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ABSTRACT
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane 
secrete by various cells that mediate the communication between cells and tissue, which contain 
a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose 
tissue is important energy storage and endocrine organ in the organism. Recent studies have 
revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physio-
logically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic 
homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they 
could be used in the treatment of disease and or that they may be involved in the progression of 
the disease. In this review, we describe the basic principles and methods of exosomes isolation 
and identification, as well as further summary the specific methods. Moreover, we categorize the 
relevant studies of AT-Exosomes and summarize the different components and biological func-
tions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within 
adipose tissue and their functions on other tissues or organs from the physiological and patho-
logical perspective. Based on the above analysis, we discuss what remains to be discovered 
problems in AT-Exosomes studies and prospect their directions needed to be further explored 
in the future.
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1. Introduction

Adipose tissue (AT) is a main energy storage organ, 
which is a loose connective tissue with stromal vascular 
fraction (SVF), adipose-derived stem cells (ADSCs), 
adipose tissue macrophages (ATMs), T cells, preadipo-
cytes and mature adipocytes. Literatures have shown 
that AT, as an endocrine organ, secretes a variety of 
adipokines that affect the body’s homoeostasis, includ-
ing leptin, adiponectin, resistin and adipsin [1–3]. In 
terms of biogenesis, exosomes are a kind of extracellu-
lar vesicles (EVs). EVs are heterogeneous membrane 
vesicles that have been proven to be secreted by all 
types of cells [4]. They contain various types of particles 
with a wide range of physical properties and biological 
origins, being mainly divided into two categories based 
on different sizes [5]. One is 50–1000 nm vesicles 
formed by the sprouting of the plasma membrane, 
mainly including ectosomes (ie, shedding vesicles, 
microparticles and microvesicles) and apoptotic bodies, 
the other is exosomes with a size of 40–160 nm from 

the endosomal membrane. In physiological and patho-
logical conditions, different types of cells secrete exo-
somes into the extracellular environment and body 
fluids [6], including blood [7], urine [8], amniotic 
fluid [9], spermatozoa [10]. Exosomes have a wide 
range of functions related to biological processes, 
including transfer of functional proteins and nucleic 
acids [11], immune response [12], elimination of 
unwanted substances, nutrition [13], surface receptor- 
mediated cell signalling [14] and cancer metastasis [15– 
17]. We use the keyword ‘exosome’ to search for rele-
vant literature in the NCBI PubMed Database (https:// 
pubmed.ncbi.nlm.nih.gov/), observing that exosomes- 
related literatures have risen sharply in recent years 
(Figure 1(a)). Studies on the biological origin, transport 
and function of exosomes will broaden the understand-
ing of unknown intercellular communication and tissue 
homoeostasis in a mammal. Due to the lipid bilayer 
membrane structure, exosomes protect their coated 
substances and target specific cells or organs. 
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Furthermore, exosomes have been used as disease bio-
markers [18] and therapeutic agents [19] for disease 
diagnosis and drug carrier studies.

In recent years, AT has been proven to play an important 
physiological function by releasing AT-derived exosomes 
(AT-exosomes) to other specific tissues and organs. Its 
hypertrophy changes the miRNA profile of exosomes in 
plasma and affects glucose absorption and lipid metabolism 
in mice [20]. The exosomes derived from adipocytes 
(Adipocytes-Exosomes) affected the mTOR signal of the 
hypothalamus to regulate the appetite and body weight of 
mice [21]. Moreover, exosomes secreted by human adipose 
tissue mesenchymal stem cells (ADSCs-Exosomes) had a 
positive effect on the treatment of Alzheimer’s disease [22]. 
They were confirmed to affect the growth and migration of 
liver cancer, ovarian cancer, breast cancer [23–25]. We use 
the keywords ‘adipose’ and ‘exosome’ to search and classify 
relevant kinds of literature in the NCBI PubMed database. 
The studies of AT-Exosomes show an upward trend year by 
year similar to exosomes (Figure 1(b)). Additionally, by the 
analysis of the functions of different species and cell 
sources, we find that ADSCs-Exosomes are the most con-
cerned by researchers (Figure 1(c.d)), because ADSCs are 
pluripotent cells that are easy to obtain and are cultured in 
large quantities with clinical therapeutic potential. In the 
above studies, the extraction and identification methods of 

AT-Exosomes are the research basis. Furthermore, studies 
about the internal components of AT-Exosomes help us 
make better use of this biological endogenous delivery to 
play a variety of regulatory functions. In this review, we 
summarize the components of AT-Exosomes, the methods 
of isolation and identification, as well as their physiological 
and pathological functions.

2. AT-Exosome composition

Given the universality and particularity of exosomes car-
goes in adipose tissue, it was divided into two parts. The 
composition of universal substances is mainly caused by the 
biogenesis of exosomes, including some membrane pro-
teins and key proteins of vesicle formation, which are con-
tained in all of the exosomes. Specific substances are mainly 
molecules related to the metabolites secreted by adipose 
tissue and lipid storage, without in other tissue. In this 
section, we summarize the universal and specific compo-
nents of AT-Exosomes.

