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Introduction
A considerable body of research has unveiled the significance 
of Protein-protein interactions (PPIs) across numerous bio-
logical activities. However, a fascinating research inquiry lies 
in the potential for proteins to interact with themselves. Self-
interacting proteins (SIPs) represent a distinct category within 
PPIs, where multiple copies of a protein can interact with each 
other, originating from the same gene. This phenomenon may 
lead to the emergence of homo-oligomerization issues. Recent 
studies have underscored the pivotal role of SIPs in diverse 
cellular physiological functions and the evolutionary dynamics 
of protein-protein interaction networks (PPINs).1-4 Therefore, 
understanding whether a protein can self-interact is para-
mount for deciphering its functions. Investigations into SIPs 

can significantly enhance our comprehension of protein func-
tion regulation, molecular mechanisms underlying biological 
activities, and the fundamental cellular and genetic disease 
mechanisms. Numerous studies have delved into homo-oli-
gomerization, a crucial biological function essential for various 
processes including signal transduction, gene expression regu-
lation, enzyme activation, and immune response.5-9 Moreover, 
SIPs have been shown to increase the functional diversity of 
proteins without increasing genome length. Furthermore, 
SIPs can also improve protein stability and prevent denatura-
tion by decreasing surface area exposure10-12 Consequently, 
there is a growing need to develop reliable and highly effective 
computational approaches based on protein sequences for pre-
dicting SIPs.
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ABSTRACT

Introduction: Predicting Self-interacting proteins (SIPs) is a crucial area of research in predicting protein functions, as well as in under-
standing gene-disease and disease-drug associations. These interactions are integral to numerous cellular processes and play pivotal roles 
within cells. However, traditional methods for identifying SIPs through biological experiments are often expensive, time-consuming, and have 
long cycles. Therefore, the development of effective computational methods for accurately predicting SIPs is not only necessary but also 
presents a significant challenge.

Results: In this research, we introduce a novel computational prediction technique, VGGNGLCM, which leverages protein sequence 
data. This method integrates the VGGNet deep convolutional neural network (VGGN) with the Gray-Level Co-occurrence Matrix (GLCM) to 
detect Self-interacting proteins associations. Specifically, we initially utilized Position Specific Scoring Matrix (PSSM) to capture protein evo-
lutionary information and integrated key features from PSSM using GLCM. We then employed VGGNet as a predictive classifier, leveraging 
its capabilities for powerful learning and classification prediction. Subsequently, the extracted features were input into the VGGNet deep 
convolutional neural network to identify Self-interacting proteins. To evaluate the performance of the VGGNGLCM model, we conducted 
experiments using yeast and human datasets, achieving average accuracies of 95.68% and 97.72% respectively. Additionally, we compared 
the prediction performance of the VGGNet classifier with that of the Convolutional Neural Network (CNN) and the state-of-the-art Support 
Vector Machine (SVM) using the same feature extraction method. We also compared the prediction ability of VGGNGLCM with other existing 
approaches. The comparison results further demonstrate the superior performance of VGGNGLCM over other prediction models in this 
domain.

