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Simulation-based and permutation-based inferential methods are commonplace in phylogenetic comparative methods, especially

as evolutionary data have becomemore complex and parametric methodsmore limited for their analysis. Both approaches simulate

many random outcomes from a null model to empirically generate sampling distributions of statistics. Although simulation-based

and permutation-based methods seem commensurate in purpose, results from analysis of variance (ANOVA) based on the distri-

butions of random F -statistics produced by these methods can be quite different in practice. Differences could be from either the

null-model process that generates variation across many simulations or random permutations of the data, or different estimation

methods for linear model coefficients and statistics. Unfortunately, because the null-model process and coefficient estimation are

intrinsically linked in phylogenetic ANOVA methods, the precise reason for methodological differences has not been fully consid-

ered. Here we show that the null-model processes of phylogenetic simulation and randomizing residuals in a permutation proce-

dure are indeed commensurate, and that both also produce results consistent with parametric ANOVA, for cases where parametric

ANOVA is possible. We also provide results that caution against using ordinary least-squares estimation along with phylogenetic

simulation; a typical phylogenetic ANOVA implementation.
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Biology in the 21st century is firmly entrenched in the big data

revolution. The technological advances of recent years have en-

abled biologists to rapidly characterize thousands of genomic

(Qin et al. 2015; Papageorgiou et al. 2018), phylogenomic

(Young and Gillung 2020), morphological (Goswami et al. 2019),

physiological (Orphanidou 2019), climatic (Stockwell 2006),

and behavioral attributes (Kabra et al. 2013), from hundreds to

thousands of observations representing individuals, populations,

species, and communities. These large biological datasets, inter-

rogated with mechanistic and phenomenological models (Otto

and Day 2007; Maruvka et al. 2013; Connolly et al. 2017; Mi-

tov et al. 2019; Otto and Rosales 2020), have extended the scope

of inquiry in ecology and evolution, leading to major insights.

Although computation-intensive analysis in not new (Crowley

1992), significant challenges still remain in how to extract biolog-

ical signal from large (Li and Chen 2014)—and even traditionally

sized—datasets. In particular, sparse data tables, ill-conditioned

covariance matrices, convergence issues with likelihood estima-

tion, and models that lack a known probability density distri-

bution, all lead to computational and statistical complexities for

evaluating trends in biological data.

Monte Carlo (simulation) and resampling methods (Manly

2007) have a rich history in evolutionary biology research (Mar-

tins and Garland 1991; Crowley 1992; Garland et al. 1993, 2005).

As computers have become more powerful, biologists are in-

creasingly turning to computation-intensive approaches, espe-

cially for analyses that lack parametric solutions or for data

that violate parametric assumptions. Computation-intensive ap-

proaches can include simulation methods (Garland et al. 2005;

Rangel et al. 2018; Cornell et al. 2019) and resampling pro-

cedures (Manly 2007; Collyer and Adams 2018). With respect

to the former, a family of procedures known as simulation-

based inference methods are gaining prominence (Diggle and

Gratton 1984; Gourieroux and Monfort 1993; Cranmer et al.
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2020; Brehmer et al. 2020). These approaches, which include ap-

proximate Bayesian computation, likelihood and probability es-

timation, neural networks and neural learning (among other ap-

proaches), are particularly useful for characterizing models that

describe complex biological dynamics, even when the proba-

bility distribution of the model is intractable (Beaumont 2019;

Cranmer et al. 2020; Brehmer et al. 2020). Likewise, resampling

procedures are increasingly used, especially for highly multi-

variate data that can preclude multivariate (M) analysis of vari-

ance (ANOVA). Resampling procedures are frequently used for

multivariate statistics in MANOVA (Clavel and Morlon 2020),

ANOVA based on dissimilarity matrices (Anderson 2001), or

ANOVA using univariate-like F -statistics calculated from traces

of covariance matrices (Collyer et al. 2015). These methods use

random permutations of data or linear model residuals. Boot-

strap resampling can also be performed for ANOVA (see, e.g.,

Figueiredo 2017), if resampling data with replacement is pre-

ferred.

Conceptually, simulation-based and resampling-based infer-

ence procedures, when used for hypothesis testing, are straight-

forward. First, random samples of observations are drawn

(simulated) from a specified generating process that describes

the biological null model under investigation. Next, test statis-

tics are obtained for each simulated dataset, which compose null

sampling distributions for the statistics. The chief difference is

whether data are newly simulated, perhaps drawing a sample

from, for example, a normal distribution, or redistributed in ran-

dom permutations of the existing data or linear model residuals.

Performed many times, either approach allows a sampling dis-

tribution proxy (of a real but perhaps intractable sampling dis-

tribution) of a test statistic to be empirically generated, and in-

ferences about the observed data are made based on the loca-

tion of the observed statistic in the sampling distribution. It has

been shown that empirical sampling distributions obtained from

simulation-based inference approaches can accurately approxi-

mate both likelihood profiles (Diggle and Gratton 1984; Gourier-

oux and Monfort 1993) and theoretical sampling distributions

of summary statistics (Kac 1949; O’Hara 2019) for models that

could equally use parametric probability distributions as proxies

for sampling distributions. Likewise, various tests based on re-

sampling data or residuals of linear models have been shown to

have good statistical properties in terms of type I error, statistical

power, and asymptotic convergence on exact tests (Anderson and

Robinson 2001; Manly 2007).

