
RESEARCH ARTICLE

Can You Judge a Disease Host by the
Company It Keeps? Predicting Disease Hosts
and Their Relative Importance: A Case Study
for Leishmaniasis
Christopher R. Stephens1,2*, Constantino González-Salazar2*, Víctor Sánchez-Cordero3,
Ingeborg Becker4, Eduardo Rebollar-Tellez5, Ángel Rodríguez-Moreno3, Miriam Berzunza-
Cruz4, Cristina Domingo Balcells4, Gabriel Gutiérrez-Granados6, Mircea Hidalgo-Mihart7,
Carlos N. Ibarra-Cerdeña8, Martha Pilar Ibarra López9, Luis Ignacio Iñiguez Dávalos9,
María Magdalena Ramírez Martínez10

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico,
2 C3 - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de
Mexico, Mexico, 3 Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico,
Mexico, 4 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de Mexico, Mexico, 5 Laboratorio de Entomología Médica, Departamento de
Zoología de Invertebrados, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo
León, México, 6 Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México,
México D.F., México, 7 División Académica de Ciencias Biológicas. Universidad Juárez Autónoma de
Tabasco, Villahermosa, Tabasco, México, 8 Departamento de Ecología Humana, Centro de Investigación y
de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) Unidad Mérida, Mérida, Yucatán,
México, 9 Laboratorio de Zoología, Centro Universitario de la Costa Sur, Universidad de Guadalajara,
Jalisco, México, 10 Departamento de Salud y Ecología Humana, Centro Universitario de la Costa Sur,
Universidad de Guadalajara, Jalisco, México

* stephens@nucleares.unam.mx (CRS); cgsalazar7@gmail.com (CGS)

Abstract
Zoonoses are an important class of infectious diseases. An important element determining

the impact of a zoonosis on domestic animal and human health is host range. Although for

particular zoonoses some host species have been identified, until recently there have been

no methods to predict those species most likely to be hosts or their relative importance.

Complex inference networks infer potential biotic interactions between species using their

degree of geographic co-occurrence, and have been posited as a potential tool for predict-

ing disease hosts. Here we present the results of an interdisciplinary, empirical study to vali-

date a model based on such networks for predicting hosts of Leishmania (L.) mexicana in
Mexico. Using systematic sampling to validate the model predictions we identified 22 new

species of host (34% of all species collected) with the probability to be a host strongly

dependent on the probability of co-occurrence of vector and host. The results confirm that

Leishmania (L.)mexicana is a generalist parasite but with a much wider host range than

was previously thought. These results substantially change the geographic risk profile for

Leishmaniasis and provide insights for the design of more efficient surveillance measures

and a better understanding of potential dispersal scenarios.
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Author Summary

Emerging and neglected zoonoses are an important global threat to public health. Host
range, in particular, is a crucial factor in determining disease risk and the potential for ade-
quate interventions. Here we show that Leishmania has a very wide host range and that
Complex Inference Networks can be used to infer ecological relationships in the context of
zoonoses, identifying both the potential hosts and their relative importance. These results
substantially change the risk profile and potential control measures that can be used to
combat the disease, allowing for the design of more efficient surveillance measures and a
better understanding of potential dispersal scenarios.

Introduction
Zoonoses are an important class of neglected [1,2] or emerging infectious diseases [3–6],
accounting for more than 60% of human infectious diseases. Wildlife species that are hosts for
pathogens play a fundamental role in zoonoses, threatening domestic animal and human
health and global biodiversity. Although for particular zoonoses some hosts have been identi-
fied [7–14], there have been few systematic empirical studies carried out to identify the host
range and the relative importance of the different hosts within that range for a given zoonosis.

Additionally, most work on disease ecology over the last 20 years has focused on single-
host, single-agent systems. Recently however, there has been increasing interest in the more
complex case of multi-host systems [15–20], with the realization that many zoonoses have
potentially ample host ranges.

The relative importance of a species as a disease host will be highly multi-factorial, with risk
factors covering many different scales, from the micro to the macro. However, there are two
particularly important elements that come into play: host competence (the ability to transmit
the parasite to a new host or vector) and the frequency of contact between host and pathogen
or, in the case or vector borne diseases, host and vector [21].

Although it is intuitively clear that the “relative importance” of a host will depend on both
its competence and its frequency of contact with the vector, it is a somewhat ambiguous con-
cept in that it depends, for instance, on whether we are talking about human transmission or of
maintaining an enzootic transmission cycle. We will take here relative importance to be associ-
ated with the probability of infection of an individual of a potential host species. Abstractly,
this is a highly multi-factorial function P(C | X1, X2,. . ., XN), where, for instance, X1 could rep-
resent host competence and X2 frequency of host-vector contact. Although a host may be
highly competent, if it only has infrequent contact with any disease vector, then the frequency
of infected individuals will be low. Conversely, a host and a vector may have frequent contact,
but the host may have low competence. All else being equal, the most important hosts will be
those that have frequent contact with the disease vectors and are competent. Unfortunately,
gathering information about these two aspects, especially for emerging or neglected diseases, is
difficult and resource intensive [7,8,22,23]. Furthermore, how these fundamental aspects inter-
act in multi-host systems is quite distinct from their single-host analogues. For instance, the
fact that host-pathogen competencies may differ greatly among the hosts can potentially lead
to a dilution effect [24–26].

