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Background: Inflammatory responses have drawn more attention to

atherosclerosis; however, the immune-related genes (IRGs) as a prognostic

factor in atherosclerotic plaque remain to be fully elucidated. Here, the purpose

of this study was to investigate whether the IRGs could be identified as a reliable

biomarker for predicting ischemic events in patients undergoing carotid

endarterectomy (CEA).

Methods: Two datasets GSE97210 and GSE21545 were downloaded from the

Gene Expression Omnibus (GEO) database. The dataset GSE97210 was used to

explore the significant pathways and differentially expressed IRGs (DEIRGs)

between plaques and controls, which were further screened to identify the

prognostic DEIRGs in the GSE21545 dataset. The identification of molecular

subgroups with the prognostic gene expression patterns was achieved through

nonnegative matrix factorization (NMF) clustering. Functional analyses

including GO, KEGG, GSVA, and GSEA analyses, and immune analyses

including xCell and ssGSEA algorithms were conducted to elucidate the

underlying mechanisms. The prognostic risk model was constructed using

the LASSO algorithm and multivariate Cox regression analysis.

Results: A total of 796 DEIRGs (including 588 upregulated and

208 downregulated) were identified. Nine prognostic DEIRGs were further

screened with univariate Cox regression analysis. Two clusters with different

prognosis were grouped based on the prognostic DEIRGs. Immune infiltration

analysis shows that cluster 2 with a better prognosis presented with a higher

immune response than cluster 1. A prognostic model based on seven IRGs

(IL2RA, NR4A2, DES, ERAP2, SLPI, RASGRP1, and AGTR2) was developed and

verified. Consistent with the immune analysis of the cluster, the immune

infiltration in the low-risk group with a better prognosis was also more

active than that in the high-risk group. Finally, a nomogram based on the

seven genes was constructed, which might have future implications in

clinical care.
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Conclusion: The expression of immune-related genes is correlated with the

immune microenvironment of atherosclerotic patients and could be applied to

predict the ischemic events in patients undergoing CEA accurately.
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Introduction

Atherosclerosis, a chronic inflammatory disease

characterized by the accumulation of lipids, fibrous elements,

and calcification within large arteries, results in cardiovascular

complications, such as coronary artery disease (CAD) and stroke

that remain leading causes of death worldwide (Ross, 1999;

Moore and Tabas, 2011). Cerebrovascular events such as

transient ischemic attack (TIA) and ischemic strokes (ISs) are

closely associated with carotid atherosclerotic plaque rupture or

artery stenosis (Brinjikji et al., 2016). Stenosis of the internal

carotid artery causes ISs (symptomatic carotid stenosis) in 8%–

15% cases due to atherosclerosis (Bonati et al., 2022). Carotid

artery stenting (CAS) and carotid endarterectomy (CEA) are the

two major surgical operations to restore patency and reduce

long-term stroke risks. A recent clinical trial compared their

long-term protective effects and found that 5-year non-

procedural stroke incidence was 2.5% in each group for fatal

or disabling stroke, with no significant difference for any stroke

(5.3% with CAS versus 4.5% with CEA, p = 0.33) (Halliday et al.,

2021). These two procedures may not always be beneficial for all

patients with carotid atheromatous disease and prevent the

occurrence of secondary cardiovascular events. Moreover, the

recurrence of ischemic events (including ischemic stroke and

myocardial infarction) after CEA is still inevitable (Folkersen

et al., 2012). Therefore, identifying patients with elevated risk of

ischemic events after undergoing CEA is vital.

Previous studies suggested the causal role of the immune

system and inflammation in atherosclerosis (Moore and Tabas,

2011; Tabas and Lichtman, 2017). Several inflammation

processes participate in all stages of atherosclerosis and

remain a substantial residual cardiovascular risk factor in

optimally treated patients. Inflammatory responses provide a

series of pathways that link lipids and other traditional risk

factors to atherosclerosis instead of supplanting. For example, in

the early stages of atherosclerosis, vascular smooth muscle cells

(VSMCs) exposed to modified low-density lipoprotein (LDL)

accumulated in the subendothelial region and released

chemoattractants, including chemokine 2 (CCL2) and CCL5,

which promoted the recruitment of monocytes (Quinn et al.,

1987; Cushing et al., 1990). Upon entering the intimal region,

these monocytes differentiate into macrophages by reacting with

macrophage colony-stimulating factor (M-CSF) and other

cytokines. The lesional macrophages can engulf “modified”

lipoproteins (such as oxidation or aggregation) and generate

foam cells, which frequently undergo apoptosis or necrosis to

generate a growing “necrotic core” composed of cholesterol esters

and cell debris that causes the lesion to rupture. Targeting

inflammation by inhibiting leucocyte motility and cytokine

release from a range of inflammatory cells is reported to

reduce cardiovascular events. A recent meta-analysis

demonstrated the efficacy of low-dose colchicine for the

secondary prevention of cardiovascular events in patients with

coronary artery disease (Fiolet et al., 2021). However,

immunotherapies need to be tailored to specific groups of

patients with atherosclerotic cardiovascular disease depending

on their clinical status. In the LoDoCo2 trial (Nidorf et al., 2020),

the incidence of death from noncardiovascular causes was higher

in the colchicine group than in the placebo group. Consequently,

for precision medicine, it is very important to distinguish patients

into different risk groups before treatments, especially according

to their immune landscapes.

With the development of high-throughput sequencing and

the availability of the large-scale public databases, bioinformatics

analyses of gene expression profiles are widely used to identify

differentially expressed genes (DEGs), analyze functional

pathways, and uncover molecular mechanisms involved in the

pathogenesis of atherosclerosis, such as intraplaque hemorrhage,

progression, and rupture (Chen et al., 2021; Li et al., 2022).

Several studies have been performed by constructing a risk

prognostic model to predict the overall survival rates (Huang

et al., 2021a; Huang et al., 2021b). However, few studies have

answered whether expression patterns from atherosclerosis

patients predict future prognosis, such as the occurrence of

ischemic events (Folkersen et al., 2012). Previous studies

demonstrated that the composition of carotid atherosclerotic

plaque (Hellings et al., 2010) and expression levels of genes such

as collagenase matrix metalloproteinase-8 (MMP8) (Peeters

et al., 2011a) and fatty acid-binding protein 4 (FABP4)

(Peeters et al., 2011b) in the carotid atherosclerotic plaque

provide prognostic information for future cardiovascular

outcomes. However, there are no studies systematically

predicting the ischemic events base on the expression profiles

and depicting the immune landscapes of patients after

undergoing CEA.