One challenge for comparative data is that the observations

under scrutiny (e.g., species) are correlated with one another due

to shared phylogenetic history (Felsenstein 1985). Failure to ac-

count for phylogenetic history in analysis of data can result in

spurious conclusions (Garland et al. 2005; Rezende and Diniz-

Filho 2011). The nonindependence of observations because of

phylogenetic relatedness can be described by an object covari-

ance matrix, C, which describes the expected correlation among

species due to common ancestry from a Brownian motion (BM)

model of evolutionary divergence (Grafen 1989; Martins and

Hansen 1997; Rohlf 2001; O’Meara et al. 2006). This matrix has

had multiple uses in phylogenetic comparative methods (PCMs).

It has been used to simulate data for species with expected phy-

logenetic relatedness as a null-model process for distributions of

F -statistics in ANOVA and analysis of covariance (Garland et al.

1993). For such analyses, many thousands of datasets are gener-

ated and one or more F -statistics are calculated for linear model

effects, using ordinary least squares (OLS) estimation of linear

model coefficients. A distribution of F -statistics from the random

datasets is used as reference to calculate the percentile of the ob-

served F -statistic (from the real data) as a P-value for a hypothe-

sis test. This simulation-based method assures that the null-model

process accounts for phylogenetic correlations in the data. C can

also be used to condition the estimation of linear model coeffi-

cients, such that residuals are independent, via generalized least

squares (GLS; Martins and Hansen 1997). Letting � = f (C), a

transformation of the C matrix, ANOVA can be performed on

linear model effects, with the violation of the assumption of in-

dependent observations comfortably abated by GLS estimation.

This approach can yield the same linear model coefficients as

using phylogenetically independent contrasts (PIC) (Felsenstein

1985) for single-factor linear models and if � = C. Therefore,

parametric ANOVA results for the effects based on PIC or GLS

coefficients will be the same if C is not transformed in any way

(Blomberg et al. 2012).

Using simulated datasets is a nonparametric PCM for test-

ing linear model effects—henceforth, abbreviated here as sim-

pANOVA—and phylogenetic (P) GLS estimation is a PCM

that allows for parametric ANOVA under certain circumstances.

However, there are cases (e.g., multivariate data) that might be

better approached with a nonparametric method. Several permu-

tation tests using PGLS or PICs have been recently introduced.

Klingenberg and Marugán-Lobón (2013) introduced a method

of obtaining PICs, variable by variable, which can be concate-

nated in a matrix whose rows can be shuffled in a permutation

procedure. Adams and Collyer (2015) demonstrated this method

had inferior type I error rates, compared to randomizing resid-

uals in a permutation procedure (RRPP) (Adams 2014; Collyer

et al. 2015) and performing ANOVA by calculating univariate-

like F -statistics based on PGLS coefficients in random permuta-

tions to generate distributions of F -statistics, much like the pur-

pose of sim-pANOVA. The RRPP-ANOVA method was refined

by Adams and Collyer (2018b) to use phylogenetically trans-

formed residuals, which had better and appropriate type I error

rates under more conditions. In comparison to sim-pANOVA,

RRPP-ANOVA had greater statistical power, although both
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methods had appropriate type I error rates (see also, Revell 2013).

Furthermore, for circumstances that parametric ANOVA follow-

ing PGLS was appropriate (assumptions met), the random F

distributions tracked the parametric F -distribution, making the

methods commensurate (Adams and Collyer 2018b).

The need for nonparametric PCMs apply inasmuch as

the need to analyze complex data exists, but under conditions

that traditional, parametric ANOVA is possible, one would ex-

pect consistent results between parametric and simulation-based

or permutation-based (resampling) methods. However, previ-

ous comparison of sim-pANOVA and RRPP-ANOVA did not

take into account that both methods have two components—

estimation and a null-model process—that could be considered

independently to ascertain why one method performs better than

another with regard to type I error rate or statistical power. Esti-

mation simply refers to whether OLS or GLS is used to estimate

coefficients, which thus impacts the calculation of F -statistics in

ANOVA. A null-model process is the process that generates ran-

dom outcomes over many permutations from a null model. Sim-

ulation of residuals or RRPP might be sufficient null-model pro-

cesses, provided the fixed effects of a null model are preserved

(Collyer et al. 2015). Alternatively, simulating or randomizing

data (rather than residuals) for hypothesis tests on multiple effects

of a linear model would be less appropriate, as such a strategy

would lack approximate exchangeability (Commenges 2003);

the data would not have the same expectation (mean) as the

error (zero). Recent statistical research for RRPP-ANOVA has

demonstrated that phylogenetically transformed residuals from

null models that use GLS estimation of coefficients have appro-

priate exchangeability (sensu Commenges 2003), meaning that

random pseudo-data created by this resampling procedure have

approximately the same null-model residual variance for single

traits (covariances and variances for multiple traits), across per-

mutations. The simulation of data using the same C matrix in

simulation runs should also produce datasets that have similar

variance. We are, however, unaware of any previous research that

has directly compared the consistency of simulation and permu-

tation of transformed residuals as null-model processes.

As described, sim-pANOVA combines simulation of data

(from a BM model of evolutionary divergence) as a null-model

process, with estimation by OLS. By contrast, RRPP-ANOVA

combines resampling (randomization) of transformed residuals

as a null-model process, with estimation by GLS. (The typical

application of sim-pANOVA is to simulate data, rather than resid-

uals, but for a single-factor model, this is not an issue as the null

model contains only an intercept to estimate the mean.) It might

be clear that OLS versus GLS estimation is one instance where

greater statistical power should be expected with PGLS, as in

RRPP-ANOVA. However, while GLS generally exhibits higher

statistical power when compared with methods that ignore the

correlations among observations (Revell 2010), if � is not esti-

mated properly, parameter estimates can be biased, and model

evaluation procedures can be compromised (Gourieroux et al.