2.1. Universality composition

The universality of exosomal composition is largely 
determined by its biogenesis. The biological process 

Figure 1. Classification and statistics of articles related to exosomes and AT-Exosomes. (a). Number of exosomes literatures along 
with year. (b). Number of AT-Exosomes articles along with year. (c). The literatures of AT-Exosomes in different species including 
human, mouse, rat, pig, horse, rabbit, dog and cattle. (d). Source of AT-Exosomes. AT-Exosomes, adipose tissue-derived exosomes.
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mainly includes the reverse budding of cytoplasmic 
membrane to form multivesicular endosome, the fusion 
of mature endosome and cell membrane, and the secre-
tion of exosomes to the extracellular environment [26]. 
According to the origin and biogenesis of exosomes, all 
exosomes contain proteins involved in membrane 
transport and fusion (GTPases, annexins, flotillin) 
[27–30], tetraspanin proteins (CD9, CD63, CD81, 
CD82) [30–33], Heat shock proteins (Hsc70, Hsp90) 
[33,34], vesicle-forming proteins (Alix, TSG101) 
[30,33], lipid-associated proteins and phospholipases 
[35]. This has also become an important marker to 
identify exosomes [21,36,37]. In addition to proteins, 
exosomes contain lipids such as cholesterol, ceramides, 
sphingolipids, and long-chain glycerophospholipid, as 
well as a variety of RNAs including mRNA, miRNA, 
other non-coding RNAs (snRNA, snoRNA, scaRNA, 
piRNA, lncRNA and circRNA), tRNA and rRNA. 
Interestingly, most of the RNAs in exosomes are 20– 
200 nt in length.

2.2. Specificity composition

The specificity of the internal components of AT- 
Exosomes is reflected in their different sources of spe-
cies and cells, determining their different biological 
functions (Table 1). The gluteal fat releases exosomal 
Hotair (HOX transcript antisense RNA) that promoted 
the proliferation of intestinal stem cells and progenitor 
cells [38]. In addition, AT-Exosomes are rich in lipids, 
lipid-related mRNAs and proteins [39–43]. Cargoes of 
AT-Exosomes have functions similar to AT and affect 
lipid synthesis and homoeostasis of target organs and 
cells. ADSCs-Exosomes contained miR-125a which 
acted on endothelial cells and promoted angiogenesis 

[44]. ADSCs-Exosomes were shown to secrete exo-
somes containing miR-4792, miR-320b, and miR-320a 
to inhibit the viability of ovarian cancer cells [11]. 
Moreover, ADSCs-Exosomes were detected to be rich 
in lncRNA metastasis associated lung adenocarcinoma- 
transcript 1 (MALAT1), lncGm37494 and other 
lncRNAs to perform a variety of important physiologi-
cal functions [45–51], mainly including enhancing the 
regeneration of neurons in the injured area, repairing 
spinal cord injury, stimulating wound healing, angio-
genesis, and improving hypoxia-induced cardiac injury. 
Furthermore, the exosomal microRNA-34a secreted by 
adipocytes inhibited the polarization of M2 macro-
phages and promoted fat inflammation caused by obe-
sity [52]. Besides, adipocytes-Exosomes circRNA circ- 
DB to target ubiquitin-specific protease 7 (USP7) to 
promote the growth of hepatocellular carcinoma [53]. 
Our laboratory has devoted itself to the function of the 
ingredients in AT-Exosomes. The previous study indi-
cated that resistin-containing exosomes secreted from 
adipocytes caused fatty degeneration of the liver in 
mice [54], suggesting that AT-Exosomes are new 
potential targets for the treatment of obesity and related 
hepatorenal syndrome.

We conduct a statistical analysis of the AT- 
Exosomes in the retrieval articles mentioned above 
(Figure 2), finding that the studies on microRNA com-
ponents accounted for 74.12%. This is mainly due to 
the short length of microRNA and the complete 
microRNA sequence in exosomes, which makes it 
easy to perform biological functions. Furthermore, the 
current study methods including RNA-sequencing ana-
lysis, proteomics and lipidomics related to exosomal 
composition are limited. From a long-term perspective, 
the components of AT-Exosomes need to be further 

Table 1. Cargo in AT-exosomes in different species.
Species 
Cargo Human Mouse Rat Pig Cattle

microRNA miR-125a [44], miR-4792, miR- 
320b, miR-320a [11], miR-145 

[158]

miR-27a [55], miR-155 
[56,145], miR-92a [57], 

microRNA-34a [52]

miR-214 [58], miR-191 [59], miR- 
450a-5p [60], miR-126, miR-130a, 

miR-132, miR-let7c [61]

miR-148a, miR-532-5p, 
miR-378, let-7 f [39]

miR-142-5p 
[40]

lncRNA lncRNA MALAT1 [45–50] 
anti-NOS2a, DLG2A5, GAS5, 

HOTAIRM1, lincRNAp21, lincRNA- 
VLDLR, NEAT1 [50]

LexGm37494 [51], Hotair 
[38]

circRNA circ-DB [53], circ-0001359 
[62], circ-0000250 [63]

tRNA tRNA CTC [79]
mRNA ANXA4, CLTC, CCT2 

[64], MDFIC, HGF, 
CEBPA, ARRB1 [39]

CPT1A, HSL, 
PLIN, ATGL, 
FABP4 [40]

protein IL6 [65], NEP [66], PTRF [67], 
Alpha-1-Antitrypsin [68]

FASN, G6PD, ACC [41], aP2 
[42], eNAMPT [69], resistin 

[54]

caveolin 1, AQP7, adenylate kinase 2, 
catalase, liver carboxylesterase [70]
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supplemented. It will also help us better understand the 
principles of exosomes and the communication 
between cells and tissue, this endogenous biological 
medium to perform physiological and pathological 
functions.