In the present study, we first explored the difference in

immune-related pathways and characteristics between normal

arterial intimae and advanced atherosclerotic plaques. The

differentially expressed immune-related genes (DEIRGs) were

identified between plaque and control samples, and the genes
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that demonstrated prognostic ability by using univariate Cox

regression analysis were further screened. Based on the hub

prognostic immune-related genes (IRGs), patients with

atherosclerotic plaques were divided into two clusters by using

the Non-negative Matrix Factorization (NMF) algorithm. The

survival analysis, immune characteristics, and functional

processes between the two clusters were reconnoitered.

Finally, a prognostic model based on IRGs was constructed

and validated, and the patients were classified into low and

high-risk groups who presented with different event-free

survival during follow-up. This study hypothesizes that the

IRGs could predict the ischemic events in patients endergoing

CEA from the perspective of prognostic effects.

Methods and materials

Datasets and preprocessing

Microarray data, containing two transcription profiles

(GSE97210 and GSE21545) were obtained from the NCBI

GEO database (https://www.ncbi.nlm.nih.gov/geo/). The list

of IRGs was collected from the immunology database and

analysis portal (ImmPort) (Bhattacharya et al., 2014). In our

research, we choose two datasets: one includes the expression

profile of atherosclerotic plaques and normal arterial tissues,

and the other includes the expression profile of atherosclerotic

plaques and prognostic information of patients undergoing

CEA. The dataset of GSE97210 containing six human samples

(three normal arterial intimae and three advanced

atherosclerotic plaques) was conducted at the platform of

GPL16956 (Bai et al., 2019). The GSE21545 dataset was

based on an Affymetrix® platform (GPL570) and included

126 plaques and 97 peripheral blood mononuclear cells

(PBMCs) samples. The gene expression profiles and clinical

data of GSE21545 were downloaded from GEO (Folkersen

et al., 2012). The clinical features and descriptions of the

GSE21545 dataset are presented in Table 1. Of the ischemic

events, seven were myocardial infarctions and 18 were

ischemic strokes (Folkersen et al., 2012). If multiple probes

were matched with one gene, the probe with maximal median

values of expression was annotated into the homologous gene

symbol on the basis of the platform’s annotation information.

Our study design is briefly described in the flow chart

(Figure 1).

Immune landscapes between
atherosclerotic plaques and normal
arterial tissues

The gene sets of hallmarks were obtained from the Molecular

Signatures Database (MSigDB) (Liberzon et al., 2015), and the

Z-score of hallmarks was quantified using a gene set variation

analysis (GSVA) algorithm (R package “gsva”) based on

transcriptomic profiling data of GSE97210 dataset. The “fgsea”

package in R was used to display the enrichment results of GSEA.

We also adopted the ssGSEA algorithm to assess the 28 immune

infiltrating cells and 17 immune responses between the two

groups. The results are displayed in a heat map using

“ComplexHeatmap” packages. The significantly different

immune cell and responses were compared using “Wilcoxon

test”.

Identification of differentially expressed
and prognostic IRGs in atherosclerotic
plaques

The expression profiles of 2483 IRGs from ImmPort were

first extracted in the dataset GSE97210.

Differential expression analysis was performed using the

“limma” package in R software to identify differentially

expressed IRGs (DEIRGs) between the plaques and

control groups. The DEGs were screened with the criteria

of |log2FoldChange| > 1 and p < 0.05. Then, a univariate Cox

regression analysis was carried out to identify prognosis-related

genes of patients undergoing CEA from dataset GSE21545. We

overlapped the DEIRGs and genes with a log-rank p < 0.05 to

identify the hub IRGs.

TABLE 1 Detailed information of GSE21545 datasets.

Samples Plaque (126) PBMCs (97)

Training Cohort (76) Test Cohort (50) Overall Cohort (126)

Status Ischemic 14 (18.42%) 11 (22.00%) 25 (19.84%) 21 (21.65%)

No-Ischemic 62 (81.58%) 39 (78.00%) 101 (80.15%) 76 (78.35%)

Age ≤ 65 21 (27.63%) 14 (28.57%) 35 (28.00%) 27 (71.88%)

>65 55 (72.37%) 35 (71.43%) 90 (72.00%) 69 (28.12%

PBMCs, peripheral blood mononuclear cells.
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Correlation among hub IRGs and
classification of molecular subtypes

To uncover the association among genes, the expressive

correlation among them was calculated using Pearson’s

method, and the results were presented using “corrplot” and

“ggraph” packages. NMF is a dimensionality reduction approach

for learning a parts-based and linear representation of non-

negative data. NMF clustering was applied for the

identification of new clusters using the “nmf” R package based

on the hub IRGs. Kaplan-Meier (KM) curve shows the

relationship between two clusters and clinical outcome, and

the log-rank test was used to evaluate differences using

‘survival’ and “survminer” packages.

FIGURE 1
Workflow of data analysis in our present work. DEGs, differentially expressed genes; IRGs, immune-related genes; DEIRGs, differentially
expressed immune-related genes; GSEA, gene set enrichment analysis; ssGSEA, single sample gene set enrichment analysis; GSVA, gene set variation
analysis; NMF, Non-negative Matrix Factorization; PCA, principal component analysis; ROC, receiver operating characteristic curve; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage, and selection operator; WGCNA, weighted
gene co-expression network analysis.
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Biological functions and immune
characteristics between two subtypes

The DEGs between two clusters were identified using the

“limma” package with the criteria of |log2FoldChange| > 0.5 and

p < 0.05. The “clusterProfiler” package was used to enrich the

biological processes (BP) of Gene Ontology and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

of DEGs.

xCell (Aran et al., 2017), a novel gene signature-based

method, was used to infer 64 immune and stromal cell types

and to estimate the immune scores and stromal scores. The

abundance of immune infiltrating cells and immune response

were also evaluated by using the aforementioned ssGSEA

method. We also compared the expression levels of

11 checkpoint-related genes (PDCD1, CD274, CTLA4, ICOS,

HAVCR2, CD80, CD47, BTLA, TIGIT, SIRPA, and VTCN1)

between the two clusters. The relationships between nine hub

IRGs and immune characteristics were calculated using Pearson’s

method and visualized by using “ggplot2” package.

Principal component analysis (PCA) was conducted based

on nine hub IRGs by using the prcomp function to assess the

distinguishable ability for identified subtypes. PC1 and PC2 were

extracted to form signature scores. Later, we applied a method

similar to GGI to construct the immune index (Sotiriou et al.,

2006).

Immune Index � ∑(PC1i + PC2i)

where i shows the expression of prognostic DEIRGs.

The relationships between the immune index and immune

characteristics were also assessed.

Identification of the correlation of nine
IRGs and apoptosis-related genes

From the above hallmark enrichment analysis between

plaques and normal tissue, we observed that the apoptosis

process was also involved in this pathogenesis. Therefore, we

identified the apoptosis-related genes that are correlated with the

nine hub IRGs. Three methods were used to screen for apoptosis-

related genes.

