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Community genetics hypothesizes that within a foundation species, the gen-

otype of an individual significantly influences the assemblage of dependent

organisms. To assess whether these intra-specific genetic effects are ecologi-

cally important, it is required to compare their impact on dependent

organisms with that attributable to environmental variation experienced

over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus
tremula L.) genotypes grown in a randomized experimental array at two con-

trasting sites spanning the environmental conditions from which the aspen

genotypes were collected. We found that variation in aspen genotype signifi-

cantly influenced bark epiphyte community composition, and to the same

degree as environmental variation between the test sites. We conclude that

maintaining genotypic diversity of foundation species may be crucial for

conservation of associated biodiversity.
1. Introduction
Foundation species are key-stone elements in ecosystems [1] whose genetically

determined character variation may structure associated communities [2]. Studies

have demonstrated an effect of foundation species genotype on the composition

of associated communities within hybrid zones, a situation characterized by seg-

regation of large interspecific genetic differences among individuals of the

hybridizing species [3,4]. An increasing number of reports also document an

effect of intra-specific genetic variation within foundation species on communities

of associated taxa [5–7]. If widely confirmed, this intra-specific genetic effect

would become a critically important consideration during ecosystem restoration,

because the genetic variability within founder populations used to create habitat

structure could significantly affect the accumulation of species diversity within

dependent guilds.

To demonstrate the ecological relevance of intra-specific genetic variation,

experimental studies must not only detect a significant effect on associated commu-

nities, but establish that the magnitude of this effect is comparable to that caused by

environmental variation at a geographical scale equivalent to the sampling of gen-

otypes [8]. These criteria can be met by establishing trials in which replicated

genotypes of a foundation species are randomized in space at a number of different

sites covering the range of environmental conditions from which they were

sampled [9,10]. Communities of dependent species associating themselves with

replicated genotypes across these sites could then be analysed to robustly estimate

the effects of both foundation species genotype and environmental contrasts.

Here, we use a tree species which is readily cloned (European aspen, Populus
tremula L.) to establish randomized and replicated trials of naturally occurring
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location (lat, long)
N 56.599; W –3.641
N 56.549; W –5.284
N 56.438; W –5.321
N 55.592; W –2.920
N 55.890; W –2.847
N 55.390; W –3.918
N 55.470; W –3.214
N 55.393; W –3.141
N 55.001; W –4.0541
N 54.969; W –4.666
N 55.178; W –3.402
N 55.219; W –3.634
N 57.243; W –3.804
N 57.090; W –3.970
N 57.334; W –3.621
N 57.686; W –5.640
N 57.897; W –4.513
N 58.144; W –3.724
N 57.945; W –4.441
N 57.595; W –4.483
N 57.973; W –4.571
N 58.182; W –3.510
N 58.257; W –3.440
N 58.112; W –4.444
N 58.274; W –4.434
N 58.123; W –4.426
N 58.080; W –4.723

clone identity
a, (C-47):
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c, (C-59):
d, (C-72):
e, (C-75):
f, (C-76):
g, (C-78):
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j, (C-82):
k, (C-83):
l, (C-84):
m, (C-87):
n, (C-92):
o, (C-93):
p, (C-103):
q, (C-107):
r, (C-117):
s, (C-122):
t, (C-128):
u, (C-131):
v, (C-138):
w, (C-139):
x, (C-140):
y, (C-141):
z, (C-146):
aa, (C-147):

v

r Moray

Kilmichael

Figure 1. Site locations from which genetically different aspen clones were collected in Scotland (closed circles), and the position of the two contrasting exper-
imental sites (stars) in which they were grown in randomized trials (Moray and Kilmichael, see the electronic supplementary material, table S1).
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genotypes at two sites with strongly contrasting climatic

characteristics. Aspen has known high levels of associated

diversity, including conservation priority species which are

specialists [11]. We assessed community composition of associ-

ated epiphytic lichens and bryophytes established after 15

years on clonal replicates, testing the relative importance of

an environmental (site) effect, an intra-specific genetic effect

and their interaction on epiphyte community composition.
2. Material and methods
(a) Clonal trials
A root cutting from a single genotype (clone) of P. tremula L. was

collected from each of 27 widely separated locations across Scotland
[12,13] (figure 1). Previous work has indicated that aspen genetic

diversity within Scotland is comparable to that elsewhere in

the species’ range, and aspen clones collected from different

locations within Scotland represent different genetic individuals

[12]. Replicate cuttings from aspen clones were planted in random-

ized-block trials established in 1993/1994 [13], at two contrasting

experimental sites in Scotland; at Kilmichael (latitude 5680602200

N, longitude 0582401500 W) and Moray (latitude 5783801800 N, longi-

tude 0382304800 W). These sites represent the outer envelope of

environmental variability characterized by a strong east–west

climatic gradient (figure 1; electronic supplementary material,

table S1). Four ramets of each clone were planted at 3 m intervals,

in each of four or five randomized blocks for Kilmichael and

Moray, respectively. Established trees were grown for 15 years,

and the single most vigorous ramet of each clone from each block

was assessed for epiphytes over the winter of 2009/2010.
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Figure 2. (a) Ordination of samples by DCA to determine epiphyte community variation among individual aspen ramets, coded by site identity (closed symbols,
Moray; open symbols, Kilmichael). Note that some samples from the same site and with similar communities plot over one another. (b) Mean and 1 s.e. of sample
scores normalized by site, and grouped by clone identity, plotted for (i) DCA axis one and (ii) DCA axis two, to demonstrate the variability in community composition
among clones (for coding of aspen clones, see figure 1).