3. AT-Exosome isolation

In recent years, studies on the function of AT-exosomes 
have become a hot spot. The basic method is success-
fully isolates and detect them without disturbing nat-
ural form. In this part, we briefly summarize the 
principles and methods of several commonly used 
AT-Exosomes separation, and further analyse their 
respective advantages and disadvantages (Table 2).

3.1. Ultracentrifugation

Ultracentrifugation is called the ‘gold standard’ for 
exosome extraction according to the different sedimen-
tation coefficients of exosomes and other substances 
[77,78]. It is mainly divided into differential ultracen-
trifugation and density gradient ultracentrifugation.

3.1.1. Differential ultracentrifugation
The differential ultracentrifugation is based on the size 
of exosomes. It is suitable for the extraction of 

exosomes in various body fluids [79–82]. The differen-
tial centrifugation method has the advantages of simple 
operation and low cost. However, the exosome samples 
prepared by this method have high levels of protein 
aggregation and lipoprotein contamination [83], and 
the purity is low. This method requires high sample 
volume and equipment requirements. In addition, 
ultra-high-speed centrifugation may cause exosome 
fragmentation, which is not conducive to subsequent 
quantitative and functional studies.

3.1.2. Gradient ultracentrifugation
The gradient ultracentrifugation is based on the size 
and density of exosomes. Density gradient centrifuga-
tion is mainly a combination of differential centrifuga-
tion and density centrifugation [84,85]. The principle is 
that exosomes will be suspended in liquids of similar 
density or composition after centrifugation. Exosomes 
have been reported to have a density between 1.13– 
1.19 g/ml [86]. The most commonly used solvents are 
mainly sucrose and iodixanol. The method of sample 
primary centrifugation is consistent with gradient cen-
trifugation. The difference is that, 30% sucrose or iodix-
anol should be added to the bottom of the centrifuge 
tube before ultracentrifugation, and ultrahigh-speed 
centrifugation of 100,000–120,000 × g should be used 
for at least 75 min. In the next step, the suspension is 

Figure 2. The proportion of components in AT-Exosomes.

Table 2. The features of AT-Exosomes isolation methods.
Characteristics 
based on Method Instrument requirement Separation time Shape & structure Concentration Purity References

Size Differential ultracentrifugation high long destroy normal normal [71–73]
Gradient ultracentrifugation high long protect low high [84,85]

Ultrafiltration normal short destroy normal normal [43,62,74]
Size-exclusion chromatography high short protect high normal [75,95]

Water soluble Polymer precipitation low short destroy high low [46,76,147]
Marker protein Immunoaffinity capture low short destroy high low [108]
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resuspended by adding pre-chilled PBS, centrifuged at 
100,000–120,000 × g and washed again, and the result-
ing precipitate (exosomes) is resuspended in a solvent 
according to different subsequent needs.

The density of the exosomes extracted by density 
gradient centrifugation is high in purity, which avoids 
protein contamination to a certain extent and protects 
the morphology of exosomes [87]. However, this 
method isolates exosomes with EVs similar to exo-
somes size, reducing the production of exosomes and 
separation efficiency.

3.1.3. Ultrafiltration
The separation of exosomes by ultrafiltration is similar 
to the traditional filtration principle, mainly using 
ultrafine nano-membranes with different MWCO 
(molecular weight cut-off) to separate extracellular vesi-
cles of different sizes [88–90]. The main process of 
extracting exosomes by ultrafiltration is relatively sim-
ple. Various body fluids and cell culture supernatants 
are sequentially passed through filters to remove small 
particles such as cell debris, free proteins, and large 
vesicles such as apoptotic bodies, and collect exosomes 
smaller than 200 nm.

Compared with the ultracentrifugation method, the 
ultrafiltration method greatly shortens the experimental 
time, and has lower requirements for experimental 
equipment. However, this method easily causes vesicle 
congestion on the nanofiltration membrane to damage 
the membrane. Pressurization during filtration also 
destroys the natural form and structure of the exo-
somes, causing exosomes rupture and reducing the 
recovery rate [88,91]. In addition, exosomes separated 
based on size alone are likely to be mixed with nano-
particles of comparable size, resulting in exosome con-
tamination and affecting exosomes purity [92].

3.2 Size-exclusion chromatography

The highlighted advantage of this separation method is 
that it does not destroy the structure and integrity of 
exosomes [93]. Under this separation method, the exo-
somes are observed to be normal in structure and the 
size of vesicles is about 80–200 nm. After treatment of 
the cells, there is no significant reduction in cell viabi-
lity [94]. Furthermore, the characteristic of no interac-
tion with another recently reported method for 
separating exosomes based on size is size-exclusion 
chromatography (SEC), also known as gel chromato-
graphy, molecular exclusion chromatography, etc., 
which is a type of liquid chromatography [95–97]. 
The separation mechanism of exclusion chromatogra-
phy is three-dimensional exclusion, and there is no 

interaction between the sample components and the 
stationary phase. The packing material of the chroma-
tographic column is a gel, which is an inert surface and 
contains many pores or three-dimensional network 
materials of different sizes. When the sample to be 
separated passes through the chromatographic column, 
the components of different sizes can penetrate into the 
gel pores at different depths. The large component 
molecules cannot enter the small pores or even be 
completely repelled and are quickly eluted, then the 
separated exosomes are obtained.