1) Pearson correlation analysis was performed to analyze the

relevance between genes and nine hub IRGs in GSE21545.

IRGs-related genes were defined as genes significantly related

to at least one hub IRGs (|Pearson’s correlation coefficient | ≥
0.5 and p < 0.05).

2) We evaluated the top 5,000 variant genes to test their

availability and used the R package termed “WGCNA” to

construct a gene co-expression network. The power values

corresponding to an independent index of R2 = 0.85 were

selected. The minimum number of genes in each module was

30, and the threshold of merging modules was set to

0.25 using the dynamic cutting tree method. The module

with most correlated with the “APOPTOSIS” trait calculated

by GSVAmethod with significance (p < 0.05) was assumed to

be the key module for further analysis by using the

moduleTraitCor and moduleTraitPvalue algorithms.

3) The list of apoptosis-related genes was extracted from

MSigDB. The search strategy included the following

keywords: “apoptosis” and “Homo sapiens.” A total of

2747 apoptosis-related genes were listed.

By integrating the above methods, the final apoptosis-related

genes correlated with hub IRGs were identified. The protein-

protein interaction (PPI) network was constructed using the

Search Tool for the Retrieval of Interacting Genes database

(STRING, www.string-db.org) with medium confidence of 0.

4 and further visualized using Cytoscape software (v3.8.2). The

biological functions of these apoptosis-related genes were

identified using an online tool Metascape (Zhou et al., 2019).

Establishment and verification of a
prognostic model based on IRGs

A total of 126 patients in GSE21545 were divided into a

training cohort and a test cohort at a ratio of 6:4. The least

absolute shrinkage and selection operator (LASSO) Cox

regression was used to identify the hub IRGs by using the

“glmnet” package. We chose the minimum lambda as the

optimal value. The genes used for the establishment of the

risk model were determined by multivariate Cox regression

analysis. The risk score for each sample was calculated as

follows: Risk scores = ∑(coefficienti * expression of signature

genei). After calculating the risk scores, patients were categorized

into two groups. Patients with risk scores more than the medium

value were grouped into the high-risk group and others into the

low-risk group. The prognostic evaluation ability of the risk

scores was evaluated by plotting the KM survival curve and

receiver operating characteristic (ROC) curve using “timeROC”

package. The test cohort, overall cohort, and 97 PBMC samples

in GSE21545 were used to validate the prognostic model.

Biological functions and immune
characteristics between the two risk
groups in the training cohort

GSVA and GSEA method were used to identify the different

hallmark and KEGG pathways, respectively. xCell algorithm was

applied to assess the stromal and immune scores between the

high- and low-risk groups. As before, we utilized the ssGSEA
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method to assess the abundance of different immune cells and

responses.

Construction of nomogram

To improve the prognostic risk stratification of patients

undergoing CEA and assist in clinical diagnosis and

treatment, we constructed a nomogram model with the

selected genes. It was used as a quantitative tool to predict the

prognosis of patients after CEA. The effectiveness of the model

was evaluated using a calibration curve.

Statistics analysis

All statistical analyses were performed using R software

(version R-4.1.0). The Wilcoxon test was used for statistical

analysis between the two groups. The KM curve plotted the

relationship between score and clinical outcome, and the log-

rank test was used to evaluate differences using “survival” and

“survminer” packages. Univariate and multivariate Cox

regressions were performed with the “survival” package. The

relationships of genes with genes and genes with immune cells

were constructed by using Pearson’s correlation method. LASSO

regression analysis was carried out using the “glmnet” package.

Unsupervised cluster analysis was performed using the R package

“NMF”. p < 0.05 was considered to indicate statistical

significance. The significance level is denoted as follows: *p <
0.05, **p < 0.01, and ***p < 0.001.

Results

Depicted biological pathways, the
immune landscapes, and DEIRGs between
plaques and controls

To uncover the different biological pathways between

plaques and controls, a GSEA method was used. In our

FIGURE 2
Identification of different function pathways, immune infiltration, and DEIRGs in plaque compared with the normal arterial tissues. (A) Up and
downregulated hallmark pathways between plaque and controls in GSEA analysis. The difference of immune cell (B) and immune responses (C)
between plaque and controls in ssGSEA analysis. A volcano plot (D) and heat map (E) shows the differentially expressed immune-related genes
(DEIRGs) between plaque and controls. Significance level was denoted by *p value < 0.05, **p value < 0.01, ***p value < 0.001.
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GSEA results, we observed that the immune-related hallmark

pathways (such as inflammatory response, IL6/JAK/

STAT3 signaling, and complement pathways) were up-

regulated in atherosclerotic plaque samples compared with

normal tissues in the GSE97210 dataset (Figure 2A). The

apoptosis process was also identified in atherosclerotic

plaque samples. To further understand the immune

infiltration in plaques, we applied an ssGSEA method to

uncover 28 differential immune cells and 17 differential

responses between plaques and controls. As shown in

Figure 2B; Supplementary Figure S1A, plaques had more

immune cell infiltration than the controls, such as

macrophages, activated CD8 T cells, and mast cells. The

heat map depicts the differences in immune responses

between plaques and controls, showing that interferon

receptors, antigen processing and presentation, and TNF

family number were more active in plaque tissues

(Figure 2C; Supplementary Figure S1B).

To explore the expression patterns of IRGs between plaques

and controls, a total of 1926 IRGs were detected in the

GSE97210 dataset, and their expression profiles were extracted

to identify the DEIRGs. We identified 796 DEIRGs (including

588 upregulated and 208 downregulated), and the results are

shown in a volcano plot (Figure 2D) and a heat map (Figure 2E).

FIGURE 3
Clustering two molecular subgroups through nonnegative matrix factorization (NMF) method. (A) Screening nine prognostic DEIRGs by
overlapping the DEIRGs and prognostic genes with univariate Cox regression analysis. (B) A forest plot showing the hazard ratio of nine prognostic
DEIRGs. (C) and (D) indicating the expression correlations of the nine prognostic DEIRGs. The enlarged panels show the most positive and negative
correlation. (E) Identification of two clusters with the optimal value for consensus clustering. (F) Survive analysis of two distinct clusters. A
histogram shows the proportion of the occurrence of an ischemic event (G) and age group (H) in two clusters.
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Molecular subgroups clustered by
prognostic DEIRGs

To elucidate the relationship between immune-related

molecular patterns and prognosis in atherosclerotic

patients, we first found the prognostic DEIRGs and then

clustered the samples into two patterns based on the

expression of them using NMF method. A total of

422 prognosis-related genes associated with event-free

survival (Supplementary Table S1) were identified through

univariate Cox regression analysis in the GSE21545 dataset.