Conclusion: The experimental verification further strengthens the evidence that VGGNGLCM is effective and robust compared to exist-
ing methods. It also highlights the high accuracy and robustness of the VGGNGLCM model in predicting Self-interacting proteins (SIPs). 
Consequently, we believe that the VGGNGLCM method serves as a valuable computational tool and can catalyze extensive bioinformatics 
research related to SIPs prediction.
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Based on the aforementioned analysis, an increasing num-
ber of studies have concentrated on computational methodolo-
gies grounded in protein sequences. This has led to the 
development of numerous computational techniques aimed at 
predicting Protein-Protein Interactions (PPIs). Wong et al13 
proposed a sequence-based method for predicting PPIs by 
combining Rotation Forest classifier with a novel feature 
extraction method called Local Phase Quantization (LPQ). 
The method obtained the high prediction accuracy. Wei et al14 
proposed a novel method called weighted Position Specific 
Scoring Matrix (PSSM) histogram for extracting features and 
adopted a random forests classifier for predicting PPIs. Wang 
et al15 presented an effective computational method for pre-
dicting SIPs,which combined with histogram of oriented gra-
dients (HOG),synthetic minority oversampling technique 
(SMOTE) and rotation forest (RF) classifier. Li et al16 pro-
posed a new sequence-based computational method, which 
used Position Specific Scoring Matrix to capture features and 
employed an ensemble classifier for identifying PPIs. Liu et 
al17 introduced a novel computational method, RF-PSSM, 
which integrates rotation forest and PSSM to predict protein 
interactions. The PSSM was utilized to characterize each pro-
tein, while the RF was employed for classification. This 
approach yielded superior prediction results. Wang et al18 pre-
sented a new computational approach for detecting PPIs using 
Rotation Forest and matrix-based protein sequence. The 
method can capture biological evolution information from 
PSSM matrix and created feature vectors by using the 2-dimen-
sional Principal Component Analysis (2DPCA) algorithm. Li 
et al19 present a method to predict PPIs based on protein 
sequences, which combined Position Weight Matrix (PWM) 
with Scale-Invariant Feature Transform (SIFT) for extracting 
features. The method used Weighted Extreme Learning 
Machine (WELM) classifier for predicting PPIs at last and 
obtained higher prediction accuracy. Jia et al20 designed a novel 
method called NLPEI for detecting PPIs by using evolution-
ary information of protein and natural language understanding 
theory. A number of key features can be integrated by using 
serial multi-feature Fusion. The above methods can explore the 
correlational information between protein pairs, such as, coev-
olution, co-localization and co-expression.21-25 The existing 
methods, while effective for predicting general protein-protein 
interactions (PPIs), may not be directly applicable to predicting 
self-interacting proteins (SIPs) due to several reasons. Firstly, 
these methods often rely on correlational information between 
protein pairs, such as coevolution, co-localization, and co-
expression, which may not adequately capture the specific 
characteristics of SIPs. SIPs involve proteins interacting with 
identical copies of themselves, a phenomenon not fully 
addressed by traditional PPI prediction methods. Moreover, 
the datasets used to train these prediction models do not con-
tain interactions between the same protein partners, which are 
important for SIP identification. Without this information, 

the models cannot learn how to distinguish SIPs from other 
types of interactions. In response to these challenges, Liu et al26 
proposed a method named SLIPPER, which integrates multi-
ple known properties specifically tailored for predicting SIPs. 
This approach represents a step forward in addressing the 
unique characteristics of SIPs and demonstrates the impor-
tance of developing specialized computational methods for this 
purpose. However, the accuracy of the existing methods has 
still room for improvement. Therefore, it is meaningful to 
develop more efficient computational methods to improve the 
prediction accuracy of identifying SIPs, which will be critical 
for advancing our understanding of protein-protein interac-
tions and their role in biological processes.

In this research, we introduce a novel computational predic-
tion technique, VGGNGLCM, which leverages protein 
sequence data. This method integrates the VGGNet deep con-
volutional neural network (VGGN) with the Gray-Level 
Co-occurrence Matrix (GLCM) to detect Self-interacting 
proteins associations. Specifically, we initially utilized Position 
Specific Scoring Matrix (PSSM) to capture protein evolution-
ary information and integrated key features from PSSM using 
GLCM. We then employed VGGNet as a predictive classifier, 
leveraging its capabilities for powerful learning and classifica-
tion prediction. Subsequently, the extracted features were input 
into the VGGNet deep convolutional neural network to iden-
tify Self-interacting proteins. To evaluate the performance of 
the VGGNGLCM model, we conducted experiments using 
yeast and human datasets, achieving average accuracies of 
95.68% and 97.72% respectively. Additionally, we compared 
the prediction performance of the VGGNet classifier with that 
of the Convolutional Neural Network (CNN) and the state-
of-the-art Support Vector Machine (SVM) using the same 
feature extraction method. We conducted a comparative analy-
sis of the predictive capabilities of VGGNGLCM against 
other existing methodologies. The outcomes of this compari-
son further underscore the superior performance of 
VGGNGLCM in relation to other predictive models within 
this particular domain.