Another important differentiating factor is that, multiple-host systems provide for much
richer and complex scenarios for the dispersion of a disease from one geographic region to
another [27]. As the characteristics of the host range play a crucial role in the emergence risk of
a novel human pathogen and of the optimal interventions for combating the zoonosis [16] the
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importance of predicting and identifying potential disease hosts has been widely recognized
[28–30]. To do so by exhaustive, systematic search through all possible hosts would be prohibi-
tively resource intensive. At the same time, good data often only exist for a few (presumed)
focal species. As it is unknown what part of the host range has already been discovered, the
undiscovered part constitutes a type of ‘epidemiological dark matter’ [31].

An early attempt at systematising the search for potential hosts [32], in the case of Ebola,
considered a heuristic approach based on expert knowledge, which was used to then filter the
list of potential candidates. As such, it is both subjective and subject to model bias. More
recently, other methods have appeared: In [33] a small group of four suspected hosts was used
as a starting point for including biotic effects indirectly by calculating the fundamental niche of
these four mammal species and considering the geographical correspondence with the niche
distributions of the vectors. This paper was more concerned with including information about
a particular set of potential hosts into corresponding risk maps rather than identifying new
hosts per se. In contrast, in [34], a classification model using a supervised learning technique
was used to predict other potential rodent reservoirs based on the predictive value of a set of
potentially distinguishing characteristics of already known ones. Note that this paper was con-
cerned with the potential hosts of a large number of pathogens considered all together and
therefore could not discriminate against potential hosts of one disease versus another. In this
case only categorical and no spatial information was used. Moreover, as it is based on super-
vised learning it can be affected by bias in the data defining both the class and in the predictors.
This is in evidence in that the most predictive factor found was the number of literature cita-
tions for a given species. In [35], the authors considered biotic factors as potential predictive
variables for describing the geographic range of Ebola rather than trying to predict which
mammals are the most likely hosts.

In contrast, in Stephens et al [36], a general framework was presented using Complex Infer-
ence Networks based on the degree of co-occurrence between different species, for inferring
potential biotic interactions. The framework is also capable of including in other variable types,
at distinct spatial resolutions, such as environmental layers normally associated with abiotic var-
iables [37] allowing for a comparison of the relative importance of biotic versus abiotic factors.

The methodology differs from those of [32–35] by using as model inputs only purely spatial
data, using point collection data to proxy spatial distributions of taxa and co-occurrences to
infer potential biotic interactions. In particular, it uses no auxiliary information, such as expert
knowledge, as in the case of [32]; fundamental niche distributions of taxa, as in the case of [33];
or specific categorical data associated with the relevant taxa, as in the case of [34].

Networks are an important tool in ecological studies [38–41]. However, their local structure—
in the sense of two nodes and a link as the base element—represents an already known relation,
such as in a food web [38], or in a contact network representing ticks, vertebrates and pathogens,
as in [42]. In this case the local structure of the network, i.e., the individual nodes and links, only
represent what is known. However, the global properties of the network can lead to new insights
from an eco-systemic or community viewpoint and also to specific predictions. In contrast, Ste-
phens et al. [36] use the local structure of networks to infer and discover previously unknown
relations, such as the relation between vector and host. Although nodes are taxa, the local struc-
ture of the network is different to a traditional ecological network in that the links represent the
degree of overlap between the distributions of the corresponding taxa with the idea that statisti-
cally significant degrees of co-occurrence can be an indicator of potential biotic interaction
between the associated taxa, such as between a host and a vector.

In determining the host range of a zoonosis, an exhaustive empirical analysis of all potential
hosts is prohibitively difficult, hence the importance of theoretical models, such as that pre-
sented in [36], for guiding observation and experiment. Although consistent with known
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results, it is important to note that the theoretical predictions of [36] have not previously been
tested experimentally. A theoretical model needs to be validated by experiment, as this is the
only way to truly determine if the model works. In this vein, most ecological modelling of zoo-
noses remains untested, in that theoretical predictions are not validated using a suitable experi-
mental validation framework. This paper presents the results of an interdisciplinary study
carried out to experimentally test the predictions of [36] using, as a test, the case of Leishmania-
sis in Mexico.

Leishmaniasis is a significant, yet neglected tropical disease, with 350 million people in 98
countries worldwide living at risk of developing one of the many forms of the disease [43]. It is
caused by infection with one of several different species of protozoan parasites of the genus
Leishmania, which maintain their life cycle through transmission between an insect (sandflies—
genus Lutzomyia) and a mammalian host. In Mexico, the most epidemiologically important
species is Leishmania (L.)mexicana, though the presence of other species has been confirmed.
Eleven species of Lutzomyia are considered to have potential medical importance. Of these,
three are known vectors of either cutaneous or visceral Leishmaniasis, while four others have
been found infected with L. (L.)mexicana [44].

Besides the clinical and social importance of Leishmaniasis [45] and the acknowledgment of
its zoonotic nature [46], the identification of wildlife hosts for these parasites is sparse and
non-systematic. Prior to the present study, only 8 mammalian species had been identified as
hosts in Mexico [47–49]. This potential lack of knowledge of parasite hosts greatly increases
the difficulty of formulating theoretical approaches to explaining and predicting disease spread
or for planning better and sustainable control measures [50].

