transfection (Fig. 5c) were used in the gene silencing and
overexpression experiments.

Alizarin red staining
Cells cultured for 0, 7, and 14 days were fixed with 4%
paraformaldehyde for 20 min at room temperature. Then, the
cells were stained with 40 mmol·L−1 Alizarin red S (pH 4.2, Sigma-
Aldrich, St. Louis, MO, USA) for 10min at room temperature. After
washing, the mineralized nodules were observed under an optical
microscope.

Real-time quantitative PCR analysis
Total RNA was extracted from hDPCs using TRIzol reagent
according to the manufacturer’s instructions (Invitrogen Life
Technologies, Carlsbad, CA, USA). cDNA was synthesized using
iScript and was used for quantitative PCR with SYBR Green. The
primer sequences were as follows: Cx43: 5′-TCTCGCCTATGTCTCC
TCCT-3′ and 5′-TGCTCACTTGCTTGCTTGTT-3′; DSPP: 5′-GCAGTGAC
AGTAGCGATAGC-3′ and 5′-CTATTGCTGCTGTCGTTGCTA-3′; and
ACT: 5′-TTCTACAATGAGCTGCGTG-3′ and 5′-CTCAAACATGATCTG
GGTC-3′.
The reactions were performed using an ABI 7300HT apparatus.

Western blot analysis
To analyze cellular protein levels, cells were harvested by scraping
and lysed. The lysates were electrophoresed through 10% sodium
dodecyl sulfate polyacrylamide gels, transferred to the mem-
branes, and probed with antibodies according to the previously
described method.56

Immunofluorescence
hDPCs were plated in a 24-well plate for 24 h and fixed with 4%
paraformaldehyde for 20 min before treatment as described
above. The cells were viewed under a fluorescence microscope
(Carl Zeiss, Göttingen, Germany).

Statistical analysis
Each experiment was repeated at least three times. Differences
were analyzed using one-way analysis of variance (SPSS 16.0, SPSS
Inc., Chicago, IL, USA). The significance level was set at P < 0.05.
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