Method
Datasets

The UniProt database hosts 20 199 curated human protein 
sequences.27 Previous research has utilized PPI datasets from 
various sources, including DIP,28 BioGRID,29 IntAct,30 
InnateDB,31 and MatrixDB.32 In the study, the SIP datasets 
were constructed to only include interactions between the same 
2 protein sequences, defined as “direct interaction” in the rele-
vant databases. To assess the performance of VGGNGLCM, a 
total of 2994 human Self-interactions protein sequences were 
identified to construct the experimental datasets, following the 
steps outlined below33: (1) Exclusion of protein sequences 
shorter than 50 residues and longer than 5000 residues from 



Chu et al	 3

the entire human proteome; (2) Creation of positive samples 
based on the following conditions: (a) Self-interaction proteins 
are detected by at least 2 large-scale experiments or 1 small-
scale experiment; (b) Self-interaction proteins are defined as a 
homooligomer (including homodimer and homotrimers) by 
the UniProt; (c) it has been reported by at least 2 publications 
for its Self-interactions; (3) Construction of negative samples 
by removing all types of SIPs from the entire human proteome 
(including proteins annotated as ‘direct interaction’ and more 
extensive “physical association”) and the UniProt database. 
This resulted in 15 938 non-SIPs as negative samples and 1441 
SIPs as positive samples for the human dataset. The similar 
strategy was employed to create the yeast dataset, comprising 
5511 negative and 710 positive samples. Notably, the yeast 
dataset exhibits approximately 8 times as many positive sam-
ples as negative samples, while the human dataset contains 
roughly 11 times as many positive samples as negative 
samples.

Feature extraction method

Position Specif ic Scoring Matrix (PSSM).  Proteins exhibit func-
tional conservation, making the utilization of evolutionary 
information from protein sequences crucial for enhancing pre-
diction accuracy. The Position-Specific Scoring Matrix 
(PSSM) encapsulates both the positional and evolutionary 
information of protein sequences, reflecting their conservation. 
To represent the characteristics of protein sequences using 
PSSM, we employ the Position-Specific Iterative BLAST 
(PSI-BLAST) tool.34 This tool converts protein sequences 
into an L × 20 PSSM matrix, where L represents the length of 
different protein sequences. The schematic diagram of the 
PSSM matrix is illustrated in Figure 1.

In the PSSM matrix, the number 20 corresponds to the 20 
amino acids, with Pi,j denoting the probability of the ith type 
amino acid mutating to the jth type amino acid during biologi-
cal evolution. The value of Pi,j can be positive, negative, or zero. 
A positive value indicates a higher probability of mutation, sig-
nifying a less conservative region, while a negative value sug-
gests a lower probability of mutation, indicating a more 
conserved region. By employing the PSI-BLAST tool with 
parameters such as an e-value of 0.001 and 3 iterations, we can 
convert each protein sequence into a PSSM matrix, thereby 
extracting crucial feature information embedded in the evolu-
tionary history of protein sequences. This approach enables us 

to capture essential evolutionary patterns and improve the pre-
diction accuracy of SIPs.

Gray level co-occurrence matrix (GLCM).  In this study, the effi-
cacy of the prediction model is directly influenced by the qual-
ity of the feature extraction method. Consequently, we utilized 
an advanced feature technique known as the Gray Level Co-
occurrence Matrix (GLCM) to extract the evolutionary infor-
mation from protein sequences in PSSMs. This process resulted 
in the generation of feature vectors of identical dimensions. 
The GLCM is a classic texture-based feature extraction algo-
rithm introduced by Haralick et al.35 While commonly used in 
various applications, particularly in image processing, to obtain 
spatial variation features of matrices, GLCM can also be 
applied to capture essential characteristics of protein sequences. 
The GLCM features are created by calculating the pixel 
brightness value (gray level) that contains a specific spatial rela-
tionship and a specific value in a given image. This spatial rela-
tionship is defined by parameters (Ā, D), where Ā represents 
the direction of 2 pixels and D defines the spatial distance 
between the 2 pixels, typically representing the pixel of interest 
and its horizontally adjacent counterpart. The mathematical 
expression of the GLCM is as follows: Let f(x,y) be a 2-dimen-
sional digital image with a size of M × N and N gray levels. 
Then, the Gray-Level Co-occurrence Matrix that meets a cer-
tain spatial relationship is derived as follows:

In practical use, it is essential to represent pairs of param-
eter sets (Ā, D) and combine these parameters with the 
GLCM matrix to define the rotation invariance of GLCM by 
setting up rotation parameters. Typically, the parameter is set 
to 8 directions with an interval of π/4 radians. The grayscale 
value Ng represents the number of unique brightness values 
presented in the image. The image is scaled from [0, 255] to 
[0, Ng] before calculating the GLCM. Ng represents both 
the gray level and determines the size of the GLCM matrix.36 
In our experiment, the GLCM algorithm was used to extract 
texture features from the PSSM, including correlation, con-
trast, homogeneity, and energy.34 The characteristic expres-
sion of GLCM is as follows, where Mij of each expression 
defines the value at the (i,j) position in the gray co-occurrence 
matrix.36
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Figure 1.  The diagram of PSSM.
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Where � � � �x y x y, , ,  represent the averages and the vari-
ances of the column and row. Their mathematical description 
is as follows:
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Through the aforementioned processing, we generated a 
60-dimensional feature vector for each protein sequence by 
employing the GLCM feature extraction method. Figure 2 
illustrates the technology roadmap of the feature extraction 
method.

VGGNet convolutional neural network

Convolutional neural network is a multi-layer neural network 
inspired by the hierarchical processing mechanism of 

information in the biological visual cortex channel.37 
Convolutional neural network is mainly composed of convolu-
tional layer, activation function, pooling layer and fully-con-
nected layer.38

The VGGNet Convolutional Neural Network was pio-
neered by a team of researchers from the Visual Geometry 
Group at Oxford University and Google DeepMind. This net-
work comprises 6 distinct models, each with varying depths 
that range between 11 and 19 layers.39 Among them, the 16 
and 19-layer models are considered the best for classification 
and location tasks. The overall structure of VGGNet includes 
5 convolutional layers, where the convolution kernel size is 
3 × 3, the stride length is 1, and the padding is 1. After each 
convolutional layer, a maximum pooling layer with a size of 
2 × 2 and a stride length of 2 is applied. Following the last 
maximum pooling layer, 3 fully-connected layers are connected 
to integrate the features from the image feature map. The final 
layer of the network is the SoftMax layer, which is used for 
classification and normalization. Compared to traditional con-
volutional neural networks, VGGNet makes several improve-
ments, such as reducing the size of the convolution and pooling 
kernels, increasing the number of convolutional layers, and 
using pre-trained data to initialize parameters.40 Additionally, 
during the test phase, VGGNet transforms the fully-connected 
layers into convolutional layers. The technology roadmap of 
the VGGNGLCM prediction model is shown in Figure 3.

Performance evaluation

To assess the performance of the proposed computational 
model, we used the following metrics: accuracy (AC), specific-
ity (TPR), precision (PPV), and Matthews’s correlation coef-
ficient (MCC):

Figure 2.  The technology roadmap of the feature extraction method.

Figure 3.  The technology roadmap of the VGGNGLCM prediction model.
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In the provided formulas, TP and TN represent the number 
of true positive and true negative interaction sequence pairs 
accurately predicted, respectively. FP and FN denote the count 
of falsely predicted non-interaction and interaction protein 
sequence pairs, respectively. Additionally, we utilize the 
Receiver Operating Characteristic (ROC) curve to further 
evaluate the prediction ability of VGGNGLCM in the 
experiment.

Results and Discussion
Performance of the proposed VGGNGLCM model

The prediction performance of VGGNGLCM on yeast and 
human datasets was assessed by fivefold cross-validation. To 
avoid the influence of overfitting, we split the whole datasets 

into training and independent test sets. In particular, the human 
dataset was randomly divided into 5 parts, 4 of which were 
used as the training set and the rest as the independent test 
dataset. The same strategy was applied to process the yeast 
dataset. To ensure fairness in comparison, we use a 19 to 1ayer 
VGGNet network model, in which the convolutional layer is 
divided into 5 segments, each segment contains 2 to 4 convo-
lutional layers, and each segment is connected with a max- 
pooling layer at the end, while leaving other parameters at 
default values.41 The prediction results of the VGGNGLCM 
model are presented in Tables 1 and 2.