Table 1. Results of analysis of variance, to partition variation in epiphyte community composition along DCA axes one and two (figure 2) according to the
main effects of site identity and aspen genotype, and their G � E interaction.

community response

main effects interaction

site genotype site 3 genotype

F1,142 p R2 (%) F27,142 p R2 (%) F27,142 p R2 (%)

DCA axis one 116.52 ,0.001 33.5 1.57 0.049 12.2 1.74 0.021 13.5

DCA axis two 14.26 ,0.001 5.61 2.12 0.003 22.5 1.5 0.067 15.9
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(b) Assessment of epiphyte communities
An established standard method [14] was used to quantify epi-

phyte community composition as frequency of occurrence in a

5 cm � 25 cm quadrat divided into sub-quadrats of 5 cm �
5 cm, each with 1 cm � 1 cm subunits. Species presence–absence

was scored within quadrat subunits. Sampling was at breast

height (130 cm) for cardinal points on the bole (N, S, E and

W). Where species could not be identified in the field, they

were examined at the Royal Botanic Garden Edinburgh using

chemical spot tests, comparison with herbarium specimens and

identification using high-power light microscopy.

(c) Factors influencing epiphyte communities
Ordination of the epiphyte community composition for sampled

ramets was performed using detrended correspondence analysis

(DCA) [15]. Frequency cover values rescaled between 0 and 1

were square-root transformed, with rare species down-weighted.

Ordination axes one and two were treated as community response

variables, with species turnover along DCA axes partitioned

into the unique effects of site and aspen genotype (within site)

using analysis of variance, in addition to their G � E interaction.

Genetically determined differences in epiphyte composition were

examined by grouping the DCA scores for individual ramets
according to clone identity, and comparing the means+1 s.e.

among the different clones.
3. Results
A total of 26 epiphytic taxa (23 lichen species, two mosses and

one liverwort) were recorded on the aspen ramets assessed at

the two sites (electronic supplementary material, table S2).

DCA axes one and two explained 22.5% and 11.1%, respectively,

of the variation in epiphyte community composition among

ramets, with environmentally determined differences between

the two sites clearly evident (figure 2a). Epiphyte community

composition also varied among the aspen genotypes, whose

mean DCA scores along both axes one and two are illustrated

in figure 2b.

For DCA axes one and two, ANOVA showed significant

effects ( p , 0.05) of both aspen genotype and experimental site

(table 1). For DCA axis one, the effect of site explained more

variation than did aspen genotype, though with a significant

interaction term. Conversely, aspen genotype uniquely explai-

ned the greater variation in epiphyte community composition

along DCA axis two, with no significant interaction.
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Comparisons of individual species scores (electronic

supplementary material, figure S1) clarified environmental

effects on the distribution of taxa: lichen species adapted to a

more continental climate, such as Lecanora populicola [16], had

optima scores less than 2 on DCA axis one and were associated

with the Morayaspen samples. By contrast, moisture-demanding

mosses (Hypnum and Orthotrichum spp.) and liverworts

(Frullania dilatata) had optima more than 4 and were associated

with aspen ramets from the oceanic Kilmichael site.
.org
Biol.Lett.10:20140190
4. Discussion
The experimental design used here allowed us to directly

compare the amount of variation in epiphyte community com-

position explained by intra-specific genetic effects sampled

over corresponding environmental space. Previous attempts

to demonstrate that genetic variation of foundation species

determines the community composition of associated species

have been criticized on the grounds that genetic variants

have been sampled over a large geographical area, and the

differences between them have been tested in a single site

[8–10]. Environmental differences within a site will be small

relative to those between sites from which the genotypes

have been sampled, serving to exaggerate the relative effects

of genetic variation. In the present experiment, the sizes of

genetic and environmental effects on associated community

composition are directly comparable.

It is important that our two contrasting experimental sites

approximate the outer bounds in a bioclimatic envelope from

the hyper-oceanic west of Scotland to the relatively more con-

tinental northeast (figure 1) and are also different in terms of

soil type. Previous studies have shown that naturally occurring

aspen epiphyte communities are highly variable and function-

ally contrasting along this same bioclimatic gradient [17].
Nevertheless, we find that intra-specific genetic variation

within aspen can have an importance that is comparable to

the role of environment in structuring epiphyte communities.

This includes an interaction effect in which the community

response to foundation species genotype is dependent on

environmental setting, as found in previous studies [18].

The magnitude of the host genotype effect on associated

epiphyte community composition has potentially widespread

implications for conservation. Forest stands with mixed aspen

genotypes may generate higher levels of accumulated diversity

because of contrasting species composition among clones. Our

findings also indicate that a reduction in genetic diversity of a

foundation species such as aspen is likely to lead to a decline in

the diversity of the associated epiphyte communities, as

suggested by studies conducted in natural systems over small

scales [6]. This will have knock on effects for other forest bio-

diversity and ecosystem functions including nutrient capture

and cycling, and food-web dynamics [19,20]. Such problems

may be especially pertinent to forest restoration programmes

where genetic diversity can be lost very rapidly [21]. This is

particularly true for aspen in Scotland, where sexual reproduc-

tion is rare, and production of forest material takes place

largely through propagation of root cuttings [22]. In this situ-

ation, it is essential to maintain a diverse mixture of clones

for planting not only to allow the population of aspen to

respond to future environmental change, but to ensure that

the regenerated population is capable of supporting a diverse

epiphytic flora.
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