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Abstract

The Immune Epitope Database (IEDB) is a free online resource that has manually curated

over 18 500 references from the scientific literature. Our database presents experimental

data relating to the recognition of immune epitopes by the adaptive immune system in a

structured, searchable manner. In order to be consistent and accurate in our data repre-

sentation across many different journals, authors and curators, we have implemented

several quality control measures, such as curation rules, controlled vocabularies and

links to external ontologies and other resources. Ontologies and other resources have

greatly benefited the IEDB through improved search interfaces, easier curation practices,

interoperability between the IEDB and other databases and the identification of errors

within our dataset. Here, we will elaborate on how ontology mapping and usage can be

used to find and correct errors in a manually curated database.

Database URL: www.iedb.org

Introduction

The Immune Epitope Database (IEDB) (1) describes ex-

periments using up to 400 fields per assay. This data are

manually curated, primarily from the scientific literature,

following a set of evolving curation rules and utilizing a

peer review process (2). Each experiment entered by our

curation team depicts the binding of an adaptive immune

receptor (T cell receptor, antibody or major histocompati-

bility complex) to its epitope. An epitope is the portion of

a foreign entity (e.g. a viral protein), self-entity (as in auto-

immune disease) or allergen that the immune system recog-

nizes. The binding of the immune receptor to its epitope

triggers the immune response that either protects one from

disease or causes allergic or autoimmune symptoms.

For some of those >400 fields, from the very beginning,

we used values from existing resources, such as the

National Center for Biotechnology Information (NCBI)

taxonomy (3) for organism taxonomical information and

the NCBI GenBank (4) sequence database for protein

information. Thus, all organism data in the IEDB have

always been described by NCBI taxonomy nomenclature.

But for many other data fields, we instead maintained our

own list of ‘home-made’ terms. These terms covered fields

such as ‘Assay Type’, ‘Cell Type’, ‘MHC Restriction’ and
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so on and were made available to curators as a flat list.

These lists were internally vetted and grew over time, as

we encountered new terms in the literature. With the goal

of becoming more interoperable with other resources and

to further standardize the terms used by the IEDB, we it-

eratively chose fields to map to outside ontologies. This

process was informative about our dataset and greatly im-

proved the IEDB.

Methods and results

Assessment

Our approach was to first assess the set of terms used by

the curators so far, e.g. how many distinct terms were in

use for a given data field, how often each term was utilized,

how complex was the nomenclature for that data type and

so on. Some lists of terms used by the IEDB are fairly short,

such as for the field ‘Evidence Code’ (18 terms), while

others, such as ‘Assay Type’ (402 terms), are quite long.

Some data fields utilized simple terminology, as with

‘Geolocation’, being simply a list of country names, while

‘MHC Restriction’ has complex nomenclature (i.e. HLA-

DQA1*03: 01/DQB1*04: 01) which differs for each

species. The number of times any given term was utilized

provided weight to how likely that term was to be accur-

ate, needed and correctly used. Infrequently utilized terms

were scrutinized and often could not be mapped, proving

to be errors. As an example, Supplementary Table S1

shows the list of cells types that were in the IEDB’s ‘home-

made’ cell types list and how frequently they were used by

curators.

Ontology mapping

We next sought out external ontologies that could meet

our needs. In general, we wanted ontologies that were reli-

able, accessible and accepted as leaders by the biological

community. We prioritized The Open Biological and

Biomedical Ontology Foundry Ontologies, as they met

these criteria (5). The availability of relevant resources

aided our selection of which fields to map first. Table 1

lists which ontologies or resources we selected to represent

specific IEDB data fields. For example, to map our internal

cell types list, we found that we needed to utilize both the

cell ontology (CL) (6) and the cell line ontology (CLO) (7),

as shown in detail in Supplementary Table S1. CL was

used to describe primary cell types, such as splenocyte and

lymphocyte, while CLO was needed to describe laboratory

generated cell lines, such as JURKAT cell or P815 cell.

Once an appropriate resource was identified, all IEDB

terms were manually reviewed and mapped to ontology

terms and, if not found, new terms were requested.