As shown in Table 1, the proposed VGGNGLCM achieved 
an average accuracy of 95.68%, an average True Positive Rate 
(TPR) of 93.80%, an average Positive Predictive Value (PPV) 
of 92.01%, and an average Matthews Correlation Coefficient 
(MCC) of 90.84%. Similarly, from Table 2, the VGGNGLCM 
also demonstrated improved prediction results on the human 
dataset, with average accuracy, TPR, PPV, and MCC of 
97.72%, 96.64%, 96.96%, and 92.30% respectively. In addition, 
the ROC curves in Figures 4 and 5 also displayed the fivefold 
cross-validation results of the VGGNGLCM model on yeast 
and human. These experimental results indicate that the 
VGGNGLCM model exhibits strong prediction performance 
for SIPs.

The promising prediction results of the VGGNGLCM 
model can be attributed to the effective feature extraction 
methods of the Gray-Level Co-occurrence Matrix and the 
high-performance classifier of the VGGNet Convolutional 

Table 1.  Fivefold cross validation results shown using VGGNGLCM model on yeast.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 95.31 93.59 92.24 90.50

2 96.49 94.56 90.66 91.43

3 95.25 93.67 91.20 90.74

4 95.78 93.81 91.63 90.35

5 95.58 93.37 92.29 91.16

(Average of 5 tests) 95.68 ± 0.38 93.80 ± 0.44 92.01 ± 0.66 90.84 ± 0.49

Table 2.  Fivefold cross validation results shown using VGGNGLCM model on human.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 97.20 96.76 97.22 92.67

2 97.51 96.21 97.11 92.81

3 97.74 95.61 97.27 91.72

4 98.61 97.38 96.43 91.80

5 97.55 97.22 96.78 92.28

(Average of 5 tests) 97.72 ± 0.65 96.64 ± 0.66 96.96 ± 0.48 92.30 ± 0.51
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Neural Network. The main advantages can be summarized as 
follows:

First, the Position Specific Scoring Matrix (PSSM) encom-
passes not only the positional data of protein sequences but 
also incorporates evolutionary and prior information that mir-
rors the conserved functions of proteins. This feature facilitates 
the efficient extraction of evolutionary and prior information 

from protein sequences via the PSSM matrix. Second, the 
Gray-Level Co-occurrence Matrix (GLCM) feature extrac-
tion method calculates the grayscale spatial correlation between 
protein sequences at certain distances in the PSSM matrix, 
extracting hidden key features and generating high-quality 
protein sequence feature vectors. Finally, compared to tradi-
tional convolutional neural networks, VGGNet brings several 

Figure 4.  The fivefold cross-validation ROC curve of VGGNGLCM was performed on yeast.

Figure 5.  The fivefold cross-validation ROC curve of VGGNGLCM was performed on human.
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key improvements: (1) VGGNet reduces the size of the convo-
lutional and pooling kernels to 3 × 3 and 2 × 2 respectively, 
which allows for more detailed feature extraction and reduces 
the number of parameters. (2) VGGNet significantly increases 
the depth of the network by using more convolutional layers. 
This deeper architecture allows for the extraction of more com-
plex features from the input data. (3) VGGNet utilizes pre-
trained data to initialize parameters. This pre-training process 
helps the network converge faster and can lead to better gener-
alization on a wide range of image recognition tasks. This 
makes it a valuable tool for improving prediction accuracy, as 
evidenced in Tables 1 and 2.

In summary, the experimental findings corroborate the 
assertion that the VGGNGLCM model markedly improves 
prediction accuracy and is adept at forecasting Self-Interacting 
Proteins.

Comparison with the method of CNN-based and 
SVM-based

In order to demonstrate the prediction performance of the 
VGGNGLCM model, we compared the VGGNet classifier 
with the CNN and SVM classifiers using the same GLCM 
approach on the yeast and human datasets. To ensure a fair 
comparison, we optimized several parameter settings of the 
CNN using a grid search approach. Specifically, we set the 
CNN’s epochs (training time), eta (learning rate), batch size 
per training, and weight values to 98, 0.3, 0.6, and 0.82, 

respectively. Similarly, using a similar strategy, we optimized 
the RBF kernel parameters of the SVM, setting c to 0.6 and g 
to 5.31, while leaving other parameters at their default values. 
Furthermore, the SVM classifier utilized the LIBSVM tool42 
for classification.