1984; Zeger et al. 1988; Koreisha and Fang 2001; Chavance and

Escolano 2016; for discussion in a phylogenetic context, see Rev-

ell 2010; Blomberg et al. 2012).

It is possible to separately evaluate estimation and the null-

model processes used in sim-pANOVA and RRPP-ANOVA. In

this study, we use a 3 × 3 × 2 design of data type (three differ-

ent levels of phylogenetic signal), F -statistic calculation (OLS or

two different forms of GLS—see below), and null-model process

(simulation or RRPP), to better ascertain whether it is the null-

model process or estimation, or both, that leads to differences in

performance (statistical power and other attributes) among meth-

ods. We compare empirically generated sampling distributions

of F -statistics to parametric F -distributions, and we evaluate the

consistency of F -statistics, P-values, and effect sizes estimated

from the various methods. Finally, we discuss under which con-

ditions a particular methodological approach would be best.

Methods
Throughout our methods and results, we distinguish between

“data generating models” and “analytics.” The former focuses on

how data were simulated with known properties (such as with

evolutionary correlations) and the latter refers to how data were

analyzed, as if obtained without knowledge of the properties that

were simulated. Analytics refers to the choice a researcher might

make with data, such as choosing between simulation-based or

permutation-based approaches, and between OLS and GLS solu-

tions for estimating coefficients, and thus, ANOVA statistics.

Simulation strategy. To discern how the choice of analyt-

ics affect the approximation of empirical sampling distributions

and statistical power, we performed a series of stochastic sam-

pling experiments. The sampling experiments were based on a

linear model, using a single-factor ANOVA design. We simu-

lated data with an expected variance, � = �σ2, with σ2 = 1

(standard normal distribution) and � varied for three distinct

data-generating models: phylogenetic independence, phyloge-

netic correlation based on a BM model of evolutionary diver-

gence, and an intermediate amount of phylogenetic correlation;

i.e., three levels of phylogenetic signal in the data. For any simu-

lated dataset, three different coefficient estimation methods were

used. Coefficients were estimated as, β̂ = (XT �̂−1X)−1XT �̂−1y,

with three different versions of �̂, corresponding to OLS, GLS

based on a �̂ = C (the covariance matrix representing a BM

model of evolutionary divergence), and GLS using a �̂ ma-

trix, based on a maximum-likelihood fit of data to the phyloge-

netic tree, relative to phylogenetic signal. Two distinct null-model
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processes were also used to generate empirical sampling distri-

butions of F -statistics: simulation of residuals using �̂ = Cσ̂2,

where σ̂2 was calculated following coefficient estimation, and

RRPP. This 3 × 3 × 2 design made it possible to isolate the im-

pact of estimation and null-model process on ANOVA results,

whether data were independent with respect to phylogeny.

For any simulation run, we generated 100 or 200 “ob-

served” datasets, each containing n = 250 independent observa-

tions drawn from a generating model. The datasets corresponded

to 100 or 200 pure-birth phylogenies containing n = 250 species

each. Datasets (y) were simulated as y = Xβ + εN (0,�), where ε

was a vector of independent residuals drawn from a normal distri-

bution, N (0, �); the model design matrix, X, was a matrix com-

prising 0s and 1s as dummy variables to indicate group associa-

tion (with no a priori association to y) for 10 groups, each with

25 species; and β was a vector of coefficients to add group ef-

fects (difference in means between groups). (Initial trials that var-

ied group number and the number of species per group indicated

that these variables were not consequential for the results, but us-

ing 10 groups produced sampling distributions that were easy to

compare among methods.) For these simulations, no group ef-

fect could be included (i.e., all β = 0), which was tantamount to

generating random response data (y = εN (0,�)) and randomly as-

signing those observations to groups.

Comparison of sampling distributions. For our first set of

simulations, we varied �, only, and set β = 0; i.e., no expected

differences among groups. One version of � was an unscaled

matrix based on a BM model of evolutionary divergence (Felsen-

stein 1985; Grafen 1989; Rohlf 2001; Huey et al. 2019), that is,

� = C. The other two changed the amount of covariance (phy-

logenetic signal in the data) by the scaling parameter, Pagel’s λ,

which scales the internal branch lengths of the tree, optimizing

the fit of the data to the tree (Pagel 1997). Letting D = diag(C),

a diagonal matrix of only the phylogenetic variances of C, a

rescaled form of C is � = λ(C − D) + D (Collyer et al. 2022).

We used λ = 0, 0.5, and 1 (sensu Clavel and Morlon 2020) to

scale covariance matrices from random trees, yielding datasets

with phylogenetic independence, intermediate phylogenetic sig-

nal (correlation), and phylogenetic signal as expected with BM

(unscaled tree), respectively. These simulations allowed us to

consider the correspondence between null sampling distributions

using different combinations of estimation and null-model pro-

cess, in the absence of group effects.