Supplementary Table S1 shows the ontology mappings for

IEDB cell types and indicates which terms were newly

requested by the IEDB. Our ontology mapping events

often led to the creation of a large number of new terms

in some ontologies, such as the ontology for biomedical

investigations (OBI) (8) with approximately 300 new

terms, but with others, such as Uberon (9), no new term re-

quests were needed. This difference reflects the maturity of

the resource and the complexity of terms needed in the

IEDB. Our list of tissue types, being the source of T cell or

antibody studied in the immune epitope assay, was simple,

containing common terms such as blood, spleen and lymph

node. But the list of experimental assay types, derived from

the entirety of the relevant published literature, was quite

large and specialized, reflective of the state of the field of

immunology and the large number of experiment types uti-

lized over time.

Error identification

Error identification and correction were not our original

goals of this project; however, during the ontology map-

ping steps, we identified several error types within our

data. We found situations of redundancy in that multiple

IEDB terms might map to one ontology term. Figure 1A

shows an example of redundancy where two IEDB assay

terms (CCL4 and MIP1b) map to a single OBI assay term

(CCL4). In this example, we had two assays that meas-

ured the same cytokine, but because cytokines use a wide

variety of synonyms in the literature that have evolved

over time, older manuscripts may refer to the cytokine

using one name, while a newer manuscript may use an en-

tirely different name. Because this is a common practice

for cytokine terminology and the IEDB had many assay

types that measured a wide variety of cytokines, we had

several errors of this type in our dataset. It is due to

the fact that the OBI assay terms refer to gene ontolgy

(GO) (10) biological processes that the redundancy in

our assay types was able to be identified. GO curators

have compiled extensive synonyms for cytokine terms

that allowed us to identify these errors in our flat lists

and correct them by mapping all redundant assay terms

to a single OBI assay term that refers to the single GO

biological process.

We also found imprecision errors where one IEDB term

could be mapped to multiple external terms due to the

IEDB term being too vague. This error type was also fre-

quently found for assays that measure cytokines due to

their nomenclature, as shown in Figure 1B. This example

demonstrates where an IEDB assay term, IL-1, was too

vague to map to a single OBI assay term, IL-1a or IL-1b. In
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such cases, we reviewed the original publications and iden-

tified the explicit meaning of the authors. These errors typ-

ically originated from authors using an abbreviated term

for a cytokine in one location of their manuscript, such as

IL-1 to mean IL-1a in the figure legend, while using the

specific term name in another location, such as in the

Materials and Methods section of a published article. As

before, these errors were identified by the reference to GO

terms by OBI and were corrected as a result of mapping

our flat terms list to OBI terms.

Reasoning

Once all IEDB terms for a select data field were mapped to

an ontology, we next viewed a reasoned OWL file of our

terms in the context of the external ontology. This allowed

us to see our data in a whole new way. Now, rather than a

flat list of terms, our terms were organized within the hier-

archy of the ontology with parents, siblings and children.

If terms that we expected to be siblings showed up in very

different regions of the tree, this often indicated curation

errors, while in other cases, it was a learning opportunity.

Table 1. Ontology or resource selected for IEDB data fields and numbers of errors identified in the IEDB data set, referring to

cases where the data was changed as a result of the initial mappingof IEDB terms to an ontology or resource, creation of an im-

munology specific view of the ontology or resource (tree pruning), or due to annual review of the data at least one year after

adoption of the resource for that data field. For fields not yet mapped, the ontology shown is a suggestion, with the actual ontol-

ogy used to be determined at the time those mappings begin

Edits made during

IEDB data field Ontology/resource used Initial mapping Tree pruning Annual review

Organism NCBI Taxonomy (3) NA 5684 68

Protein GenBank (4), UniProt (17), PDB (18) NA 3999 310

MHC restriction MRO (12) 4397 NA 39

Cell type CO (6), CLO (7) 329 NA 0

Tissue type Uberon (9) 0 NA 0

Geolocation Gazetteer (19) 0 NA 0

Assay type OBI (8) 4983 NA 838

Disease state DO (16) 2500 NA TBD

Laboratory animals MGD (13), RDG (14) TBD

Adjuvants VO (20) TBD

Post-translational modifications PRO (21) TBD

Evidence codes ECO (22) TBD

Figure 1. Redundancy and imprecision in IEDB assay type terms. (A) Two IEDB terms for the same assay map to a single OBI term request