Methods

Ethics statement
The collection of specimens was performed according to the guidelines of the American Society
for the Use of Mammalogists of Wild Mammals in Research and under a collecting permit is-
sued by the General Direction of Wildlife of Mexico (permission number SGPA/DGVS/04631/
14). The infections in mice were carried out following the National Ethical Guidelines for labo-
ratory animals NOM-062-ZOO-1999. The project was approved by the Institutional Ethics
Committee of the Medical Faculty of the National Autonomous University of Mexico
(UNAM) with the registration number FMED/CI/RGG/013/01/2008.

Rationale for the modelling methodology
The general modelling methodology of [36], is based on the idea that biotic interactions can be
inferred from the locations of taxa as a function of space and time. Although biotic and ecologi-
cal interactions in general are very complex, it is reasonable to state that the spatio-temporal
distributions of taxa, or other ecological variables, reflect all of the factors and their causal
interactions that determine them. In [36], the degree of co-occurrence between taxa was taken
as an observable measure with which potential interactions could be inferred. Although co-
occurrence is not equal to biological interaction, a significantly non-random co-occurrence dis-
tribution is a necessary condition for a biotic interaction between taxa, and as such it can be
used to formulate hypotheses that can be checked experimentally. However, it is clearly not a
sufficient condition. In the spirit of niche modelling, a biotic variable that co-occurs with a tar-
get taxon can be understood as being a niche component in the same sense as any abiotic vari-
able, such as temperature. In fact, one would generally expect a closer causal relation between
biotic variables than with abiotic variables. For example, the distribution of prey species for a
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predator, such as a carnivore, should clearly influence the latter’s distribution more signifi-
cantly than temperature or precipitation.

In the case of many zoonoses, the predominant interaction between vector and host is due
to the former feeding on the latter. This obviously requires a coincidence in space and time.
Species that offer blood meals can maintain the presence of vector populations independently
of the capacity to harbour a given pathogen. In other words, the interaction between host and
vector is a necessary but not sufficient condition for the transmission of the pathogen. The
total number of encounters between vector and potential host depends on many factors,
including the abundance of both species. However, a key factor is the geographical overlap
between them, as the greater the overlap the greater the probability of an encounter. Thus, for
two host species, identical in all respects except their relative geographical overlap with the vec-
tors, the host species with the larger overlap will be epidemiologically more important. Thus,
vector-mammal geographical overlap is a necessary but not sufficient condition for both a feed-
ing interaction and a pathogen transmission interaction.

Of course, there may be geographical overlap between species due to other reasons than a
direct biotic interaction. Even if species distributions were random there would be overlap. It is
therefore necessary to measure overlap relative to a null hypothesis, such as that associated with
random distributions. Additionally, it may occur that there is a non-random overlap due to the
existence of one or more confounding factors; for example, an abiotic variable, such as tempera-
ture. This can only be quantified by controlling for the presence of such a factor. As it is obvi-
ously infeasible to control systematically for every potential factor, a logic must be presented for
considering a particular candidate. In summary: although geographical overlap is not a suffi-
cient condition for biological interaction, it is necessary, and as such can be used to construct
models that can then be checked explicitly by experiment to see to what extent it is predictive.

The explicit example considered in [36] was the identification of potential hosts for Leish-
maniasis by studying co-occurrences between the vector species and the potential host species.
A Complex Inference Network summarising the co-occurrence distributions was deduced that
showed the most important potential mammal hosts for each sandfly species. Although the full
network contains a great deal of structure and information, in terms of experimental validation
each network observable requires an experimental protocol to be able to measure it. In particu-
lar, to work at the species level for the vectors, and associate and confirm hosts for a given vec-
tor species, would require collecting sandflies and genotyping their blood meals, as well as
collecting potential host species and confirming the presence of the pathogen. In the present
experimental study, we restricted attention to only potential host species and tested them for
the presence of the pathogen considering the vector at the genus level only.

Inferring vector-hosts interactions
The explicit model for predicting potential hosts was created using a database of point collec-
tions for one Class, Mammalia, and one genus, Lutzomyia, of the class Insecta. The mammal
data set contains 37,297 unique point collections from geo-referenced localities for 419 terres-
trial mammals occurring in Mexico—the full potential host range (GBIF; www.gbif.org, and
CONABIO; www.conabio.gob.mx). For Lutzomyia, there were 270 collections points taken
from published literature and from national collections: Instituto de Diagnóstico y Referencia
Epidemiológica (InDRE, Mexico City), the Colección Entomológica Regional, Universidad
Autónoma de Yucatán (UADY, Mérida) and the Laboratorio de Medicina Tropical at the Uni-
versidad Nacional Autónoma de México (UNAM, Mexico City).

First, we divide up a geographic region of interest into spatial cells, xα,–in the present case
Mexico–here we used a uniform grid of 3,337 rectangular cells of size 25km x 25km. The choice
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of an appropriate cell size is known in geography as the “modifiable areal unit problem”. In
terms of forming a spatial grid, there are at least two important considerations: The sizes of the
statistical samples of the variables and their degree of correlation. Too fine a grid and there will
be no co-occurrences, too rough and there will be little to no discrimination. It was checked
explicitly in [36] that the relative ranking of mammals by the model was quite insensitive to the
cell size over the range 5km to 100km. See also [51]. One then counts co-occurrences in each
spatial cell between different taxa, or other variables. In the present case, the co-occurrences are
between the presence of Lutzomyia, Bi, and the presence of each distinct mammal species, Ik.