Because data were simulated such that assumptions for para-

metric ANOVA should be met, we compared results to para-

metric ANOVA in several ways. First, we mapped empirical F -

distributions on a parametric F -distribution. Doing so revealed

how well the combinations of null-model process and coeffi-

cient estimation matched theoretical expectation. Second, we es-

timated P-values as the percentiles of observed cases in their cor-

responding distributions, which could be compared to P-values

estimated via integration of the probability density function of

the F -distribution, based on degrees of freedom. Third, we esti-

mated effect sizes as Z-scores, the standard deviate of observed

F -statistics in their normalized distributions (sensu, Adams and

Collyer 2018b). Finally, “pairs” plots of P-values and Z-scores

were used to evaluate the consistency of statistics among the dif-

ferent methods, including parametric ANOVA for P-values.

Comparison of statistical power. For our second set of sim-

ulations, we repeated the design of the first set of simulations, but

varied the first β parameter, from 0 to 8, in increments of 2. (This

approach increased the mean of the first group from the other

groups by 0, 2, 4, 6, and 8, to create an effect.) These simulations

allowed us to consider differences in type I error rate (β = 0) and

statistical power (β > 0) among different combinations of esti-

mation and null-model process. Initial trials suggested that 200

simulated trees were sufficient to obtain a reliable estimate of

null hypothesis rejection rate at an expected significance level of

α = 0.05.

In all simulation runs, coefficient estimation was performed

on simulated data in three different ways. OLS estimation—

as was used by Garland et al. (1993)—does not attempt to ac-

count for phylogenetic correlation in the data, even though data

might be simulated to have phylogenetic correlations; that is,

β̂ = (XT X)−1XT y, where T represents vector transposition, −1

represents matrix inversion, and y is a vector of data. GLS

estimation uses � in estimation of coefficients; that is, β̂ =
(XT �̂−1X)−1XT �̂−1y. �̂ for coefficient estimation can be de-

termined in one of two different ways. First, it can be assumed

to correspond to either a BM model of evolutionary divergence

or the covariances can be scaled by an a priori notion of what

the covariance should be. For example, scaling the covariances

by λ = 0 produces coefficients that are no different from OLS

estimation; that is, OLS estimation is the same as assuming phy-

logenetic independence in GLS estimation. Second, a maximum-

likelihood estimate of � can be obtained by finding the value of

λ that maximizes the likelihood of the data, given the tree; that

is, �̂ = �(λ̂) (see Collyer et al. 2022). We performed coefficient

estimation for λ = 0 (OLS), λ = 1 (typical with PGLS analysis),

and the maximum-likelihood estimate of λ, λ̂ for every dataset

produced in every simulation run.

F -statistics were calculated for every model, from the co-

efficients estimated, as F = (k − 1)(n − k)−1(r − r0)T �̂−1(r −
r0)(rT �̂−1r)−1, where r is a vector of residuals found as r =
y − Xβ̂ and k is the number of model parameters. The residu-

als, r0, were likewise calculated from a model with only an in-

tercept, X0 and its estimated coefficient, β̂0. The two null-model

processes were applied to each case, using 999 random permu-

tations (which along with observed statistics generated distribu-

tions of 1000 random F -statistics). For simulation as a null-model
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Figure 1. Density plots for random F -statistics, from different combinations of estimation and null-model process, illustrating sampling

distribution behavior. One hundred density curves for every level of simulated λ (colored differently) are overlayed in every frame.

Parametric F -distributions are shown as black curves.

process, εN (0,�) were newly obtained; for RRPP, εN (0,�) were es-

timated by randomizing the transformed residuals of a null model

containing only an intercept (mean). One important caveat is that

only if new data are simulated are the null-model process and co-

efficient estimation truly independent, but resampling residuals

means they are intrinsically linked.

This can be appreciated by the formula for residual vari-

ance for univariate data and a model with k parameters,

σ̂2 = (n − k)−1(y − Xβ̂)T �̂−1(y − Xβ̂) , which can be equiv-

alently written with Cholesky decomposition of �̂ as, σ̂2 =
(n − k)−1(y − X̂β)T (��T)−1(y − X̂β). Thus, the equation can

be updated as σ̂2 = (n − k)−1(�−1(y − Xβ̂))T (�−1(y − Xβ̂))

, where (�−1(y − Xβ̂)) are the phylogenetically transformed

residuals and exchangeable units under the null hypothesis

(Adams and Collyer 2018b). Because transformed residuals re-

quire � , both in the calculation of β̂ and the transformation of

the residuals, the null-model process (randomization of residu-

als) is not independent of coefficient estimation.

In comparing the different combinations of null-model pro-

cess and estimation, the answers for the following four ques-

tions were sought. Do the distributions of random F -statistics

comport as expected, compared to theoretical (parametric) dis-

tributions? From the distributions of random F -statistics, do the

different combinations produce consistent results with regard to

null hypothesis tests (correlation of P-values across simulation

runs)? From the distributions of random F -statistics, do the dif-

ferent combinations produce consistent effect sizes (correlation

of Z-scores across simulation runs)? Do the different combina-

tions have similar statistical power over a range of simulated

effects? All simulations were performed in R 4.1.2. (R Core

Team 2021). The functions, phytools::pbtree (Revell 2012)

and geiger::rescale.phylo (Harmon et al. 2008), were used

to randomly generate and rescale phylogenetic trees, respectively.

Support functions from RRPP (Collyer and Adams 2018, 2021b)

and geomorph (Adams et al. 2021; Baken et al. 2021) were used

along with new functions written by the authors for simulations

and analysis. All R scripts used are provided as supporting infor-

mation.