By intersecting the 422 genes with the above DEIRGs, nine

prognostic DEIRGs were overlapped (Figure 3A; Table 2). The

forest plot shows that SLPI, RASGRP1, ERAP2, and

AGTR2 may serve as protective genes, and SHC3, NR4A3,

NR4A2, IL2RA, and DES may act as risk genes (Figure 3B). To

explore the expression association between the nine different

prognostic DEIRGs, we depicted the correlation patterns

between them (Figures 3C,D). According to the expression

patterns of the nine genes, they were classified into three

clusters by hierarchical clustering (Supplementary Figure

S2A). The enlarged panels show the most positive and

negative expression correlations between them; NR4A3 and

NR4A2 were most positively correlated (R = 0.63, p < 0.001),

and RASGRP1 and DES were most negatively correlated

(R = −0.53, p < 0.001). Based on the nine prognostic

DEIRGs, the 126 patients in the GSE21545 dataset were

divided into two clusters by applying the NMF algorithm

(Figure 3E; Supplementary Figure S2B). We compared the

ischemic events-free survival of the two clusters and found

that cluster two had a better prognosis (HR = 0.385, p = 0.015,

Figure 3F). The histogram of the frequency distribution

revealed that cluster 1 had a larger proportion of ischemic

events than cluster 2 (Chi-square test, p = 0.009) (Figure 3G),

while there was no difference in age distribution between the

two clusters (Chi-square test, p = 0.194) (Figure 3H).

Biological functions and immune
characteristics between the two subtypes

We further explore the different biological function and

immune characteristics between two immune-related subtypes

to find the potential biological difference causing the prognostic

difference between two groups. A total of 277 DEGs were

identified between the two clusters (Supplementary Figure

S3A), and the expression patterns are depicted with a heat

map (Supplementary Figure S3B). Results of BP analysis

showed that these DEGs were enriched in positive regulation

of cell adhesion, T cell differentiation, and leukocyte cell-cell

adhesion (Supplementary Figure S3C). KEGG enrichment

analysis showed that the DEGs were enriched in fatty acid

biosynthesis, ferroptosis, and apoptosis pathways

(Supplementary Figure S3C).

Then, the immune condition of the plaque tissues of each

patient was evaluated using the xCell algorithm and compared

between the two clusters. Surprisingly, as shown in Figure 4A, the

plaque tissues in cluster 2 showed a higher immune score and

microenvironment score, while the stromal score did not differ.

We further explored the immune characteristics, including

28 immune cells, 17 immune responses, and expression levels

of 11 immune checkpoint genes. Consistent with the xCell

analysis, we observed that cluster 2 had more immune cell

infiltration and more active immune responses. Specifically,

the abundances of central memory CD8 T cell, activated

CD4 T cell, gamma delta T cell, memory B cell, mast cell, and

neutrophil were elevated in cluster 2 (Figure 4B). From the

perspective of immune responses, the antigen processing and

presentation, BCR signaling pathway, and TCR signaling

pathway significantly were more active in cluster 2, while the

activity of the TGFβ family member was suppressed (Figure 4C).

The expression levels CD274, CD80, and CD47 were significantly

up-regulated in cluster 2, whereas PDCD1 was significantly

down-regulated, compared with cluster 1 (Figure 4D).

TABLE 2 Gene descriptions and univariate Cox regression of nine prognostic immune-related genes.

Gene name Gene description Chromosome Gene type HR (95%CI) p Value

SLPI Secretory leukocyte peptidase inhibitor 20 protein_coding 0.58 (0.35–0.98) 0.0399

SHC3 SHC adaptor protein 3 9 protein_coding 2.4 (1.1–4.9) 0.0219

RASGRP1 RAS guanyl releasing protein 1 15 protein_coding 0.58 (0.37–0.93) 0.0245

NR4A3 Nuclear receptor subfamily 4 group A member 3 9 protein_coding 1.5 (1.1–2.1) 0.0122

NR4A2 Nuclear receptor subfamily 4 group A member 2 2 protein_coding 1.3 (1–1.8) 0.0459

IL2RA Interleukin 2 receptor subunit alpha 10 protein_coding 2.4 (1–5.6) 0.0388

ERAP2 Endoplasmic reticulum aminopeptidase 2 5 protein_coding 0.73 (0.57–0.95) 0.0175

DES Desmin 2 protein_coding 1.7 (1–2.8) 0.04

AGTR2 Angiotensin II receptor type 2 X protein_coding 0.06 (0.0051–0.72) 0.0266

CI, confidence interval.
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The correlations between nine hub DEIRGs with immune

characteristics were further identified (Figure 4E; Supplementary

Figures S4A,S4B). We observed that the genes were strongly

correlated with most immune characteristics, except for AGTR2,

which only significantly interplayed with memory B cells. Among

these prognostic genes, RASGRP1, identified as a protective gene

above, was almost positively related to all immune

characteristics. Simultaneously, DES, a risk gene, was found

negatively correlated with most immune characteristics.

However, another protective gene, SLPI, was also found

negatively correlated with most immune characteristics. These

results suggested that cluster 1 is immunosuppressive while

cluster 2 is relatively immune-activated and that clustering

based on DEIRGs is closely correlated with prognosis and the

immune microenvironment in plaques.

Generation of immune index

Considering the unique heterogeneity of immune patterns,

we defined an indicator called immune index to establish a

scoring system to comprehensively quantify the immune

FIGURE 4
Immune landscapes between two different immune-related clusters. (A) The comparison of the immune score, stromal score, and
microenvironment score in two clusters with xCell analysis. (B) The comparison of 28 immune cells in two clusters with ssGSEA analysis. (C) The
comparison of 17 immune responses in two clusters with ssGSEA analysis. (D) The expression levels of immune checkpoint genes in two clusters. (E)
The correlations between immune cells and nine immune-related genes. Significance level was denoted by *p value < 0.05, **p value < 0.01,
***p value < 0.001.
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pattern of patients with plaques. On the basis of nine prognostic

DEIRGs, PCA plot shows the distributions of ech samples

(Figure 5A). Further analysis revealed a higher immune index

in cluster 1 than in cluster 2 (Figure 5B), whereas no difference

was observed between different age groups (≤65 years old vs. >
65 years old; Figure 5C). However, no significant prognostic

difference was observed in the high- and low-immune index

group in KM survival analysis (Figure 5D).

In addition, we explored the associations between immune

index and immune characteristics. The immune index was

negatively related to most immune checkpoint genes in the

chord diagram (Figure 5E). Furthermore, there were

FIGURE 5
Generation of immune index. (A) Principal component analysis. (B) The comparison of an immune index between two clusters. (C) The
comparison of an immune index between different age groups. (D) Survive analysis of high- and low-immune index. (E) The relationships between
the immune index and immune checkpoint genes. Green indicates the negative relations and red represents the positive relations. (F) The
relationships between the immune index with the immune cells and responses.
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significant adverse correlations between the immune index and

immune infiltration cells and immune responses (Figure 5F).