We take the taxon distribution, Bi (Lutzomyia), and a subset of potential niche variables.
We are interested in the probability P(Bi | I0) = NBiAND I0 /NI0, where NBiAND I0 is the number of
spatial cells where there is a co-occurrence of the taxon Bi and the niche variables I0, which we
take here to be biotic variables, and NI0 is the number of cells where the niche variables take
their stated values. The niche profile I0(xα) associated with a spatial cell xα then determines the
probability of the distribution variable, Bi(xα), in that cell, and one now has a predictive model.
The problem of calculating P(Bi | I’) directly is that both NBi AND I0 and NI0 are likely to be zero
when the number of taxa or niche variables considered simultaneously is large, as there will
tend to be no co-occurrences of so many variables. This can be ameliorated by considering a
reduced number of both class and feature variables. For instance, P(Bi | Ik) is determined by
the number of co-occurrences of the taxon Bi and the particular niche variable Ik and, in princi-
ple, allows us to find the most important statistical associations between the niche variables
and the taxa distributions. However, P(Bi | Ik) being a probability does not account for sample
size. For example, if P(Bi | Ik) = 1, this may be as a result of there being a coincidence of Bi and
Ik in one spatial cell or 1,000. Obviously, the latter is more statistically significant. To remedy
this we consider the following test statistic

εðBijIkÞ ¼
NIk

ðPðBijIkÞ � PðBiÞÞ
ðNIk

PðBiÞð1� PðBiÞÞÞ1=2
ð1Þ

a binomial test which measures the statistical dependence of Bi on Ik relative to the null
hypothesis that the distribution of Bi is independent of Ik and randomly distributed over the
grid, i.e., P(Bi) = NBi

=N , where NBi
is the number of grid cells with point collections of species

Bi and N is the total number of cells in the grid. The sampling distribution of the null hypothe-
sis is a binomial distribution where, in this case, every cell is given a probability P(Bi) of having
a point collection of Bi. The numerator of eq (1) then, is the difference between the actual num-
ber of co-occurrences of Bi and Ik relative to the expected number if the distribution of point
collections were obtained from a binomial with sampling probability P(Bi). As we are talking
about a stochastic sampling the numerator must be measured in appropriate “units”. As the
underlying null hypothesis is that of a binomial distribution, it is natural to measure the
numerator in standard deviations of this distribution and that forms the denominator of eq
(1). In general, the null hypothesis will always be associated with a binomial distribution as in
each cell we are carrying out a Bernoulli trial (“coin flip”). However, the sampling probability
can certainly change.

The quantitative values of ε(Bi |Ik) can be interpreted in the standard sense of hypothesis
testing by considering the associated p-value as the probability that |ε(Bi |Ik) | is at least as large
as the observed one and then comparing this p-value with a required significance level. In the
case where NIk

> 5–10 then a normal approximation for the binomial distribution should be

adequate, in which case ε(Bi |Bk) = 1.96 would represent the standard 95% confidence interval.
When a normal approximation is not accurate then other approximations to the cumulative
probability distribution of the binomial must be used.
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As ε increases monotonically with the frequency of co-occurrence, we interpret a statistically
significant positive correlation as inferring a potential biotic interaction. Here, between sandflies
and the corresponding mammal, which in this ecological setting one would naturally interpret
as the mammal being a blood source for the sandfly, and therefore a potential host. The higher
the value of (P(Bi | Ik)—P(Bi)) the greater the degree of spatial overlap between the species distri-
butions and therefore the greater the risk posed by the corresponding mammal. Negative values
of ε correspond to spatial overlaps that are less than one would expect from the null hypothesis.

The 419 mammal species were ranked according to ε. The resultant list serves as a predictive
risk model, with the hypothesis that the highest ranked mammals correspond to the most
important hosts, where, in the absence of other information, we assume that host competence
is equal and importance is associated with the degree of spatial overlap between sandflies and
mammal. All else being equal more overlap means more vector-host encounters. It should be
noted that the method is not determining the physiological capacity of a mammal species to be
a host but, rather, its potential epidemiological importance given that presence of mammal
hosts is a necessary condition for the presence of the pathogen.

Constructing risk maps from inference networks
A corresponding biotic geographic risk model can be computed by calculating the probabilities
P(Bi |I0), or proxies thereof, for each spatial cell. When I0 is of high dimension, this can be done
using different classification models, such as neural networks, discriminant analysis, etc. A par-
ticularly transparent, simple and effective approximation is the Naive Bayes approximation:

PðBijIÞ ¼
PðIjBiÞPðBiÞ

PðIÞ ¼

YN
k¼1

PðIkjBiÞPðBiÞ

PðIÞ ð2Þ

where, in the first equality, Bayes rule has been used, and in the second it has been assumed
that the niche variables Ik are independent. The product here is over the N niche variables
under consideration as conditioning factors for Bi. In the case of the relationship between Lut-
zomyias and mammals, N represents the number of mammal species. A score function that

can be used as a proxy for P(Bi |I0) is

SðBijI 0Þ ¼
XN
k¼1

SðBijIkÞ ¼
XN
k¼1

ln
PðIkjBiÞ
PðIkj�BiÞ

� �
ð3Þ

where �Bi is the complement of the set Bi. For example, if Bi is the set of cells with presence of
taxon Bi then represents the set of cells without presence. S(Bi | I0) is a measure of the probabil-
ity to find the distribution variable Bi when the niche profile is I0. It can be applied to a spatial
cell xα by determining the niche profile of the cell, I0(xα). As an example, for two biotic niche
variables, B2 and B3, that take values 1 (corresponding to the fact that there is a point collection
associated with that cell) and 0 (there is no point collection associated with the cell), the four
possible biotic niche profiles of any cell are (B2, B3) = (0,0), (0,1), (1,0) and (1,1). The score con-
tributions of each biotic variable are S(Bi|B2) and S(Bi|B3), calculated using the above formula.
Hence, S(Bi | I0) = S(Bi | B2, B3) = S(Bi|B2) + S(Bi|B3). Thus, for any given spatial cell xα one can
assign a niche profile, i.e. values of B2 and B3, from whence it is possible to assign a correspond-
ing score. If there is no statistical association between Bi and B2 or B3 then the corresponding
score contributions are zero.

An overall zero score signifies that the probability to find Bi is the same as would be found if
Bi were distributed randomly. If the score is positive then there is a higher than random
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probability to find Bi present and on the contrary if the score is negative. As each niche factor
is treated separately in ε(Bi |Ik) or S(Bi|Ik) we can thus evaluate the relative contribution of any
given niche factor and compare it to the contribution of any other. By determining the set of
presence/no presence attributes in a spatial cell, eq (3) can be applied to each cell thereby deter-
mining the relative risk of that cell for the presence of Lutzomyias. As taking the ranked list as
a predictive model involves several important assumptions; it is essential to test the model with
experimental data. Obtaining the relevant data required sampling the spatial grid by collecting
mammals and sandflies from different geographic points and then testing them for the pres-
ence of the parasite.

Sampling design for model testing
The sampling sites were selected as follows: a 25 x 25 km grid (as discussed above) was super-
imposed on a map of Mexico and this was used as template to determine the sampling sites.
The sampling was stratified according to altitude so that only grid squares at< 2000 masl were
used. Also, we excluded any grid square with>50% of water or urban cover. Sometimes the 25
x 25 km grid square selected was sub-divided in order to have more than one sampling site per
square. Once the grid was established we selected 52 localities at random in 10 Mexican states
and covering many different eco-regions and associated with a large selection of vegetation
types. A random sample of spatial cells was necessary in order to fairly validate the model. If
we had targeted the sampling to only those cells predicted to be highest risk then we would not
be able to discriminate between high and low risk in the validation. Of course, once the model
is validated it can be used with confidence in the future to preferentially identify those regions
of highest risk where, for example, surveillance efforts should be targeted. The sampling was
carried out by four field groups who, over a period of two years, collected 922 taxonomically
identified specimens of 70 distinct species (for more details of animal sampling see S1 Text).

Laboratory methodology
Tissue samples were taken to the Laboratorio de Inmunoparasitología of the Unidad de Investi-
gación en Medicina Experimental of the National Autonomous University of Mexico, UNAM,
where PCR tests were carried out to identify the presence of the pathogen Leishmania (L.)
mexicana.

DNA purification. DNA from animal tissues was purified from approximately 25 mg of
starting material. DNA extractions were done with a DNeasy Blood and Tissue kit (QIAGEN,
Germany), following the manufacturer’s instructions. Genomic DNA was used for PCR-based
amplification.

Oligonucleotides. To determine the presence of Leishmania we used oligonucleotides
based on the Leishmaniamini-circle kinetoplast DNA sequences that are conserved among
species. The primer sequences used for amplification were 5´-CTRGGGGTTGGTGTAAAA
TAG-3´ (L.MC-1S) and 5´-TWTGAACGGGRTTTCTG-3´ (L.MC-1R) [52]. For the species
Leishmania (L.) mexicana we took primer IR1, designed by [53], which corresponds to the 32
final nucleotides of the conserved sequences from the 3’ region of the small subunit of the 18S
ribosomal gene as our forward primer: IR1 (5’- GCT GTA GGT GAA CCT GCA GCA GCT
GGA TCA TT-3’), the reverse primer was LM17 (50-CCC CTC TCC TCC TCC CC-30) [54].

Polymerase chain reaction amplification. The PCR was performed using 50 μl of the fol-
lowing reaction mixture: Taq PCRMaster Mix (QIAGEN) (provides a premixed solution con-
taining Taq DNA Polymerase, PCR buffer, MgCl2 and dNTPs), 100 ng of the corresponding
oligonucleotides, and DNA from tissues, we used 1 μl of tissue extract corresponding to 100 ng
of DNA. The amplification was performed in a Perkin Elmer 2720 thermocycler using different
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conditions, which depended on the oligonucleotides used. For L.MC-1S/ L.MC-1R Leishmania
genus we used the PCR amplification with Leishmaniamini-circle kinetoplast DNA specific
primers was performed with 30 cycles of denaturation (95°C for one minute), annealing (55°C
for one minute), and polymerization (72°C for one minute). For IR1/LM17 L. (L.)mexicana
we used 35 cycles of 1 min at 94°C, 1 min at 65°C and 1 min at 72°C. In all cases the cycles
were preceded by another cycle at 94°C for 5 min and a final extension cycle of 72°C for 7 min.