Results
Comparison of sampling distributions. Our results indi-

cated that when the null-model process and estimation were

commensurate—estimation matched the type of � matrix used

to generate random outcomes—random F -statistics formed dis-

tributions that were consistent with theoretical expectation, irre-

spective of whether the null-model process used simulation or

RRPP (Fig. 1). Most notably, when GLS was performed with op-

timization of λ, consistent empirical F -distributions were pro-

duced, irrespective of null-model process, and matched well to
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the parametric F -distribution. Other cases in which there was

a good match appeared to be incidental. For example, simu-

lating data with a BM process and using GLS estimation with

λ = 1 produced consistent distributions, regardless of whether

data were simulated with λ = 0, 0.5, or 1. The most notable de-

partures from this trend occurred with simulation with a BM pro-

cess as a null-model process, but OLS estimation, or GLS estima-

tion with optimized λ, when the data were obtained from a model

other than λ = 1 (Fig. 1). There were also noticeable inconsisten-

cies among distributions when RRPP was performed with λ = 1,

for data not simulated from a model with λ = 1 (BM). However,

the mismatches between these distributions and the parametric

F -distribution were far less severe than those between optimized

GLS estimation for simulation of BM data as null-model process.

Most notably, the combination of BM simulation as a null-

model process and OLS estimation—the combination used in

sim-pANOVA—did not produce empirical F -distributions that

resemble parametric F -distributions. These results were basically

replicated with optimized λ in GLS estimation, presumably be-

cause the optimized value would be near or equal to 0. Collec-

tively, the results indicate that (1) λ should be optimized and (2)

if this is done, and if simulation is used, �̂ should be a rescaled

form of C (the internal branches of the tree are rescaled) for the

null-model process. This combination of simulation and GLS es-

timation using a rescaled C matrix and RRPP using the rescaled

C matrix based on λ̂ yielded unequivocally consistent distribu-

tions, regardless of the value of λ.

The consistency of empirical sampling distributions with

parametric distributions might not be a cause for concern for hy-

pothesis tests (more on this below), provided there is consistency

in null hypothesis test outcomes. In general, the correspondence

between P-values was noteworthy (Pearson r > 0.99) for compa-

rable methods whether using OLS or either form of GLS, and for

data generated with no phylogenetic signal (Fig. 2), data with in-

termediate phylogenetic signal (Fig. 3), or data with phylogenetic

signal as expected from a BM model of evolutionary divergence

(Fig. 4). In all cases, when the null-model process and estimation

matched (the � matrix was the same in the null-model process

and estimation), a 1:1 relationship between P-values from para-

metric ANOVA and the nonparametric alternatives was evident.

However, if either simulation or RRPP was used as a null-model

process along with GLS and λ = 1, the correlation was not as

strong for data simulated with λ �= 1, as it was if λ was opti-

mized. It was also quite apparent that if simulation was used as

a null-model process, it was important to rescale C in order to

retain a linear relationship between P-values (from parametric

F -statistics).

There were no obvious relationships among different esti-

mation methods unless incidentally because data were simulated

to have no phylogenetic signal (λ = 0) or phylogenetic signal ex-

pected with a BM model of evolutionary divergence (λ = 1), in

which case the P-values from GLS with optimized λ and either

OLS, or GLS with λ = 1, respectively, were highly correlated.

These results only reinforce that λ optimization is an important

step that yields consistent results with OLS and traditional PGLS

estimation, at the extremes. Additionally, using OLS estimation

when data had phylogenetic signal appeared to produce P-values

that were consistently near 0, regardless of null-model process.

These patterns were generally the same among the nonpara-

metric tests for effect sizes (Z-scores; see Supporting Informa-

tion); though here there is no basis for comparison to parametric

tests, which do not have an obvious transformation to obtain a Z-

score. Collectively, these results confirm that the choice of null-

model process is not as important as estimation, provided λ opti-

mization is performed at all stages. Ignoring optimization, under

no circumstances does simulation from a BM model of evolu-

tionary divergence as a null-model process coupled with OLS es-

timation make sense. Rather, estimation and null-model process

should be seen as an analytical pairing that requires matching C
matrices (inherent in RRPP), which performs best if C is scaled

by λ.

Comparison of statistical power. Some of the inconsisten-

cies noted in the first set of simulations were more obvious as

pathologies in the second set of simulations, meant to address

type I error and statistical power. Estimation with OLS or GLS

without λ optimization tended to result in higher type I error rates

(Fig. 5), unless the λ assumed for estimation happened to match

the λ used to simulate data. For example, data simulated with

λ = 0 had appropriate type I error rates (at β = 0) for OLS es-

timation and RRPP, but OLS estimation used on data with any

phylogenetic signal had exceptionally large type I error rates;

data simulated to have phylogenetic signal consistent with a BM

model of evolutionary divergence had appropriate type I error

rates if GLS was performed with λ = 1, but had elevated type I

error rates for data simulated with λ < 1, with the rate increased

for data simulated with λ = 0 compared to λ = 0.5 (further de-

parture from λ = 1). The only obvious difference between null-

model processes was that OLS estimation with RRPP (intrin-

sic relationship between residuals and estimation) and OLS es-

timation with BM data simulation had strikingly different results.

Type I error rates were appropriate, irrespective of data type, if

simulation was used. If simulation and RRPP assumed the same

C matrix, type I error rate and power curves were indistinguish-

able (Fig. 5).