(OBI_0001378). (B) One IEDB assay maps to two separate OBI term requests (OBI_0001745 or OBI_0001842).
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For example, some assay types might be grouped together

by immunologists, including our curators, as demonstrat-

ing protection from disease, such as an assay that measures

the neutralization of a virus by an antibody and an assay

that measures protection from viral challenge when the

same antibody is administered to a mouse. However, once

reasoned, some assay types, like neutralization, were

shown to be measures of downstream processes in vitro

(correlates of protection) while others, like protection,

were shown to be true measures of in vivo protection, as

shown in Figure 2. Thus, the ontology’s hierarchy taught

us about our data, such that we now recognized two dis-

tinct sets of assay types, one indicating correlates of protec-

tion and the other demonstrating true in vivo protection,

where we previously thought of them as roughly equivalent

siblings. Our curation rules take similarities and differ-

ences of term meanings into account, so this information is

quite valuable and affects how curators capture data.

Therefore, curators will no longer group these dissimilar

assay types together.

Pruning

A related, but separate task that we performed was the cre-

ation of immunology specific views of existing hierarchies,

as previously published (11). We refer to the creation of

these views as ‘tree pruning’. The IEDB always utilized

NCBI taxonomy to describe organisms, but this included

the entire NCBI taxonomic tree, which contains a very

large number of nodes, most of which were irrelevant to

the IEDB data and users. Thus, we pruned the NCBI tree

to contain only those nodes that we needed in order to rep-

resent our data. This process also surprisingly identified

curation errors. We had expected that because we had al-

ways used a defined hierarchy, errors would be rare.

However, as we analyzed how much data utilized each

branch and node of the NCBI tree, we found outliers where

there were few usages. Many of these were found to be cur-

ation errors, where the curator mistakenly chose an incor-

rect term. Examples included using a more unusual term

such as Mus sp. ‘mice’ (NCBI Taonomy ID 10095) instead

of the more commonly used Mus musculus ‘mouse’ (NCBI

Taonomy ID 10090) to describe experiments using mice,

which is not a true error, but by having all similar data in

the IEDB utilize the exact same NCBI terms, valuable

grouping of data from a large number of related publica-

tions becomes possible. Similarly, we recurated cases

where curators chose more vague terms when more specific

terms were available. An example of this is when Human

Herpesvirus 6 (NCBI Taonomy ID 10368) was curated,

but instead Human betaherpesvirus 6 A (NCBI Taonomy

ID 32603) or Human betaherpesvirus 6B 6 (NCBI

Taonomy ID 32604) could have been selected.

Additionally, we used the pruned NCBI tree to generate

a protein tree that organized reference proteomes for each

species into a hierarchy. The process of mapping protein

terms utilized by our dataset into this organized tree also

identified errors. Similar to the NCBI tree pruning event,

outliers with few usages were often identified as curation

errors.

Just the process of scrutinizing what terms the IEDB

used and how they were being used made us aware of

errors in our data and was a valuable endeavor. Each time

we adopted an ontology, we gained new information about

our data and identified errors that we would not have

found otherwise. In all, we found over 20 000 cases where

we changed IEDB data as a result of the incorporation of

ontologies or other resources. These were related to

roughly 125 distinct categories of problems identified

Figure 2. Reasoned OBI hierarchy showing IEDB B cell assays with two distinct assay groups reflective of correlates of protection in (A). and true

measures of in vivo protection in (B).
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(exact data on the number of distinct problems was not

tracked). Some cases were true errors and some were

opportunities to add more detail than we had previously.

Table 1 shows the numbers of edits made to an individual

assay per ontology used. The same error may have

occurred in many assays and these numbers reflect individ-

ual data changes rather than individual error types. Thus,

we found the process of mapping flat lists of home-made

terms to ontology terms and the further pruning of these

ontologies to be a great opportunity to improve our

dataset.

We have not yet translated all of our term lists to formal

ontologies and plan to continue doing so, as soon as we

can identify appropriate ontologies. In some cases, such as

with MHC nomenclature, we created a new ontology, the

MHC Restriction Ontology (MRO) (12). We did this be-

cause an adequate resource did not yet exist and because

this area of research overlaps with our area of expertise.