An analysis of the sensitivity of the primers L.MC-1S/ L.MC-1R was made with DNA from
cultured promastigotes of L. (L.) mexicana using: 10 ng, 1 ng, 100 pg, 10 pg, 1pg, 100 fg, 10 fg
and 1 fg DNA. PCR products were analyzed using electrophoresis in 1.5% agarose gels in TAE
1 × at 80 V. Gels were stained with 0.5 μg/ml ethidium bromide and photographed under a UV
light source.

The PCR amplification products from two positively identified animals to genus and species
were sequenced. The sequences were then compared and aligned using the National Center for
Biotechnology Information, U.S. National Library of Medicine, Basic Local Alignment Search
Tool (BLAST).

Results
In Table 1, we show the list of collected species with the number of individuals that tested posi-
tive for the presence of the parasite Leishmania (L.)mexicana and the number that tested nega-
tive. Of the 70 mammal species collected, approximately 1/6 of all species present in Mexico,
24 (34%) had one or more samples that tested positive for the presence of the Leishmania (L.)
mexicana parasite. Thirteen species of bats, and one of squirrel, were identified for the first
time as Leishmania hosts in Mexico. Of the total number of collected individuals (N = 922), 62
tested positive, yielding an average infection rate across all species of 6.7%, although infection
rates varied greatly, both temporally and spatially, exhibiting considerable heterogeneity, from
0% to 60%, across distinct collection sites and season of the year. In addition to the percentage
that tested positive we also include the 95% confidence interval limits using the Wilson score
interval [55,56] for that percentage relative to the null hypothesis that all mammal species had
the same baseline infection rate of 6.7%. However, for those species where the number of posi-
tives is zero we also calculate the exact probability to obtain this result, (1-p)N, where p is the
baseline infection rate and N is the number of negative collections.

Fig 1 shows the ranked values of ε, the statistical measure of degree of co-occurrence used
to infer potential biotic interactions (see Eq (1) of the Methods section) for all mammal species
as determined from the complex network exhibited in [36] (S1 Table) and considering Lutzo-
myia as a genus. The horizontal axis represents the null hypothesis that sandflies are distrib-
uted randomly with respect to mammal distributions, in other words P(Bi | Ik) = P(Bi) and
hence ε = 0. To determine the extent to which collection biases can influence the overall distri-
bution we randomly redistributed all collections over those spatial cells that had at least one
collection. This has the effect of removing correlations between one species and another while
at the same time preserving any bias associated with under sampling of certain geographical
areas. This random re-assortment was repeated 50 times and average values for ε determined
for each species.

To test the predictive power of the risk model, and to better visualize the relationship
between ε and the percentage of species that tested positive, we group the list of mammal spe-
cies ranked by ε into deciles [57] each decile corresponding to 10% of the list, and compute the
average value of ε for each decile. The result can be seen in Fig 2. The relative proportion of
positives, P, is a strongly increasing function of ε. Note that this regression is only to demon-
strate the predictive power of the underlying classification model based on ε, i.e., the statistical

New Confirmed Hosts of Leishmaniasis in Mexico

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005004 October 7, 2016 9 / 21



Table 1. List of collected species, ranked by ε (see Eq 1 of Methods), with the number of individuals that tested positive for the presence of the par-
asite Leishmania (L.)mexicana and the number that tested negative.

Species epsilon Negative Positive Total Prevalence
(%)