For statistical power, the method of estimation appeared to

be more important than the null-model process. This can be ap-

preciated by the consistency of statistical power curves among

the different data types, irrespective of null-model process, jux-

taposed with the disparity among power curves if GLS was not

based on optimization of λ. Regarding the latter, statistical power

EVOLUTION JULY 2022 1411



D. C. ADAMS AND M. L. COLLYER

Figure 2. Pair plots for P-values from different combinations of estimation and null-model process, for data generated with λ = 0,

illustrating the consistency of different combinations of null-model process and estimation. Gray boxes surround plots with the same

estimation method.

was considerably higher if the value of λ used for GLS estima-

tion incidentally matched the λ used to simulate data. A greater

departure from this (λ = 0) resulted in a greater reduction in sta-

tistical power. The simulated effect (β) also contributed to differ-

ences in statistical power. The only disparity between statistical

power curves occurred at small β (2 or 4), with data simulated

with stronger phylogenetic signal having greater statistical power.

The result of previous research (Adams and Collyer 2018b)

was also confirmed; BM simulation as a null-model process with

OLS estimation (sim-pANOVA) has less statistical power than

RRPP with GLS, but only if data were simulated with a BM

model of evolutionary divergence. The enhanced statistical power

of RRPP with GLS appears to be an amelioration afforded by

simulating only data with a BM model of evolutionary diver-

gence. Simulating data with weaker phylogenetic signal renders

low statistical power using GLS, assuming λ = 1. However, op-

timizing λ provides the most statistical power, regardless of null-

model process or the apparent amount of phylogenetic correlation
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Figure 3. Pair plots for P-values from different combinations of estimation and null-model process, for data generated with λ = 0.5,

illustrating the consistency of different combinations of null-model process and estimation. Gray boxes surround plots with the same

estimation method.

in the data. These results are consistent with those of previous

work (Collyer et al. 2022), in which statistical power for detect-

ing phylogenetic signal was increased by optimizing λ.

Discussion
This research revealed several important points. First, whether

simulation of data (residuals, more precisely) or RRPP is used as

a null-model process is inconsequential. Both methods produce

reliable results. Second, the method of estimation is exceedingly

important. Performing ANOVA with a method of estimation

that does not appropriately estimate the phylogenetic covariances

of the data can be detrimental. Statistical research varying the

strength of phylogenetic signal has been performed for evaluating

methods that test phylogenetic signal strength (e.g., Münkemüller

et al. 2012; Collyer et al. 2022) but might be comparatively rarer

for research that evaluates the proficiency of methods to test hy-

potheses with linear models. One exception is the work of Clavel
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Figure 4. Pair plots for P-values from different combinations of estimation and null-model process, for data generated with λ = 1,

illustrating the consistency of different combinations of null-model process and estimation. Gray boxes surround plots with the same

estimation method.

and Morlon (2020) who varied λ as we did in this study, for

the comparison of various multivariate methods. In their compar-

isons, two methods mimicked methods used in this study. They

used BM simulation with OLS estimation of residual covariance

matrices and RRPP with GLS estimation of residual covariance

matrices, assuming λ = 1. The former used MANOVA statis-

tics and the latter used univariate-like F -statistics (Collyer et al.

2015) for test statistics, but for a single variable, these statistics

would be comparable to the BM simulation plus OLS and RRPP

plus GLS with λ = 1 cases we considered here. Clavel and Mor-

lon (2020) noted that using RRPP plus GLS with λ = 1 resulted

in drastically increased statistical power but also high type I er-

ror rates, when considered for only the first principal component

if data were simulated with a BM model of evolutionary diver-

gence, but statistical power was otherwise considerably lower

than with multivariate likelihood or penalized likelihood statis-

tics, which used �̂ instead of C. Our results are remarkably con-

sistent with theirs for the univariate consideration in this study,
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Figure 5. Statistical power curves for all combinations of estimation and null-model process, and for the three data types based on λ.

Null hypothesis rejection rates (each point) were based on 200 simulations.

and suggest that the inherent optimization step in their statisti-

cal approach is the important component of the cross-validated

statistics they introduced. The null-model process they used was

similar to RRPP, except that residuals were not transformed prior

to permutation but were transformed after permutation, unlike the

recommendation of Commenges (2003) to maintain approximate

second-moment exchangeability, and C was used rather than �̂

for transformation. The issues we found with BM simulation plus

OLS were also consistent with the issues they found (limited

statistical power). Not only did we find consilience of ANOVA

methods for our comparisons of parametric ANOVA, simulation-

based ANOVA, and RRPP-based ANOVA, when �̂ is based on

an optimized value of λ, but we found some consistency with the

increased statistical power of other multivariate methods that use

�̂ rather than C.

Performing statistical research to evaluate methods that

should have more applicability for multivariate data by simulat-

ing univariate data might seem unintuitive. However, there were

two important reasons for doing this. First, simulating univari-

ate data meant we could map random F -statistics on the den-

sity plot of parametric F -distributions to consider the behavior

of the different combinations of null-model process and esti-

mation. We could have alternatively considered examples with

conditions that multivariate statistics have exact F -distributions

but this would have also meant generalizing sim-pANOVA—a

commonly used method—for MANOVA. Second, and more im-

portantly, generalizing the maximum-likelihood estimation of λ

for multivariate data is not a trivial exercise. As noted by Col-

lyer et al. (2022), λ optimization can be quite complex, start-

ing with the consideration of whether λ is free to vary across

multivariate variables. Finding the determinant of a residual co-

variance matrix, |�|, is essential for estimating model likelihood.