The results of the fivefold cross-validation of CNNGLCM 
and SVMGLCM on the yeast and human datasets are pre-
sented in Tables 3 to 6, while the comparison of ROC curves 
on these datasets between VGGNet, CNN, and SVM is illus-
trated in Figures 6 and 7. As shown in Tables 3 and 4, the 
CNNGLCM model achieved an average accuracy of 92.07%, 
and the SVMGLCM model obtained an average accuracy of 
89.69% on the yeast dataset. Similarly, from Tables 5 and 6 the 
CNNGLCM and SVMGLCM models achieved average 
accuracies of 94.13% and 92.15% on the human dataset, respec-
tively. When comparing these results with those of the 
CNNGLCM and SVMGLCM models, it is evident that the 
performance of the VGGNet classifier is significantly better 
than the other 2 classifiers. This is further supported by the 
ROC curves in Figures 6 and 7, which demonstrate the supe-
rior performance of the VGGNet classifier.

The favorable comparison results obtained may be attrib-
uted to the following reasons: compared with the traditional 
convolution neural network, the most obvious improvement of 
VGGNet is to reduce the size of convolution kernel and pool 
kernel, increase the number of convolution layers, use the pre-
trained data to initialize parameters, and adopts a way to trans-
form the fully-connected layers into the convolutional layers in 

Table 3.  Fivefold cross validation results shown by using CNNGLCM model on yeast.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 92.88 87.88 87.63 81.44

2 91.79 93.43 86.42 83.95

3 91.21 85.78 87.58 78.38

4 92.38 87.79 86.71 80.27

5 92.12 85.59 86.28 77.51

(Average of 5 tests) 92.07 ± 0.62 88.09 ± 3.23 86.92 ± 0.71 80.31 ± 2.51

Table 4.  Fivefold cross validation results shown by using SVMGLCM model on yeast.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 89.67 31.53 81.57 49.58

2 90.15 35.41 85.29 55.38

3 89.23 30.42 89.56 48.91

4 90.13 33.56 87.22 52.72

5 89.31 30.43 81.41 46.48

(Average of 5 tests) 89.69 ± 0.42 32.27 ± 2.36 85.01 ± 6.02 50.61 ± 3.35
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the test phase. The experimental findings further underscore 
the potential of the VGGNGLCM prediction model as a valu-
able instrument for forecasting SIPs, demonstrating high pre-
dictive performance.

Comparison with other methods

To further validate the prediction ability of the VGGNGLCM 
model, we compared its performance with previous methods 
using the yeast and human datasets, as displayed in Tables 7 
and 8. As shown in Table 7, the average accuracy of the 
VGGNGLCM model is notably higher than that of the other 
6 approaches on the yeast dataset. Similarly, Table 8 depicts that 
the prediction accuracy achieved by the VGGNGLCM model 
is significantly better than that of the other 6 methods on the 
human dataset.

Based on the comparison results from Tables 7 and 8, it can 
be concluded that the proposed VGGNGLCM model exhibits 
high accuracy and robustness, and is capable of better predict-
ing Self-Interacting Proteins. These findings indicate that the 
VGGNGLCM prediction model can serve as a valuable com-
putational tool for predicting SIPs. The positive experimental 
outcomes can be ascribed to the application of high-perfor-
mance VGGNet classifiers in the VGGNGLCM method, 
coupled with the use of the GLCM feature extraction tech-
nique. This combination effectively captures both essential and 
concealed feature information from protein sequences.

Conclusion
In our research, we have introduced a novel computational 
prediction technique, VGGNGLCM, which leverages pro-
tein sequence data. This method integrates the VGGNet 

Table 7.  Comparison results between VGGNGLCM and other methods on yeast dataset.