Specifically, monocytes eosinophils, effector memory

CD8 T cells, and central memory CD4 T cells were most

negatively correlated with immune index (abs (Cor) > 0.6).

Identification of the correlation between
nine IRGs and apoptosis-related genes

Based on the GSVA results of the hallmark pathways, we

observed a significant difference of apoptosis pathway between

the two clusters (Figure 6A). Therefore, we hypothesized that the

apoptosis process may also be involved in the ischemic events

atherosclerotic plaque. To identify the correlation between hub

IRGs and ARGs, we first used a WGCNA algorithm to find the

co-expression modules that are high correlated with apoptosis

pathway. The top 5,000 genes with median absolute deviation

in 126 plaques of the GSE21545 dataset were selected to

construct the co-expression network. With the absolute

value of the correlation coefficient >0.85, we chose 24 as

the optimal soft threshold for constructing scale-free

networks (Figure 6B). The 5,000 genes were clustered into

10 modules based on hierarchical clustering under optimal

soft-thresholding power (Figure 6C). Then, the correlations

between modules with clinical traits were established

(Figure 6D). The result revealed that the green module was

strongest related to the different immune clusters (cluster

1 and cluster 2) and the “APOPTOSIS” trait calculated by

the GSVA method (Figures 6D,E). Secondly, a list of

FIGURE 6
Identification of the correlation of apoptosis-related genes and nine IRGs. (A) The difference scores of apoptosis process between two clusters
with GSVA analysis. (B) Correlation between soft threshold power and scale-free topology model with WGCNA analysis. (C) Cluster tree of
coexpression modules with WGCNA analysis. Different colors represent different modules. (D) Themodule-trait relationships with WGCNA analysis.
(E) Screening the green module as the key module. (F) Intersecting the apoptosis-related genes correlated with nine IRGs. Apoptosis indicates
the apoptosis-related genes in MSigDB database. Green means the green module genes in WGCNA analysis. Related-genes mean those genes
correlated with nine IRGs in GSE21545 dataset. (G) Protein-protein network of apoptosis-related genes. (H) The biological function of apoptosis-
related genes. Different colors indicate different pathways.
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7172 genes that are at least correlated with the nine prognostic

DEIRGs was identified, and the relationship among genes is

displayed in Supplementary Table S2. Last, a total of

2474 ARGs were extracted from MSigDB. After intersecting

the genes from the above three methods, 89 ARGs correlated

with hub IRGs were identified (Figure 6F; Supplementary

Table S3). The PPI network was constructed in the

STRING database (Supplementay Figure S5), and the genes

that interacted with others were further visualized in

Cytoscape software (Figure 6G). Through the Metascape

tool, the functions of the 89 genes were enriched, and the

results showed that these genes are involved in cell division,

regulation of protein kinase activity, and DNA replication, all

correlated with the apoptosis process.

Construction of the prognostic model
based on prognostic IRGs

The risk score was calculated to assess ischemic risk in the

individual patients. The 126 plaque samples were randomly assigned

to the training cohort (76 samples) and the test cohort (50 samples).

LASSO analysis identified seven IRGs from the nine prognostic

IRGs as candidate prognostic factors in the training dataset

(Figure 7A). Then, a multivariate Cox regression model was

constructed based on the seven IRGs and is presented with a

forest plot (Figure 7B). In accordance with the constructed

prognostic model, each patient was assigned with a risk score as

follows: Risk score = (1.465 * IL2RA) + (0.734 * NR4A2) + (0.415 *

DES) + (−0.699 * ERAP2) + (−1.043 * SLPI) + (−1.315 * RASGRP1)

FIGURE 7
Construction of a risk model in the training cohort. (A) Feature selection by LASSO regression (down) and the coefficients change of different
genes with different lambda (up). (B) Multivariate Cox regression depicted with a forest plot. (C) The coefficients of selected seven genes in
multivariate Cox regression. (D)Distribution of risk score (up) and ischemic status (middle) of atherosclerotic patients in the high and low-risk groups,
and heat map (down) illustrating the expression patterns of the seven model genes in the two groups. (E) Survival curve of the atherosclerotic
patients in the two groups. (F) Time-dependent ROC curve of the risk model. A histogram shows the relative proportion of different clusters (G),
ischemic event (H), and age group (I) in two risk groups. (J) A Sankey diagram showing the distribution of different groups.
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+ (−2.607 * AGTR2). The coefficients of the seven genes are listed

in Figure 7C. The training cohorts were separated into low-risk

and high-risk groups depending on the median value of the

score (Figure 7D). The KM curves showed survival differences

between the two groups. Patients in the low-risk group had a

better prognosis in the training cohort (log-rank test, < 0.001;

Figure 7E). Time-dependent ROC analysis was applied to

further evaluate the prediction efficiency of the risk scores,

with the areas under the curve (AUCs) of 1, 3, and 5 years being

0.91, 0.85, and 0.86, respectively, in the training cohort

(Figure 7F).

Furthermore, we compared the different clinical traits of

different risk groups. We observed that the high-risk group had

a larger proportion of cluster 1 (Chi-square test, p < 0.001;

Figure 7G), which presented a poor prognosis as mentioned

before. We also found that the proportion of the occurrence of

ischemic events in the high-risk group was 34.2%, significantly

higher than that in the low-risk group (Chi-square test, p < 0.001;

Figure 7H). Moreover, the high-risk group had a larger proportion

of old patients than the low-risk group (86.8% vs. 57.9%; Chi-

square test, p = 0.005; Figure 7I). The relationships among different

groups were further visualized with a Sankey diagram (Figure 7J).

FIGURE 8
The different biological pathways and immune microenvironment between high- and low-risk groups. (A) The significant different hallmark
pathways in two groups with GSVA analysis. (B) The enrichment of KEGG pathways in two groups with GSEA analysis. (C) The comparison of the
immune score, stromal score, and microenvironment score in two groups with xCell analysis. (D) The comparison of 17 immune responses in two
groups with ssGSEA analysis. (E)The comparison of 28 immune cells in two groups with ssGSEA analysis. (F) The expression levels of immune
checkpoint genes in two risk groups. Significance level was denoted by *p value < 0.05, **p value < 0.01, ***p value < 0.001.

Frontiers in Genetics frontiersin.org13

Li et al. 10.3389/fgene.2022.1014264

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1014264


Different biological pathways and immune
infiltration between high- and low-risk
groups

To further uncover the different biological mechanisms

between high- and low-risk groups in the training cohort, we

applied GSVA and GSEA algorithms to enrich the significant

hallmark and KEGG pathways, respectively. GSVA showed that

the high-risk group had significantly lower scores in six hallmark

pathways, including allograft rejection, complement, interferon-

alpha and gamma response, and mitotic spindle (Figure 8A).