� is found for multivariate data as, R ⊗ �̂, where ⊗ indicates

a Kronecker product, and R is the residual covariance matrix

generalization of σ̂2, found from an n × p matrix of data, Y,

as R = (n − k)−1(Y − Xβ̂)T �̂−1(Y − Xβ̂). However, this defi-

nition implies single R and �̂ matrices, which means a scalar λ

must be used in estimation. Allowing for p different R and �̂

matrices is possible with an algorithm to solve � for likelihood

estimation, with maximum-likelihood estimates of λ first found

p times for each variable (Collyer et al. 2022), a likely computa-

tionally intense procedure.

Clavel and Morlon (2020) offered that a maximum-

likelihood estimate of � could be made with either a scalar

or vector of λ, but it is not clear how either would be ob-

tained. Whether λ should be a scalar or vector must consider the

type of multivariate data (see Adams and Collyer 2018a, 2019).

For example, shape data found through generalized Procrustes
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analysis (Rohlf and Slice 1990) uses multiple variables to de-

scribe one organism attribute, shape. Thus, assuming that natural

selection acts independently on subcomponents of a set of shape

variables—as is explicitly the case with optimizing separate λ

for each trait dimension—would not make much sense. Thus,

for such multidimensional traits, use of a common scalar of λ

would be more appropriate. Yet this recommendation is in con-

trast to that for, say, life-history data, where a multivariate dataset

comprises multiple traits that could (in theory) be independent.

Here, a separate λ for each trait may be envisioned (for a similar

approach with evolutionary rates, see Adams 2013). Although a

scalar λ offers a simpler calculation of �, and thus, a simpler esti-

mation of model likelihood, allowing independent λ optimization

offers a potentially simpler solution for optimization, as λ is op-

timized for each variable with a univariate optimization strategy.

It is the multivariate generalization of a single λ parameter that is

potentially more complex.

Although the optimization of λ is straightforward—the

value of λ that maximizes the likelihood estimator—calculating

the likelihood is fraught with estimation issues as � becomes

singular (when the number of variables approaches or exceeds

the number of observations). In this study, using univariate ex-

amples posed no issue, but generalizing the maximum-likelihood

estimate for λ for multivariate data would require further inves-

tigation, especially for high-dimensional data, in which case �

is certainly singular but tractable test statistics based on traces

of residual covariance matrices could be used. Clavel and Mor-

lon (2020) introduced penalized likelihood, which offers an

ability to find λ̂, even for high-dimensional data, but this ap-

proach might only be useful for likelihood-based statistics as test

statistics.

We envision four possible scenarios for generalizing λ opti-

mization to find a scalar that maximizes the likelihood of a model

for high-dimensional data (for the general formula for multivari-

ate likelihood estimation, see Revell and Harmon 2008), and for

test statistics that do not necessarily rely on calculating model

likelihood. The simplest generalization—if data dimensionality

is not an issue—finds alternative multivariate likelihoods based

on residual covariance matrix estimates, spanning λ from 0 to 1.

However, this approach could fail to consider strong latent phy-

logenetic signal, restricted to only a portion of the data space

(see Collyer and Adams 2021a). For example, for shape data

where strong phylogenetic signal is localized to a portion of a

more comprehensive anatomical configuration, a solution that

converges toward λ = 0 might be found. (In this case, allowing λ

to vary might be warranted.) The second approach, which would

mitigate the potential issues of the first approach, is to find op-

timized values of λ variable by variable, and average them. This

solution, however, would bias λ optimization toward 0.5 unless

all variables either have or lack phylogenetic signal. Based on our

statistical power results (Fig. 5), this might not be such a worri-

some outcome, as the most egregious issues occurred for cases

where λ used in analysis had a large departure from its optimized

value. (A tendency toward an intermediate value would preclude

larger disparity that could exist between two λ values.)

The third alternative would be to determine the data dimen-

sions that have most phylogenetic signal and rotate the data space

with respect to these dimensions, an analysis called phylogenet-

ically aligned component analysis (Collyer and Adams 2021a).

Multivariate optimization of λ could thus be confined to the di-

mensions where phylogenetic signal is present. This procedure

would likely bias λ in a positive direction, which could yield tra-

ditional PGLS solutions (assuming λ = 1) even if phylogenetic

signal is constrained to a small portion of the variables. Finally,

the likely best solution is also the most computationally exhaus-

tive. RRPP or simulation could be performed for a reliable num-

ber of permutations, for example, λ = 0, 0.1, 0.2, . . . , 1, and a

spline function could find the optimal λ that maximizes a Z-

score for characterizing phylogenetic signal, sensu Collyer et al.

(2022). This approach has used sampling distributions of log-

likelihood statistics measuring phylogenetic signal to obtain, Z ,

which has been shown to have a linear association with λ. Thus,

measuring likelihood was less important than its role in mea-

suring the phylogenetic signal effect size. The same approach

could be used on Z-scores obtained from distributions of random

univariate-like F -statistics based on traces of residual covariance

matrices. Whether such an approach yields comparable or better

statistical power than penalized likelihood approaches would also

be a useful future research endeavor.