However, we do not plan on creating new ontologies every

time we want to map one of our data fields, instead, prefer-

ring to wait for outside experts. For example, laboratory

animal strains are not included in NCBI Taxonomy, so

they represent an area currently lacking coverage in the

IEDB. The Mouse Genome Database (MGD) (13) and Rat

Genome Database (RGD) (14) are experts in laboratory

mouse and rat strains, respectively, and we plan on utiliz-

ing their identifiers as soon as the majority of the strains

referenced by our dataset have formal MGI or RGD identi-

fiers. Other IEDB data fields that we plan to convert to

ontology terms include, but are not limited to adjuvants,

post-translational modifications and evidence codes. We

will determine which ontologies to use for these fields at

the time of mapping, however, Table 1 shows potential

ontologies for these cases.

Implementation

Once errors in our data were corrected, we added each

ontology tree to the curation and search interfaces as

‘Finder’ applications to present the terms as a hierarchical

tree rather than a flat list. This led to more accurate cur-

ation and improved search capabilities. For curators, see-

ing the possible selections in a reasoned tree decreases the

number of errors as the hierarchy helps them make better

selections. After the adoption of a new ontology as a

‘Finder’ application in the IEDB, we continue to assess its

success by performing an annual review every year. These

reviews involve determining how often each term was uti-

lized, reviewing the hierarchies for unusual nodes and spot

checking the data in depth. The numbers of errors found

during the reviews have been quite small and are shown in

Table 1 in the ‘Annual Review’ column for the first review

performed approximately one year after adoption of each

resource. We continue to review each in every subsequent

year and so far, each repeated review has found less and

fewer errors.

For our end users, the hierarchy allows them to search

data in more meaningful ways, e.g. all assays that measure

the same cytokine are now grouped together instead of

being listed as separate members of a flat list. This allows

for searches at various level of detail in the hierarchy,

something that was not possible previously.

Validation

Additionally, the logical definitions were used to generate

validation rules to identify additional errors (15). Once

data fields were mapped to an ontology, the logical defin-

ition of the ontology term can be used to restrict values of

related fields. For example, the disease ontology (DO) (16)

logically defines certain diseases as being caused by specific

pathogens or allergens. The IEDB has a field for the ‘Disease

State’ of the host and a separate field for the ‘Immunogen’

that caused the disease. For example, dengue fever (‘Disease

State’) is caused by dengue virus (‘Immunogen’). As these are

separate fields in the IEDB, curators complete them inde-

pendently. By mapping the ‘Disease State’ field to the DO

term, we can now use the logical definition provided by DO

to find errors in the independently curated ‘Immunogen’

field. Thus, for any case where ‘Disease State’ is curated as

dengue fever must have the ‘Immunogen’ curated as dengue

virus, otherwise it is a curation error that we are now aware

of and can correct. Further, automated validation can be

built to enforce these relationships. We have future plans

to take this concept even further to auto-populate fields

based upon ontology logical definitions. This would, e.g.

auto-populate the ‘Immunogen’ field as dengue virus every

time the curator selects the ‘Disease State’ of dengue

fever. This will not only save curator time but will also pre-

vent errors.

Discussion

Ontologies offer great benefits to manually curated data-

bases. They provide synonyms, textual and logical defin-

itions and hierarchical relationships between terms.

Mapping lists of terms from the literature to formal ontol-

ogy terms standardizes datasets and identifies errors, as it

requires close scrutiny of what terms are used and how

they are defined. Any effort that requires one to thoroughly

review their datasets and curation practices would be ex-

pected to identify errors, however, the use of formal ontol-

ogies to drive such a process offers a systematic, structured

approach and the expertise of each external resource.
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Curators also benefit from the expertise of each external

ontology, when they view familiar terms in a reasoned

hierarchy, resulting in better curation. Subsequent to map-

ping IEDB terms to formal ontologies, we have performed

annual reviews of the IEDB data utilizing each ontology. In

these reviews, we have identified far fewer errors, as shown

in Table 1. Once an ontology is adopted by the IEDB, if

new terms are encountered in the literature, we simply

make a new term request to the ontology and refresh our

Finders. This process enriches the ontologies we use and

helps maintain the quality of our data.

Finally, because our database users are also the authors

of the papers that we curate, we are hopeful that their ex-

posure to formal nomenclature via our ontology driven

website will improve the terminology that they utilize in

their publications. We hope our experiences in finding and

correcting errors using ontologies will inspire other pro-

jects to do the same.

Supplementary data

Supplementary data are available at Database Online.
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