The stationary phase ensures a high separation effi-
ciency [92,98]. Generally, we recommend that the 
separation method of size exclusion chromatography 
is more suitable for the separation, identification and 
subsequent functional study of exosomes. However, 
this method has higher requirements on instruments, 
showing wide size distribution of exosomes after isolat-
ing. Meanwhile, there are contaminants similar in size 
to exosomes, including protein aggregates and lipopro-
teins. Therefore, some researchers have used it in con-
junction with ultrafiltration to remove possible 
contaminants [98–100].

3.3. Polymer precipitation

The polymer precipitation method mainly uses highly 
hydrophilic polymers to interact with water molecules 
around the exosomes to form a hydrophobic microen-
vironment, thereby allowing the exosomes to settle 
down [101,102]. The currently used hydrophilic poly-
mers are mainly polydiethanol [103]. First, centrifuge at 
3000 × g for 15 min to remove cell debris and apoptotic 
bodies, and aspirate the supernatant. Aspirate the 
supernatant and filter with a 0.22 μm filter. The sus-
pension and the hydrophilic polymer solution were 
incubated overnight at 4°C. Then, centrifuge at a 
speed of 1500 × g for about 15 min, and discard the 
supernatant. The resulting precipitate (exosomes) will 
be resuspended in a solvent according to different sub-
sequent needs.

The advantages of the polymer precipitation method 
are mainly simple operation, high yield and no need for 
complicated equipment. Therefore, it is often used in 
the production of commercial kits [47,104,105]. 
However, the polymer also precipitates various water- 
soluble substances in the exudate, including nucleic 
acids, lipoproteins, proteins, and even viruses. 
Thereby, it may lead to a high probability of exosome 
contamination by this method [106], causing great dif-
ficulties for the subsequent morphological observation 
and functional exploration of exosomes.
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3.4. Immunoaffinity capture

The immunoaffinity capture method mainly uses spe-
cific proteins on the surface of exosomes for separation. 
As mentioned above, all exosomes contain some speci-
fic proteins and cell membrane components, so they 
can be used for the capture of exosomes based on 
immunoaffinity [107]. This includes proteins involved 
in membrane transport and fusion (GTPases, annexins, 
flotillin), four types of transmembrane proteins (CD9, 
CD63, CD81, CD82), heat shock proteins (Hsc70, 
Hsp90), vesicle-forming proteins (Alix, TSG101) and 
lipid-associated proteins and phospholipase. Existing 
institutions have used this feature to develop kits for 
isolating exosomes based on different markers.

Similar to the polymer precipitation method, the 
immunoaffinity capture method is also simple to oper-
ate and does not require expensive experimental 
machinery [108]. Simultaneous separation and extrac-
tion take a short time. Non-physiological pH-worthy 
eluents are used during the operation of this method, so 
it inevitably destroys the physiological structure of exo-
somes and affects the subsequent functional studies. 
Additionally, immunocapture of specific proteins is 
limited to exosomes with known antigens and may be 
affected by the heterogeneity of exosomes [109].

We have analysed and summarized the methods of 
AT-Exosomes separation in a number of studies which 
is special for adipose tissue, the extraction process are 
as follows: (1) Centrifuge at a low speed (300 × g) for 
about 10 min to remove impurities and live cells in the 
sample (this part should be noted that when separating 
the body fluids of high concentration exosomes such as 
plasma, use pre-chilled PBS first dilution). (2) Collect 
the supernatant, centrifuge at 2000 × g for 10–20 min, 
and centrifuge at 10,000 × g for 30–40 min. This 
process is to remove dead cells and cell debris. (3) 
Aspirate the supernatant, filter at 0.22 μm and enter 
into ultracentrifugation. (4) The filtered liquid is cen-
trifuged for at least 70 min by ultra-high speed of 
100,000–120,000 × g, discard the supernatant, and 
resuspend the pellet in PBS. (5) 100,000–120,000 × g 
centrifugation to wash the precipitate, and then resus-
pend the obtained precipitate (exosomes) using sol-
vents according to different needs.

4. AT-Exosome identification

According to the structure, size and formation process 
of exosomes, the identification of exosomes currently 
mainly includes marker protein expression detection 
mentioned above, electron microscope observation 

and nanoparticle tracking analysis (NTA). Of course, 
these methods were also used to identify AT-Exosomes.

4.1. Marker protein detection

Based on the formation process and principle of exo-
somes mentioned above, exosomes have a series of 
specifically expressed proteins. In these years of 
research, a large number of experimenters have used 
this feature to carry out preliminary auxiliary identifi-
cation of the isolated and extracted exosomes [110– 
114]. Among them, the specific proteins commonly 
used for detection mainly include CD63, CD9, 
TSG101 and Alix.

4.2. Electron microscope observation

Electron microscope observation is mainly divided into 
transmission electron microscope and cryo-electron 
microscope. Under the transmission electron micro-
scope (TEM), the exosomes show a saucer-like struc-
ture, and its size is roughly judged to be between 40– 
160 nm [115]. Exosome samples are first fixed with 2% 
paraformaldehyde. Suspended droplets are taken on the 
carbon membrane copper mesh and dried to be nega-
tively stained with dye [115–118]. Do not need to 
undergo complicated TEM sample preparation opera-
tions such as fixation, dehydration, embedding, and 
ultrathin sectioning [119], but instead directly stain 
the sample homogenate suspension. The negative stain-
ing technique is not only simple and fast but also the 
amount of dyeing solution is very small and the resolu-
tion is high.