Model AC (%) TPR (%) PPV (%) MCC (%)

SLIPPER26 71.90 72.18 69.72 28.42

PPIevo43 66.28 87.46 60.14 18.01

LocFuse44 66.66 68.10 55.49 15.77

CRS33 72.69 74.37 59.58 23.68

SPAR33 76.96 80.02 53.24 24.84

Our Method 95.68 93. 80 92.01 90.84

Table 5.  Fivefold cross validation results shown by using CNNGLCM model on human.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 94.05 89.16 90.69 85.79

2 95.17 90.82 90.72 84.27

3 93.22 86.22 91.29 84.88

4 93.86 87.33 90.32 82.98

5 94.37 88.28 91.46 84.47

(Average of 5 tests) 94.13 ± 0.72 88.36 ± 1.85 90.89 ± 0.36 84.48 ± 1.26

Table 6.  Fivefold cross validation results shown by using SVMGLCM model on human.

Testing set AC (%) TPR (%) PPV (%) MCC (%)

1 92.67 37.91 82.67 58.58

2 91.60 35.43 87.82 53.52

3 91.58 30.21 86.17 46.87

4 92.45 33.67 87.33 52.62

5 92.47 36.12 88.13 57.11

(Average of 5 tests) 92.15 ± 0.76 34.67 ± 3.82 86.42 ± 2.11 53.74 ± 3.96
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Figure 6.  Comparison of ROC curves between RNN, BPNN and SVM on human dataset.

Figure 7.  Comparison of ROC curves between RNN, BPNN and SVM on yeast dataset.

Table 8.  Comparison results between VGGNGLCM and other methods on human dataset.

Model AC (%) TPR (%) PPV (%) MCC(%)

SLIPPER26 91.10 95.06 47.26 41.97

PPIevo43 78.04 25.82 87.83 20.82

LocFuse44 80.66 80.50 50.83 20.26

CRS33 91.54 96.72 34.17 36.33

SPAR33 92.09 97.40 33.33 38.36

Our Method 97.72 96.64 96.96 92.30
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deep convolutional neural network (VGGN) with the Gray-
Level Co-occurrence Matrix (GLCM) to detect Self-
interacting proteins associations. The VGGNGLCM model 
obtained average accuracies of 95.68% and 97.72% respec-
tively on yeast and human datasets. The exceptional perfor-
mance of VGGNGLCM can be attributed to the following 
key factors:(1) The Position Specific Scoring Matrix (PSSM) 
captures both the positional and evolutionary information of 
protein sequences, enabling the extraction of sequence evolu-
tionary information while retaining a wealth of prior knowl-
edge. This aspect contributes to the extraction of critical 
sequence evolutionary information. (2) The Gray-Level 
Co-occurrence Matrix (GLCM) feature extraction tech-
nique computes grayscale spatial correlation attributes 
between protein sequences at designated distances within 
the PSSM matrix. This process facilitates the identification 
of concealed key features from the PSSM matrix, leading to 
the creation of superior-quality protein sequence feature vec-
tors. (3) Compared to traditional convolutional neural net-
works, VGGNet brings several key improvements: (a) 
VGGNet reduces the size of the convolutional and pooling 
kernels to 3 × 3 and 2 × 2 respectively, which allows for more 
detailed feature extraction and reduces the number of param-
eters. (b) VGGNet significantly increases the depth of the 
network by using more convolutional layers. This deeper 
architecture allows for the extraction of more complex fea-
tures from the input data. (c) VGGNet utilizes pre-trained 
data to initialize parameters. This pre-training process helps 
the network converge faster and can lead to better generali-
zation on a wide range of image recognition tasks. Through 
rigorous experimental validation, we have substantiated the 
efficacy and robustness of VGGNGLCM. This has been evi-
denced by its superior accuracy and ability to predict SIPs 
more accurately than existing methodologies. The experi-
mental validation further underscores the effectiveness and 
robustness of VGGNGLCM in comparison to current 
methods. It also reveals that the VGGNGLCM model 
exhibits high accuracy and robustness, surpassing other 
methods in the prediction of SIPs. These findings under-
score the potential of VGGNGLCM as a valuable computa-
tional tool for advancing bioinformatics research related to 
SIPs prediction.
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