GSEA also demonstrated that compared with the high-risk

group, the low-risk group was more enriched in the B cell

receptor signaling pathway, chemokine signaling pathway, and

lysosome (Figure 8B). Thus, the low-risk group seems to present

an immune-activated status.

To verify this finding, we further applied xCell and ssGSEA to

assess the immunemicroenvironment of different risk groups. The

high-risk group showed a smaller immune score and

microenvironment score than the low-risk group, while no

significant difference was observed in the stromal score, further

suggesting that the high-risk group may have suppressed immune

function (Figure 8C). Immune responses showed decreasing

trends from the low-risk group to the high-risk group

(Figure 8D), and the antigen processing and presentation,

chemokine receptors, and interleukin receptor activities

significantly differed between the two groups. In addition, the

decreasing trends were also observed in immune cell infiltration

(Figure 8E), indicating that the low-risk group had a larger

abundance of central memory CD4 T cells, immature B cells,

memory B cells, natural killer cells, CD56dim natural killer cells,

andmonocytes than the high-risk group.We further compared the

expression levels of 11 immune checkpoint genes and found that

CD274 and CD47 were significantly up-regulated in the low-risk

group than the high-risk group (Figure 8F). Combined with the

above results, it may be deduced that the immune cell infiltration

in patients with atherosclerotic plaque may serve as a protective

prognosis factor, consistent with the results of our cluster analysis.

Validation of the constructed prognostic
model

To further test the stability of the risk scores, the predictive

value was validated in the training cohort, entire cohort, and

PBMCs cohort of the GSE21545 dataset. The test cohort was

classified into low- and high-risk groups, and the risk score

distributions and expression patterns of seven genes are

presented in Figure 9A; Supplementary Figure S6A, respectively.

The KM survival analysis showed that patients with high-risk

scores demonstrated a prominent poor prognosis (log-rank test,

p < 0.003; HR = 11.453; Figure 9B). The ROC curve showed that

risk scores in the test cohort exhibited a good predictive value

considering 1-, 3-, and 5-year AUC, which were 0.72, 0.79, and

0.83, respectively. The proportion of the two clusters and age

groups in the two risk groups did not significantly differ

(Supplementary Figures S6B, S6D), whereas ischemic events

were more common in the high-risk group than the low-risk

group (40.0% vs. 4.0%; Chi-square test, p = 0.002; Supplementary

Figure S6C). The Sankey diagram depicted the relationships

among the different groups (Supplementary Figure S6D). We

further tested the predictive value of risk scores in the overall

cohort and divided them into high- and low-risk groups according

to the distributions of risk scores (Figure 9D). KM analysis

indicated that patients with a high-risk score had worse

prognosis than patients with a low-risk score (Figure 9E).

Values of 1-, 3-, and 5-year AUC for ROC analysis were 0.84,

0.84, and 0.86, respectively, in the entire cohort (Figure 9F).

Furthermore, we observed that the proportion of cluster 1, the

occurrence of an ischemic event, and older patients in the high-risk

group was significantly higher than those in the low-risk group

(Supplementary Figures S7A–S7D). To further investigate whether

the risk model is applicable to other tissues, we recruited the

PBMCs cohort in the GSE21545 dataset and observed a significant

difference in the prognosis of patients in the high- and low-risk

groups (Figures 9G,H). Furthermore, the 1-, 3-, and 5-year AUC

values for assessing the predictive accuracy of risk scores were

acceptable (Figure 9I; 1-year AUC: 0.63; 3-year AUC: 0.60; 5-year

AUC: 0.69). Moreover, the high-risk group had a significantly

higher proportion of ischemic events, while age group did not

significantly differ (Supplementary Figures S7E–S7G).

In addition, a subgroup analysis in the entire plaque cohort

indicated that the risk scores in older patients are significantly

greater than those in young patients (Supplementary Figure

S8A). KM analysis showed that the risk model still exhibited

potent predictive performance, and both old and young patients

with lower risk scores had better prognosis (Supplementary

Figures S8B, S8C; log-rank test, p < 0.001).

Construction of a nomogram

To quantify the risk assessment of individual patients with

atherosclerotic plaque and enhance the clinical applicability, we

constructed a nomogram with the seven genes to predict the

probability of 1-, 3-, and 5-year ischemic event-free probability

(Figure 10A). Calibration curves assessing the performance of the

nomogram demonstrated a satisfactory match between the actual

and nomogram-predicted 1-, 3-, and 5-year ischemic event-free

probabilities (45° line, Figures 10B–D).

Discussion

Narrowing of the internal carotid artery in atherosclerosis is

the underlying cause of IS in 8%–15% cases (Bonati et al., 2022).
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Underneath a monolayer of endothelial cells (ECs) that line the

interior vessel wall, a lifetime long accumulation and

transformation of lipids, inflammatory cells, smooth muscle

cells, and necrotic cell debris in the intimal space shapes the

atherosclerotic lesions. The rupture of the atherosclerotic plaque

with subsequent embolism of a locally formed thrombus or

plaque debris is the most important factor causing stroke or

TIA. Previous studies ascribed this process to inflammation in

the plaque (Ross, 1999). IRGs involved in the development,

progression, and rupture of plaque through bioinformatics

analysis have been widely studied (Li et al., 2022; Yang et al.,

2022). Moreover, an immune-related prognostic signature to

predict the overall survival in various cancers has been

established recently (Dai et al., 2021). CEA has an established

role in the treatment of patients with symptomatic or

asymptomatic significant carotid artery stenosis. Prognosis

after CEA is mainly determined by the occurrence of major

adverse cardiovascular events, encompassing myocardial

infarction, stroke, and cardiovascular death. How IRGs help

predict ischemic events in patients after CEA is still unclear

from the perspective of prognosis. In this study, we discussed the

possibility that IRGs will elucidate the prognosis of patients with

atherosclerosis and improve the risk prediction of ischemic

events based on the gene expression data from CEA samples.

First, compared with the normal arterial intima, the

atherosclerotic plaque exhibited enrichment of immune-

related pathways and apoptosis process in our GSEA. Then,

we identified the DEIRGs between plaque and control samples,

among which nine prognostic IRGs were further screened using

univariate Cox regression. On the basis of the nine prognostic

IRGs, the carotid plaque samples were classified into two

different immune-related clusters. The biological functions

and immune characteristics between the two clusters were

further elucidated. Moreover, the immune index of each

sample was calculated by PCA, and the ARGs in plaque were

detected using Pearson’s correlation method and the WGCNA

algorithm. Next, using LASSO and multivariate Cox regression, a

prognostic model with seven hub genes (IL2RA, NR4A2, DES,

ERAP2, SLPI, RASGRP1, and AGTR2) was constructed and

confirmed for patients with atherosclerotic plaque.