However, some researchers point out that the sau-
cer-like structure under the transmission electron 
microscope of exosomes is most likely caused by col-
lapse after drying [120,121] Meanwhile, the fixed stain-
ing in TEM sample preparation and vacuum 
observation during imaging may also affect the size 
and morphology of exosomes [122]. In contrast, the 
exosomes observed by cryo-electron microscopy are 
round, which seems to be more consistent with the 
shape of the organism [123,124]. The preparation of 
the low-temperature electron microscope sample is that 
the exosome suspension is directly adsorbed on the 
porous carbon grid, sucked dry at 95%–99% humidity 
and quickly immersed in liquid ethane. This process 
does not require fixation and staining and is observed 
at −180°C, which maximizes the size and shape of the 
isolated exosomes. Therefore, more and more research-
ers choose to use this method to identify and semi- 
quantitate exosomes [125–127]. To ensure the staining 
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effect and exosomal morphology, it is necessary to 
carefully select dyes and grasp the staining time.

4.3 Nanoparticle tracking analysis

NTA is a technology developed based on the principle 
of light scattering and Brownian motion of particles in 
suspension [128,129]. It detects the concentration and 
size distribution of vesicles with a diameter of 10 nm– 
1 μm and has recently been used for quantitative detec-
tion of exosomes [130–132]. The minimum size of 
vesicles using traditional flow detectors is about 
500 nm, and a few improved detectors can only detect 
particles of 200 nm [133], which is not in line with the 
small size of ‘40–160 nm’ unique to exosomes. In the 
NTA experiment, a laser beam is used to pass through 
the sample chamber, and the exosomes suspend in the 
beam path scattered the light, making it easy to see 
them through a 20× magnification microscope 
equipped with a camera. The camera runs at 30 frames 
per second (fps) and captures video files of particles 
[134]. From the collected video records, the displace-
ment of each particle is tracked and plotted as a func-
tion of time, and its hydrodynamic diameter is 
calculated using the Stokes-Einstein equation. After 
calibration with microspheres of known concentration, 
the absolute size distribution of the vesicles in the 
suspension can be obtained [135].

The detection cycle of NTA technology is very short, 
and it can measure more than 1000 particles in only 60 
s [136]. In addition, NTA has 405 nm, 488 nm, 532 nm 
and 635 nm lasers with four different wavelengths to 
choose from, with corresponding filters, so that it can 
analyse fluorescent samples. There are specific markers 
on the surface of exosomes, including CD63, HSP70 
and TSG-101 [137,138]. Under complex background 
conditions, using fluorescent antibodies to label exo-
somes, researchers can use the fluorescence measure-
ment function of NTA to measure exosomes, and the 
results are more reliable than flow cytometry [139,140].

However, NTA testing also has certain limitations. 
When there are a large number of large-sized vesicles in 
the sample, the overlapping may affect the identifica-
tion and tracking of small vesicles by the instrument. 
Consistent with this, the same problem occurs when 
the exosomes concentration in the resuspension solu-
tion is too large [130]. Therefore, this technique 
requires the concentration of exosome suspension to 
be controlled between 108–109 /mL [141,142]. Thereby 
it needs a good grasp of the density of the exosomal 
suspension, and sample pretreatments such as dilution 
or concentration if necessary.

Above all, we introduce three methods to obtain AT- 
exosome better, but none of them is perfect. Most of 
the studies use the combination of differential ultracen-
trifugation, marker protein detection, electron micro-
scope observation, and NTA to isolate and identify 
exosomes. So far there are no methods to identify 
specific AT-exosomes, but we can make full use of the 
multi-omics to exploit the specific marker protein, 
thereby identifying the AT-exosomes in the future. 
Furthermore, with the development of the technology, 
it is possible to identify the specific exosomes. SP-IRIS, 
with higher sensitivity and accuracy, can characterize 
the particle size difference exosomes from different 
sources. Daniel et al use the SP-IRIS to explore the 
size difference of the exosomes from serum, finding 
that the exosomes from CD9 were ~10 nm larger than 
those from other sources [143]. Further SP-IRIS 
research still needed to be performed to uncover the 
methods which can identify AT-exosomes specifically.

5. Function of AT-Exosomes

As the largest energy storage and secretory organ, adi-
pose tissue has attracted more and more attention to its 
secretion and function of exosomes. By classifying sta-
tistics of research papers retrieved from the database, 
we summarize the important roles of AT-Exosomes in 
both physiological and pathological aspects (Figures 3 
and 4).