95% confidence
interval

5% confidence
interval

Probability true
negative

Carollia sowelli 8.83 42 2 44 4.55 18.07 2.28 0.00%

Heteromys gaumeri* 8.80 5 0 5 0.00 46.62 0.59 29.30%

Peromyscus mexicanus 8.79 115 6 121 4.96 12.62 3.45 0.00%

Heteromys
desmarestianus*

8.72 30 0 30 0.00 50.52 0.50 87.51%

Molossus rufus 8.63 1 0 1 0.00 82.00 0.11 6.70%

Glossophaga soricina 8.57 9 7 16 43.75 28.92 1.25 0.00%

Carollia perspicillata 8.50 8 0 8 0.00 38.49 0.82 42.58%

Pteronotus parnellii 8.16 4 0 4 0.00 55.41 0.41 24.22%

Desmodus rotundus 8.15 13 1 14 7.14 30.91 1.14 0.00%

Sturnira lilium 8.03 58 6 64 9.38 15.59 2.72 0.00%

Dermanura phaeotis 8.01 35 1 36 2.78 19.69 2.06 0.00%

Oryzomys couesi 7.73 2 0 2 0.00 70.13 0.22 12.95%

Ototylomys phyllotis* 7.56 9 1 10 10.00 36.55 0.89 0.00%

Sigmodon hispidus* 7.28 36 4 40 10.00 18.81 2.18 0.00%

Peromyscus
yucatanicus*

7.25 3 0 3 0.00 61.71 0.32 18.78%

Didelphis virginiana 7.12 3 0 3 0.00 61.71 0.32 18.78%

Didelphis marsupialis 6.44 11 0 11 0.00 28.92 1.25 53.37%

Philander opossum 6.25 6 1 7 14.29 43.42 0.67 0.00%

Centurio senex 6.01 1 0 1 0.00 82.00 0.11 6.70%

Artibeus jamaicensis 5.98 81 5 86 5.81 14.04 3.06 0.00%

Artibeus lituratus 5.84 36 3 39 7.69 19.02 2.15 0.00%

Myotis keaysi 5.61 2 0 2 0.00 70.13 0.22 12.95%

Chiroderma villosum 5.56 5 0 5 0.00 50.52 0.50 29.30%

Saccopteryx bilineata 5.30 1 0 1 0.00 82.00 0.11 6.70%

Sciurus aureogaster 5.23 71 8 79 10.13 40.75 0.74 42.58%

Baiomys musculus 5.21 2 0 2 0.00 70.13 0.22 12.95%

Artibeus watsoni 5.13 2 0 2 0.00 70.13 0.22 12.95%

Choeroniscus godmani 5.05 10 3 13 23.08 32.07 1.08 0.00%

Pteronotus personatus 5.03 3 1 4 25.00 55.41 0.41 0.00%

Reithrodontomys
mexicanus

4.91 1 0 1 0.00 82.00 0.11 6.70%

Oryzomys rostratus 4.87 22 1 23 4.35 24.21 1.59 0.00%

Micronycteris microtis 4.23 1 0 1 0.00 82.00 0.11 6.70%

Oligoryzomys fulvescens 4.20 6 0 6 0.00 40.75 0.74 34.04%

Peromyscus leucopus 3.80 22 4 26 15.38 22.84 1.71 0.00%

Sturnira ludovici 3.79 24 1 25 4.00 23.26 1.67 0.00%

Vampyrodes caraccioli 3.69 1 0 1 0.00 82.00 0.11 6.70%

Liomys pictus 3.61 47 1 48 2.08 17.43 2.38 0.00%

Glossophaga
commissarisi

3.49 2 6 8 75.00 40.75 0.74 0.00%

Phyllostomus discolor 3.48 0 1 1 100.00 82.00 0.11 0.00%

Lonchorhina aurita 3.48 1 0 1 0.00 82.00 0.11 6.70%

Platyrrhinus helleri 3.36 3 0 3 0.00 61.71 0.32 18.78%

Uroderma bilobatum 3.34 4 0 4 0.00 55.41 0.41 24.22%

(Continued)
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significance of co-occurrence. Similarly, in Fig 3 we see the relative correlation between the
average value of ε and the percentage of individuals identified as positive. Once again, the rela-
tive proportion of positives is a strongly increasing function of ε. Of course, P is a multi-facto-
rial function, P(X1, X2,. . ., XN) that depends on many factors, such as host competencies.
Essentially, here we are considering a regression model for P(X1, X2,. . ., XN) with respect to the
variable X1 = ε and ignoring the rest as we do not have the relevant information to include
them. Seen as a logistic regression at the species level, the associated relation is: Logit P =
-1.415 + 0.186 � ε, with a p value of 0.03 on the regression coefficient. This confirms the statisti-
cally significant relation between ε as a statistical measure of geographical overlap and the
probability to be a host of Leishmania (L.) Mexicana.

In Fig 4 we show a graph of prevalence at the species level versus ε for the 24 positive spe-
cies, while in Fig 5, we compare the disease risk maps determined by using only the eight

Table 1. (Continued)

Species epsilon Negative Positive Total Prevalence
(%)