FIGURE 9
Validation of the riskmodel in test, overall, and PBMCs cohort. (A–C)Distribution of risk score (up) and ischemic status (down) of atherosclerotic
patients, survival curve, time-dependent ROC curve of the risk model of the atherosclerotic patients in the high and low-risk groups in test cohort,
respectively. (D–F) Distribution of risk score (up) and ischemic status (down) of atherosclerotic patients, survival curve, time-dependent ROC curve
of the riskmodel of the atherosclerotic patients in the high and low-risk groups in the overall cohort, respectively. (G–I)Distribution of risk score
(up) and ischemic status (down) of atherosclerotic patients, survival curve, time-dependent ROC curve of the risk model of the atherosclerotic
patients in the high and low-risk groups in PBMCs cohort, respectively.
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Furthermore, we established a nomogram based on the seven-

gene signature that can be used in clinical practice.

Our GSEA results showed that the inflammatory response, IL6/

JAK/STAT3 signaling, complement activation, and interferon-

gamma response were upregulated in atherosclerotic plaque,

consistent with the literature (Fernandez and Giannarelli, 2022).

Interleukin-6 (IL-6) is a macrophage secretory product that is

abundantly expressed in atherosclerotic plaques (Tyrrell and

Goldstein, 2021). During early Angiotensin II-induced

atherosclerosis, IL-6, produced by activated macrophages and

fibroblasts in the aortic adventitia, can induce the JAK-STAT3

pathway (Recinos et al., 2007). Selective inhibition of the JAK-

STAT3 signaling pathway can repeal ATP-binding cassette

transporter A1 (ABCA1)-mediated cholesterol efflux stimulated

by IL-6 (Frisdal et al., 2011). On the other hand, IL-6 can

attenuate the macrophage pro-inflammatory phenotype by

preventing the accumulation of cytotoxic-free cholesterol and

reduce both foam cell formation, the accumulation of apoptotic

bodies, and intraplaque inflammation in atherosclerotic plaque.

Apart from IL-6, interferon (IFN)-γ derived from T cells is

expressed at high levels in atherosclerotic lesions. However,

whether the roles of IFN-γ are pro- or antiatherogenic is still

controversial. IFN-γ can play a pro-atherogenic role by recruiting

immune cells to the atherosclerotic lesion (Buono et al., 2003),

increasing the production of chemokines (Valente et al., 1998), and

activating immune cells (Schroder et al., 2004). Despite the various

pro-atherogenic functions, IFN-γ can also protect against

atherosclerosis. For example, IFN-γ can inhibit macrophage-

mediated LDL oxidation (Fong et al., 1994) and reduce the

uptake of oxidized LDL that contributes to atherosclerotic plaque

formation and progression (Kosaka et al., 2001).

Considering the complexity of the immune microenvironment

in plaques, we further explored the relationships between IRGs and

immune characteristics with the prognosis of patients after CEA.

Combined with DEGs in the GSE97210 dataset and univariate Cox

regression analysis in GSE21545 plaque samples, nine IRGs with

prognostic ability were screened out, and the plaque samples were

grouped into two clusters with different prognosis based on the

expression patterns of the nine IRGs. KM survival analysis showed

that cluster 1 had a worse prognosis than cluster 2.Moreover, cluster

1 had a higher proportion of patients with occurrences of ischemic

events during follow-up. Unexpectedly, in our immune infiltration

analysis through xCell and ssGSEA methods, we found that cluster

2 with a better prognosis had a higher immune score and stronger

inflammatory responses and immune cell infiltration. In our next

risk-stratification analysis, we also observed that the low-risk group

had higher immune characteristics than the high-risk group. This

seemed contrary to the dominant perception: abundant infiltration

of immune cells is associated with poorer clinical outcomes in

patients with atherosclerosis. For example, a recent study showed

FIGURE 10
Development and evaluation of the nomogram to predict the ischemic event for patients with atherosclerosis undergoing CEA. (A) A
combination of seven genes’ expressions was used to construct a nomogram for predicting the 1-, 3-, and 5-year event-free probability. (B–D)
Calibration curves demonstrate that the nomogram-predicted event-free probabilities correspond closely to the observed probabilities for 1-, 3-,
and 5-year in patients with atherosclerotic plaque, respectively.
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that carotid plaque inflammation, identified by 18F-

fluorodeoxyglucose (18FDG)-PET, improved the identification of

5-year recurrent ipsilateral IS. Moreover, anti-inflammatory

medications such as colchicine and canakinumab can reduce

recurrent vascular events including stroke, as reported in

randomized trials of patients with coronary disease (Ridker et al.,

2017; Tardif et al., 2019). The abnormal results can be explained in

many ways. First, not all immunotherapies are atheroprotective. The

negative results of the CIRT trial (Ridker et al., 2019) showed that

low-dose methotrexate in patients with previous myocardial

infarction or multivessel CAD did not result in fewer

cardiovascular events than placebo. Moreover, in the COPS trial

(Tong et al., 2020) in patients with acute coronary syndrome, the

addition of colchicine to standardmedical therapy resulted in higher

mortality and did not significantly affect cardiovascular outcomes at

12 months. In an animal experiment, cytokine therapy with IL-2/

anti-IL-2 monoclonal antibody complexes could attenuate the

development and progression of atherosclerosis by increasing

CD4+CD25+Foxp3+ regulatory T cells in apolipoprotein

E-deficient mice (Dinh et al., 2012). Ongoing LILACS (Zhao

et al., 2018) clinical trials have adopted new strategies that utilize

antiatherosclerotic functions of the immune system, such as using

low-dose IL-2 to promote the polarization of antiatherosclerotic

regulatory T (Treg) cells. Second, the immune composition and

subsets of human plaques are diverse and associated with clinical

cardiovascular events. A recent study depicted a single-cell immune

landscape of human atherosclerotic plaques and revealed that

although in symptomatic patients, both plaque CD4+ and CD8+

T cells presented gene expression signatures largely consistent with

differentiation and exhaustion, T cells were mostly activated in

plaques of asymptomatic patients. Similar to plaque T cells,

macrophages of asymptomatic patients were activated and

exhibited a pro-inflammatory role, while macrophages from

plaques of patients with recent cardiovascular events displayed

reparative functions. Moreover, compared to symptomatic

patients, plaque macrophages of asymptomatic patients expressed

higher levels of IL1B and activated IL-1 signaling, whichwas targeted

in the CANTOS trial to reduce the cardiovascular risk (Ridker et al.,

2017). Therefore, despite the higher abundance of immune cell

infiltration in cluster 2, the proportions of these complicated

immunocyte subsets are still unclear in the present study. Third,

the high expression levels of immune checkpoint proteins may serve

as an atheroprotective factor. An increased incidence of

atherosclerotic cardiovascular events is seen after the initiation of

treatment with immune checkpoint inhibitors, potentially because of

the accelerated progression of atherosclerosis (Drobni et al., 2020).