5.1. AT-Exosomes physiological function

5.1.1. AT-Exosomes function within adipose tissue
The heterogeneity of cells in adipose tissue determines 
that there will be crosstalk between cell exosomes in 
adipose tissue. The hypertrophy of adipose tissue causes 
the infiltration and activation of ATMs, which further 
affects body weight and produces insulin resistance. 
Deng et al first found AT-exosomes and showed that 
AT-exosomes of obese mice activated ATMs, leading to 
increased production of proinflammatory cytokines IL- 
6 and TNF-α in 2009. This process enhanced the 
migration of ATMs to adipose tissue and liver and 
promotes the development of insulin resistance [84]. 
Adipocytes-Exosomal miRNA-34a secreted by adipo-
cytes inhibited M2 macrophage polarization and pro-
moted obesity-induced fat inflammation [52]. 
Melatonin acted on ATMs by promoting the secretion 
of exosomes by adipocytes, reducing fat inflammation 
[116]. Further, Adipocytes-Exosomes contained lipid 
droplets and were absorbed by ATMs [43]. 
Additionally, in the white adipose tissue of diet- 
induced obese mice, ADSCs-Exosomes promoted the 
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polarization of M2 macrophages and reduced the 
inflammatory response in mice [144]. Meanwhile, 
ATMs also released miRNA-rich exosomes to act on 
fat cells, liver cells and skeletal muscle cells, affecting 
the body’s metabolic homoeostasis [145]. In summary, 
ADSCs, adipocytes and ATMs in adipose tissue use 
exosomes as a biological medium to interact with 
each other to jointly maintain metabolic homoeostasis 
(Figure 3). However, AT-Exosome research is still 
needed to further reveal the underlying mechanisms 
and specific signalling molecules and pathways in adi-
pose tissue.

5.1.2. AT-Exosome function in liver
The liver is an organ with complex functions in the 
organism, playing a vital physiological role in metabo-
lism, detoxification, digestion, lipid synthesis and sto-
rage. Adipose and liver tissue interact with hormones 
and other biologically active factors to jointly maintain 
the body’s homoeostasis [146]. A study has shown that 
exosomal miRNA derived from brown adipose tissue 
(BAT) affected liver gene expression. Under cold stress 
conditions, miR-132-3p in exosomes secreted by BAT 
promoted liver fat production [147]. Melatonin 
reduced the transport volume of Adipocytes-Exosomal 
resistin from adipocytes to liver cells, thereby further 
alleviating liver fatty degeneration caused by endoplas-
mic reticulum stress [54]. Interestingly, ADSCs pro-
moted the release of liver exosomes [148], and the 
miR-130a-3p derived from liver exosomes reduced glu-
cose tolerance by targeting PH domain leucine-rich 
repeat protein phosphatase 2 (PHLPP2) in adipocytes 
[36]. Taken together, these findings indicate that there 

is indispensable exosome-mediated crosstalk between 
adipose tissue and the liver, revealing the potential of 
exosome-based therapies to control liver fat production 
and further reduce liver steatosis (Figure 3).

5.1.3. AT-Exosome function in skeletal muscle
As the largest organ of mammals, skeletal muscle is 
responsible for basic functions including exercise, 
breathing and metabolism. Studies have shown that 
metabolic disorders of adipose tissue affected the meta-
bolism of fatty acids and the release of adipokines, 
further causing ectopic lipid deposition in skeletal mus-
cle [149]. Adipocytes-Exosomes were regarded as a new 
type of adipokine, which affects the lipid metabolism in 
skeletal muscle [150]. 3T3-L1 Adipocytes-Exosomal 
miR-27a was shown to inhibit insulin signalling in 
C2C12 cells through PPARγ. Interestingly, ATMs-exo-
somal miR-155 also promoted skeletal muscle insulin 
resistance through PPARγ [145]. PPARγ knockout in 
adipocytes attenuated the thickening of the myocar-
dium caused by miR-200a in exosomes [151]. It further 
suggests that adipose tissue and skeletal muscle are in 
close communication by their exosomes (Figure 3).

5.2. AT-Exosomes pathological function

5.2.1. AT-Exosomes and tumours
AT-Exosomes play an important role in the growth and 
migration of liver cancer, ovarian cancer, breast cancer 
and other cancers (Figure 4). ADSCs-Exosomes pro-
moted the growth and migration of hepatocellular car-
cinoma [152]. Mechanistically, miR-23a/b and circ-DB 
were transported into liver cancer cells via ADSCs- 

Figure 3. AT-Exosomes modulate ATMs polarization and adipogenesis in adipose tissue, liver and skeletal muscle. ADSCs, adipose 
tissue mesenchymal stem cells. ATMs, adipose tissue macrophages. ER-stress, endoplasmic reticulum stress.
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Exosomes, thereby promoting the growth and migra-
tion of liver cancer cells [23,53]. Moreover, some 
researchers have proposed that ADSCs-Exosomes 
mediated exogenous transport of miR-199a-3p and 
miR-122 to increase the chemical sensitivity of hepato-
cellular carcinoma [153,154]. ADSCs-Exosomal miR-21 
transferred to ovarian cancer cells, inhibiting the apop-
tosis of ovarian cancer cells by binding to the target 
apoptotic protease activating factor-1 (APAF1) and giv-
ing them chemoresistance [155]. However, ADSCs- 
Exosomal microRNAs inhibited the proliferation of 
ovarian cancer cells and promoted their apoptosis 
[16]. ADSCs-Exosomes also promoted the migration 
of breast cancer cells [156]. Global gene expression 
profile analysis showed that breast cancer cells treated 
with ADSCs-Exosomes upregulated cancer-related sig-
nalling genes and activated Wnt signalling pathways. In 
addition, ADSCs-Exosomes targeted inducible costimu-
latory molecule to promote anti-tumour immunity of 
lung adenocarcinoma [157], increased collagen beta (1- 
O) galactosyltransferase 2 (COLGALT2) expression to 
promote osteosarcoma proliferation and diffusion [17], 
inhibited prostate cancer cells proliferation, and 
induced prostate cancer cell apoptosis through miR- 
145 [158]. As mentioned above, AT-Exosomes have 
different effects on the proliferation, apoptosis and 
differentiation of different cancer cells. Furthermore, 
for the same type of cancer cell, the effects of different 
components in AT-Exosomes on the recipient cells are 
also inconsistent. In summary, ADSCs-Exosomes have 

been shown to effectively promote the proliferation or 
migrate of certain cell types and significantly reduce the 
proportion of apoptotic cells. Additional work is 
needed to enhance the use of AT-Exosomes in tumour 
therapy and confirm the optimal concentration for 
human use, as it will increase the feasibility and safety 
of AT-Exosome therapy in clinical applications.