If λ should be considered free to vary, a multivariate gen-

eralization may not be needed, as p univariate solutions would

be acquired for p variables. However, this approach also assumes

that each variable could be considered independent, which is per-

haps a risky assumption. An alternative solution is to use the in-

dependent solutions as a starting point for an iterative procedure

that finds the optimal combination of values that maximizes like-

lihood, sensu Adams (2013). Such an approach might have in-

trigue as an analysis that considers the modularity of anatomical

subconfigurations for landmark shape data (sensu Klingenberg

2009; Adams 2016; Zelditch and Goswami 2021), as suites of

contrasting λ values for groups of variables might be evidence for

natural selection acting differently on anatomical components.

This discussion highlights the current tension and needed

research direction. Although research to evaluate the most ap-

propriate methods to estimate � for multivariate data, especially

with respect to statistics used for hypothesis tests, will require a

thorough investigation, what can researchers do currently to as-

suage concerns about inappropriately estimated � matrices? As

a heuristic, at least for a scalar form of λ, simply performing a

range of analyses first with, for example, λ = 0, 0.1, 0.2, . . . , 1
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for a linear model that contains only an intercept, and choosing a

value of λ that yields the largest effect size, Z , based on a distri-

bution of random log-likelihoods (Collyer et al. 2022) will be a

valuable analytical strategy. This is consistent with one of the pro-

posed optimization strategies we outlined above. Furthermore, if

it is found that alternative optimization strategies work well, the

advantage would be in saved computation time but likely not im-

proved statistical power, over this approach. It can be expected

that a solution that maximizes Z also maximizes likelihood, us-

ing RRPP (Collyer et al. 2022). If one wishes to allow λ to vary

among different variables, then finding λ variable by variable

might not maximize model likelihood compared to an alterna-

tive solution, but might have a solution that maximizes model

likelihood better than a scalar. As a minimum, these are two ap-

proaches that should work well—especially compared to assum-

ing λ = 1 in PGLS or using OLS in sim-pANOVA—and could

possibly be improved with further research.

Given that estimation is important, the question turns to

whether residuals should be resampled or simulated, as a null

process? We have shown there is no real analytical concern, as

results will be consistent with simulated data, but under which

conditions would this question be swayed to a particular answer?

Simulation assumes a parametric distribution from which data are

sampled. RRPP uses the residuals that are calculated. An advan-

tage to simulation is it can be assured that the null process cor-

rectly asserts an appropriate distribution. An advantage to RRPP

is that an assumption about the distribution of residuals is not re-

quired. It will require further research to evaluate if the two meth-

ods have contrasting results with residuals that are not normally

distributed or are heteroscedastic. However, if the two methods

can be relied on to produce consistent results, shuffling trans-

formed residuals is probably computationally faster than simu-

lating residuals from a null distribution that must be modified to

have phylogenetic correlation in each permutation.

We feel that a few potential updates to software pack-

ages that offer either sim-pANOVA or RRPP-ANOVA should be

strongly considered. First, estimation of � based on an optimized

λ should be made available. If data are simulated, rescaling the

phylogenetic tree used for simulation by λ̂ should be an essential

step. Simulation should also simulate residuals that are added to

null-model fitted values, which are estimated with PGLS, with

�̂ based on λ̂, rather than the simulation of new data in every

permutation. This is especially true for linear models with multi-

ple effects. Currently, software packages that offer sim-pANOVA

do so only for single-factor models, in which case simulating new

data is no different from simulating residuals. However, for multi-

ple linear model effects, multiple null models and therefore, mul-

tiple null-model processes are required. The simulation of new

data implicitly considers the same model with only an estimated

mean as a null model, which would probably not make much

sense for ANOVA based on type I, type II, or type III sums of

squares and cross-products.

More broadly, our work exposed the fact that when evalu-

ating macroevolutionary trends across a phylogeny, it is the ap-

propriate conditioning of the data on the phylogeny during the

analysis, and not phylogenetic simulation alone, which was re-

sponsible for obtaining adequate sampling distributions (which

should be a goal for making correct biological inferences). That

is, the use of OLS estimation—as is common in some imple-

mentations of sim-pANOVA—yields incorrect sampling distri-

butions, and could thus lead to incorrect statistical inferences

regarding patterns in cross-species data. Although previous re-

search has illustrated that GLS estimation is an obvious im-

provement, we have shown that PGLS assuming λ = 1 can also

be fraught with type I error rate and statistical power issues.

Realizing that λ̂ = 0 and λ̂ = 1 are possible optimization out-

comes, PGLS using λ̂ should be viewed as a universal solution.

Our research emphasized that statistical inference via PCMs re-

quires statistical methods that condition data on the phylogeny,

not merely data that are simulated from a phylogenetic pro-

cess alone. From this it follows that simulation-based approaches

to macroevolutionary inference must account for phylogenetic

nonindependence at two stages: the generation of random sam-

ples via simulation (e.g., Martins and Garland 1991; Garland

et al. 1993), and in the analytics that are used to obtain statistics

(e.g., Martins and Hansen 1997). When both of these conditions

are met, macroevolutionary inferences derived from simulation-

based approaches are appropriate and reliable.
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Figure S1: Density plots for random F-statistics, from different combinations of estimation and null model process.
Figure S2: Pairs plots for P-values from different combinations of estimation and null model process, for data generated with lambda = 0.
Figure S3: Pairs plots for P-values from different combinations of estimation and null model process, for data generated with lambda = 0.5.
Figure S4: Pairs plots for P-values from different combinations of estimation and null model process, for data generated with lambda = 1.
Figure S5: Statistical power curves for all combinations of estimation and null model process, and for the three data types based on lambda. Null hypothesis
rejection rates (each point) were based on 200 simulations.
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