In our study, we found that CD274, CD80, and CD47 were more

pronounced in cluster 2 with a better prognosis than in cluster 1, but

PDCD1 was down-regulated. Moreover, in our subsequent risk-

stratification analysis, we also observed that the expression levels of

immune checkpoint genes in the low-risk group were higher than

those in the high-risk group. Finally, the characteristics of

atherosclerotic plaques are also associated with the risk of stroke.

A recent meta-analysis (Kamtchum-Tatuene et al., 2020) indicated

that the incidence of ipsilateral ischemic cerebrovascular events was

higher in patients with high-risk plaques (neovascularization,

echolucency, and lipid-rich necrotic core) than in patients

without high-risk plaques. However, due to the loss of clinical

and pathological information, the characteristics of atherosclerotic

plaques were unavailable in our work, which may influence the final

results. These abovementioned points explain why cluster 2 and the

low-risk group in our subsequent analysis with better prognosis had

a higher immuneresponse. Therefore, our finding does not contrast

the previous classical concept but enhances our understanding of

human atherosclerotic plaque.

In our risk-stratification analysis, seven hub genes (IL2RA,

NR4A2, DES, ERAP2, SLPI, RASGRP1, and AGTR2) were

screened out using the LASSO method and used to calculate the

risk score in each sample by using multivariate Cox regression.

Survival analysis revealed that in the training and verification

cohorts, the established risk model exhibited potent predictive

performance for the ischemic events in patients with

atherosclerosis. Angiotensin II type 2 receptor (AGTR2) exerts

antiproliferative, antifibrotic, and proapoptotic effects in the

vasculature. The loss of AGTR2 during the evolution of

atherosclerotic lesions enhanced the cellularity of atherosclerotic

lesions by decreasing the percent positive area of macrophages,

smooth muscles, lipids, and collagen (Sales et al., 2005). However,

one study suggested that AGTR2 blockers could prevent diabetes-

associated atherosclerosis (Koïtka et al., 2010). In our study, we

found AGTR2 as a protective gene in the univariate Cox regression.

IL2RA encodes IL-2 receptor subunit α, which regulates lymphocyte

activation and plays an important role in atherosclerosis. Through

genome-wide association analysis, Lange et al. found that soluble IL-

2Rα is positively associated with clinical cardiovascular events, and

52 single-nucleotide polymorphisms in the chromosome 10p15-p14

region containing IL2RA reached genome-wide significance (Durda

et al., 2015). In a multi-ethnic study of atherosclerosis, soluble IL-

2Rα was found to be associated with a higher risk of incident heart

failure (Bakhshi et al., 2020). In our analysis, we observed that IL2R

acts as a risk factor for the poor prognosis after CEA. Secretory

leukocyte protease inhibitor (SLPI), a serine protease inhibitor,

inhibits proteases, exerts antimicrobial activity, and inhibits

nuclear factor-kappa B (NF-κB)-mediated inflammatory gene

transcription (Nugteren and Samsom, 2021). SLPI can attenuate

NF-κB-dependent inflammatory responses of human ECs and

macrophages to atherogenic stimuli through the reduction of

endothelial IL-8 release (Henriksen et al., 2004). The

inflammatory suppression role of SLPI may confer protection

against atherosclerosis by neutralizing the effect of inflammatory

factors such as TNF-α or by blocking the activation of NF-κB. The
role of SLPI in the prognosis of atherosclerosis was demonstrated.

The NR4A subfamilies belong to the nuclear hormone receptor

superfamily and are early response genes that encode proteins in

response to various stressors. NR4A2 is one of the members of the

NR4A family that also comprises NR4A1 and NR4A3. In our
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univariate Cox regression, NR4A2 and NR4A3 were identified

owing to their prognostic ability. In contrast to the antagonistic

relationship between SLPI and NF-κB, the transcriptional induction
of NR4A1, NR4A2, andNR4A3 expression can be triggered through

the NF-κB signaling pathway by treating macrophages with

lipopolysaccharide (LPS), cytokines, or oxidized lipids (Pei et al.,

2005). Desmin, encoded by DES, is the primary intermediate

filament of cardiac, skeletal, and smooth muscles. Early study

found that the intermediate filament inhibitor ivabradine

indirectly reduced the expression of anti-arteriogenic cytokines

CXCL10 and CXCL11 and desmin in ApoE(−/−) hindlimb tissue

(Schirmer et al., 2012). The expression of desmin was also reported

to be directly inhibited by elevated miR-338-3p, thus promoting the

contractile-to-synthetic vascular smooth muscle cell phenotypic

transition (Yan et al., 2021). We found that DES gene is a

negative marker for the prognosis of atherosclerosis. To our

knowledge, there is no direct correlation of ERAP2 and

RASGRP1 with atherosclerosis, which may provide future

experimental directions to elucidate the pathogenetic and

prognostic mechanisms of atherosclerosis.

In general, this work stratified two plaque clusters with

significantly different prognoses based on IRGs. Moreover, a

prognostic model with seven hub IRGs was established and

validated. We also found that the low-risk group had a

significantly better prognosis than the high-risk group. Finally,

a nomogram based on the seven genes was constructed, which

might have future implications in clinical care by helping identify

high-risk subjects who should be provided tailored treatment to

more effectively prevent ischemic events. The findings of this

study could help optimize the classification of atherosclerosis

patients and also provide a new perspective and direction for

future research on molecular targeted therapy.

Nevertheless, there are some limitations to our study. First,

although the GSE21545 dataset provided follow-up

information, more clinical (such as cardiovascular risk

factors or drug treatment) and pathological data for each

patient were unavailable to us. For example, plaque

characteristics can help identify a high-risk patient more

precisely. Second, we performed intracohort cross-validation

of our risk score. Although the risk model showed a relatively

great accuracy for the prognosis in different tissues (plaque and

PBMCs), an independent cohort validation or a prospective

cohort could provide more robust evidence for assessing its

clinical utility. Finally, in this study, all the results were acquired

by bioinformatics analysis, and we have not conducted any in

vivo or in vitro experiment to verify the different expression

levels in our study.

Conclusion

In this study, we identified two molecular subgroups

based on their expression patterns of IRGs through NMF

clustering. The two molecular subgroups showed significantly

different prognosis and immune status. A prognostic model

based on seven IRGs (IL2RA, NR4A2, DES, ERAP2, SLPI,

RASGRP1, and AGTR2) was developed, and its prediction

efficiency was well verified. This study provides proof of

concept that use of a signature based on IRGs from the

atherosclerotic plaque could provide a novel insight that

can aid the prediction of ischemic events and the study of

molecular mechanisms and targeted therapies for

atherosclerosis.
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