5.2.2. AT-Exosomes and obesity-related diseases
AT-Exosomes have been shown to affect diabetes, non- 
alcoholic fatty liver disease (NAFLD) and cardiovascu-
lar diseases induced by insulin resistance (Figure 4). 
AT-Exosomes induced insulin resistance by activating 
ATMs polarization [84]. In this process, ATM-exoso-
mal miR-210 regulated glucose uptake and mitochon-
drial activity, thereby promoting the onset of obesity 
and diabetes in mice [159]. Evidence showed that BAT- 
Exo significantly mitigated the metabolic syndrome in 
HFD mice by being involved in catalytic processes to 
promoted oxygen consumption in recipient cells [160]. 
Obesity changed the miRNA profile of plasma exo-
somes in mice, including the up-regulation of miR- 
122, miR-192, miR-27a-3p and miR-27b-3p, causing 
glucose intolerance and insulin resistance [161]. 
Additionally, cystatin C levels in AT-Exosomes were 
positively related, and monocyte marker CD14 levels 
were negatively related to metabolic complications of 
obesity, being used as a potential marker for cardiovas-
cular-related diseases [162]. As a common obesity- 
related metabolic disease, the effect of ss-Exosomes on 

Figure 4. AT-Exosomes control human cancers and other diseases. AT-Exosomes may arrive target organs mainly through blood 
circulation. NAFLD, Non-alcoholic fatty liver.
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atherosclerosis was controversial. But more details 
about the molecular mechanism must be elucidated. 
ADSCs-Exosomes played a role in promoting athero-
sclerosis by regulating the formation and polarization 
of macrophage foam cells [163], whereas ADSCs- 
Exosomes protected endothelial cells from athero-
sclerosis [164]. Exosomes from visceral adipose tissue 
integrated into liver cells and induced dysregulation of 
TGF-β pathway members in vitro and offered an intri-
guing possibility for the pathogenesis of NAFLD [165]. 
Although AT-Exosomes can be used as diagnostic mar-
kers and therapeutic targets for obesity-related meta-
bolic diseases. Currently, there are more and more 
studies on ADSCs-Exos related to obesity, and more 
studies are needed to investigate the understanding of 
exosome functions in obesity.

5.2.3. AT-Exosomes and angiogenesis
Angiogenesis is a key biological process that affects 
development, skeletal muscle hypertrophy, menstrua-
tion, pregnancy and wound healing (Figure 4). It 
mainly relies on the extensive signal transduction net-
work formed by endothelial cells, parietal cells, vascular 
smooth muscle cells, pericytes and immune cells. 
ADSCs-Exosomes have been reported in numerous 
articles related to angiogenesis. Studies showed that 
ADSCs-exosomes stimulated the proliferation and 
migration of microvascular endothelial cells to promote 
angiogenesis by platelet-derived growth factor [166]. 
Mechanically, ADSCs-Exosomes was proved to be rich 
in small RNAs including miR-125a, miR-199-3p, miR- 
181b-5p and miR-423-5p, affecting the proliferation 
and migration of endothelial cells by binding their 
target genes [44,167–169]. In addition, hypoxia- 
induced ADSCs-Exosomes improved angiogenesis 
through activating the PKA signalling pathway and 
upregulating the expression of vascular endothelial 
growth factor (VEGF) [170]. In conclusion, although 
there are few effective clinical treatments for angiogen-
esis at present, cell-free therapies such as wound heal-
ing may be a valuable tool in promoting recovery after 
injury.

5.2.4. AT-Exosomes and bone regeneration
AT-Exosomes play an important role in the repair and 
regeneration of bone tissue and affect the proliferation, 
apoptosis, differentiation, ageing of osteoblasts, indu-
cing bone damage caused by osteoarthritis and age- 
related bone loss (Figure 4). ADSCs-Exosomes and 
3T3-L1 Adipocytes-Exosomes promoted the prolifera-
tion and osteogenic differentiation of human primary 
osteoblasts and 3T3-L1 precursor adipocytes [171,172]. 
And the exosomes derived from human adipose stem 

cells (hADSCs-Exo) The results indicate that hADSCs- 
Exo could be absorbed by hADSCs and induce osteo-
genic differentiation at 15 μg/ml [173]. Above all, they 
ensure optimal concentration which could promote the 
proliferation and migration of hADSCs. After ADSCs 
were pretreated by TNF-α, their therapeutic effect was 
much better. Moreover, ADSCs-Exosomes enriched in 
miR-375 improved the osteogenic differentiation of 
human bone marrow mesenchymal stem cells [174]. 
Meanwhile, ADSCs-exosomes inhibited the inflamma-
tion and oxidative stress of osteoblasts [175] and upre-
gulated the expression of miR-145 and miR-221 [176] 
to promote cartilage production, improve the anti-age-
ing effect of osteoblasts and repress osteoarthritis. 
ADSCs-Exosomes alleviated osteocyte apoptosis and 
osteocyte-mediated osteoclastogenesis induced by 
hypoxia/serum deprivation [177]. Low-dose laser irra-
diation promoted ADSCs-Exosomes therapeutic effect 
[178]. ADSCs-Exosomes contained specific substances 
that induced osteogenic differentiation of cancer stem 
cells, being used to reprogram cancer stem cells into 
non-tumorigenic cells [179]. Recent studies indicated 
that hydrogel loaded with ADSCs-Exosomes promoted 
the bone regeneration in rat skull defect models, pro-
viding a basis for clinical applications [174]. Currently, 
AT-Exosomes-related studies on bone regeneration are 
rare and more investigations are still needed to expand 
our understanding of exosome functions in bone tissue.

5.2.5. AT-Exosomes and neurological disorders
AT-Exosomes have the potential to treat neurological 
diseases (Figure 4). ADSCs-Exosomes improved the 
survival and proliferation of neurons after injury [46]. 
Mechanistically, ADSCs-Exosomal MALAT1 mediates 
protein kinase C δ II (PKCδII) splicing, thereby 
improving the survival rate of neurons. ADSCs- 
Exosomes significantly enhanced neurite outgrowth in 
vitro, and ultraviolet radiation reduced the effect of 
ADSCs-Exosomes on neurite outgrowth [180]. After 
being internalized by Schwann cells (SCs), ADSCs- 
Exosomes significantly promoted SCs proliferation, 
migration, apoptosis, myelination and secretion of neu-
rotrophic factors [181,182]. Additionally, ADSCs- 
Exosomes inhibited the activation of microglia by the 
NF-kB and MAPK pathways, reducing the cytotoxicity 
of activated microglia and preventing neuroinflamma-
tion [183]. Some researchers proposed that ADSCs- 
Exosomes may be used as an effective treatment tool 
for tissue engineering nerves, increasing the growth of 
neurites and enhancing regeneration of the sciatic 
nerve in vivo [184]. However, more details about the 
molecular mechanism must be elucidated, and clinical 
trials of the regeneration of the nerve must be 
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conducted. Moreover, miR-133b exogenously modified 
ADSCs-Exosomes promoted the recovery of nerve 
function in animals with spinal cord injury by affecting 
signal pathways related to axon regeneration [104].

5.2.6. AT-Exosomes and other disease
AT-Exosomes have the potential to treat other diseases. 
Evidence shows that exosomes derived from MuSCs 
control important immunomodulatory effects to pro-
tect acute colitis induced by DSS [185]. Although the 
potential for treating acute colitis is significant, addi-
tional work is needed to confirm the optimal concen-
tration. Furthermore, ADSCs-Exo also regulates the 
recovery after injury. Liu et al isolated the exosomes 
from mesenchymal stromal cell and added to the TSCs, 
the result showed that ADSCs-Exo could be absorbed 
by TSCs and activated the SMAD2/3 and SMAD1/5/9 
pathways to promote the proliferation, migration [186]. 
ADSCs-exosomes also could promote hair follicle 
regeneration in vivo [187]. Nevertheless, even more 
details about the underlying molecular mechanism 
should be explored. Evidence suggests that ADSCs- 
Exo regulates the regeneration of the myelin sheath by 
reducing autophagy of injured SCs via miRNA-26b 
which could downregulate the expression of Kpna2 
[188]. Above all, the function of adipose-derived exo-
somes is very powerful. At present, the research on the 
function of exosomes is further deepened, and more 
studies will focus on the study of exosomes in the 
future.

6. Future outlooks in AT-Exosomes

AT-Exosomes are media produced internally by organ-
isms, which have good protection for their contents 
and target specific organs and cells to exert biological 
functions. This review introduces the research progress 
and universal and specific cargoes of AT-Exosomes. To 
explore the biological function of AT-Exosomes, we 
summarize the principles and procedures of main 
methods for the isolation and identification of AT- 
Exosomes. Importantly, we focus on the effects of 
AT-exosomes on organism tissues or organs in physiol-
ogy and pathology.

As mentioned above, the methods of separating AT- 
Exosomes have their advantages and disadvantages. To 
date, ultracentrifugation is still regarded as the ‘gold 
standard’. Moreover, through the analysis of the separa-
tion time, cost and purity of various methods, we 
recommend size exclusion chromatography in addition 
to ultracentrifugation and commercial kits based on 
water-soluble extraction. It has the advantages of low 
cost and short separation time but also has problems of 

low purity and serious pollution. Therefore, new 
separation methods also should be developed to max-
imize the purity of AT-Exosomes and maintain their 
shape and activity. The physiological functions of AT- 
Exosomes are currently limited to tracking in vivo and 
phenotypic investigations, and the mechanism of cross-
talk between AT-Exosomes and other tissues or organs 
is unclear. Therefore, exosome research still needs to be 
performed to further uncover the underlying mechan-
isms and specific signalling molecules and pathways. 
Pathologically, ADSCs-Exosomes have been currently 
used as therapeutic materials. However, target-specific 
organs, biological safety and inter-species rejection of 
ADSCs-Exosomes need to be further explored. 
Meanwhile, to date, the number of organ diseases that 
can be effectively treated by AT-Exosomes are limited. 
More studies are needed to explore this promising area. 
Future studies on the function of AT-Exosomes will not 
only help us better understand the crosstalk between 
mammalian different tissues and organs, but also are 
expected to fully use their biological functions for 
related cancer diagnosis and diseases treatment.
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