95% confidence
interval

5% confidence
interval

Probability true
negative

Urocyon
cinereoargenteus

2.97 1 0 1 0.00 82.00 0.11 6.70%

Procyon lotor 2.95 1 0 1 0.00 82.00 0.11 6.70%

Myotis velifer 2.58 4 0 4 0.00 55.41 0.41 24.22%

Microtus mexicanus 2.53 16 0 16 0.00 28.06 1.31 67.03%

Myotis nigricans 2.47 2 0 2 0.00 70.13 0.22 12.95%

Leptonycteris curasoae 2.43 1 1 2 50.00 70.13 0.22 0.00%

Reithrodontomys
fulvescens

2.08 20 0 20 0.00 21.37 1.86 75.02%

Neotoma Mexicana 1.99 5 0 5 0.00 50.52 0.50 29.30%

Eptesicus fuscus 1.82 1 0 1 0.00 82.00 0.11 6.70%

Peromyscus levipes 1.34 1 0 1 0.00 82.00 0.11 6.70%

Sorex saussurei 1.29 3 0 3 0.00 61.71 0.32 18.78%

Osgoodomys banderanus 1.21 9 0 9 0.00 34.86 0.95 46.43%

Liomys irroratus 1.16 8 0 8 0.00 40.75 0.74 42.58%

Myotis auriculus 0.22 2 0 2 0.00 70.13 0.22 12.95%

Tadaria brasiliensis -0.09 1 0 1 0.00 82.00 0.11 6.70%

Peromyscus hylocetes -0.28 2 0 2 0.00 70.13 0.22 12.95%

Antrozous pallidus -0.34 1 0 1 0.00 82.00 0.11 6.70%

Peromyscus zarhynchus -0.46 2 0 2 0.00 70.13 0.22 12.95%

Chaetodipus hispidus -0.71 4 0 4 0.00 55.41 0.41 24.22%

Peromyscus pectoralis -0.73 2 0 2 0.00 70.13 0.22 12.95%

Neotomodon alstoni -0.90 17 0 17 0.00 25.90 1.45 69.24%

Baiomys taylori -1.16 10 3 13 23.08 32.07 1.08 0.00%

Chaetodipus nelsoni -1.24 3 0 3 0.00 61.71 0.32 18.78%

Neotoma micropus -1.27 16 0 16 0.00 28.92 1.25 67.03%

Peromyscus maniculatus -1.37 58 2 60 3.33 15.97 2.64 0.00%

Peromyscus eremicus -1.41 0 1 1 100.00 82.00 0.11 0.00%

Perognathus flavus -1.52 1 0 1 0.00 82.00 0.11 6.70%

Dipodomys merriami -2.01 1 0 1 0.00 82.00 0.11 6.70%

*previously confirmed

doi:10.1371/journal.pntd.0005004.t001

New Confirmed Hosts of Leishmaniasis in Mexico

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005004 October 7, 2016 11 / 21



previously confirmed hosts of Leishmania versus one using the set resulting from our analysis,
where by risk we mean probability of presence of the vector. A clear distinction can be seen
between the areas of higher risk between the two models with the present model indicating a
much higher degree of risk of presence of Lutzomyia in other than the southeast of Mexico.

Fig 1. Graph of ranked epsilon values for all mammal species compared to that of a random distribution. The Average random epsilon line
represents the distribution of overlaps found by randomly redistributing all collections over those spatial cells that had at least one collection.

doi:10.1371/journal.pntd.0005004.g001

Fig 2. Percentage of species identified as positive for presence of L. (L.)mexicana in relation to mean
epsilon value.

doi:10.1371/journal.pntd.0005004.g002
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Discussion
Host range is an important factor in the dynamics of a zoonosis, both as a variable that affects
the overall risk of presence of the disease as well as in terms of determining optimal interven-
tions. An essential factor in determining the importance of a host is its co-distribution with the
disease vector. In this paper, we reported the results of an extensive, interdisciplinary, empirical
investigation carried out to test the predictions of a model to predict the relative importance of
mammal hosts for the pathogen Leishmania (L.)mexicana associated with the emerging dis-
ease Leishmaniasis in Mexico. Once again, we emphasise that importance here is an “all else
being equal” notion, i.e., that the greater the overlap between species the greater the probability
of a vector-host interaction and therefore a greater number of infected individuals and a greater
probability of transmission. Of course, many other factors—host competence, host abundance
etc. will influence the epidemiological importance of a given host.

Fig 3. Graph of percentage of individuals identified as positive for presence of L. (L.)mexicana versus
mean epsilon value.

doi:10.1371/journal.pntd.0005004.g003

Fig 4. Graph of prevalence versus epsilon by species.

doi:10.1371/journal.pntd.0005004.g004
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Fig 5. Risk maps of Leishmaniasis: a) determined by using only the 8 previously confirmed hosts, b) determined by using the
22 new confirmed hosts and previously confirmed hosts of L. (L.)mexicana.

doi:10.1371/journal.pntd.0005004.g005
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As the distribution of Fig 1 predicts the most important potential mammal hosts of Leish-
mania (L.)mexicana, the deviation of the set of real ε values from the two random benchmarks
considered, the ε = 0 line and the average random ε curve, shows that the distribution of Lutzo-
myia is strongly, positively correlated with a large number of mammal species, and, further,
that this fact is not explainable by collection biases. Furthermore, the strong asymmetry of the
distribution, with 149 potential hosts associated with statistically significant positive correla-
tions with sandflies, compared with only two species with statistically significant negative cor-
relations, is consistent with a hypothesis that sandflies are generalists that are capable of
feeding on, and potentially infecting, whatever potential mammal species are available, as has
been suggested for several mosquitoes [58]. If sandflies were specialists, associated with a few
focal species, one would expect to see high ε values only for those particular species, due to the
fact that the focal species are an important and necessary biotic element in the niche of the
sandfly, while the other mammals would be incidental and therefore one would expect to see
either random association or a positive association mediated by, say, abiotic variables.

The most important results of this paper are in Figs 2 and 3, where we clearly see the signifi-
cant correlation between the probability for a species or individual to be a host and ε as a mea-
sure of the statistical significance of the degree of overlap between vector and host distributions.
This is evidence that although many other factors, such as species abundance, species compe-
tence etc., enter, the fact that a vector and host must co-occur in order to interact leaves a signifi-
cant predictive imprint. In other words, the more overlap the more opportunity for host-vector
interactions. The multi-factorial nature of the complex relation between host and vector is
implicit in that the relation between host probability and ε, although statistically significant, is
not characterized by a very high value of R2. Especially noteworthy is the decile 1 result, where 3
out of 7 species were identified as hosts—Baiomys taylori, Peromyscus maniculatus and Pero-
myscus eremicus. These were collected from sites in Jalisco and Nuevo Leon, states from where
collections of Lutzomyia were previously scarce or non-existent. However, recently, it has been
confirmed that various species of Lutzomyias are relatively common in these areas. Thus, we
believe that a part of the low ranking of these species is due to a systematic bias in the historic
collection of Lutzomyias towards the southern part of Mexico. The impact of this on the relation
between the percentage of positive host species or individuals and ε is substantial. A regression
using only the first 9 deciles yields an R2 = 0.92 versus 0.44 for all 10 deciles for the species-ε
relation, while for the individuals-ε relation the corresponding figures are 0.65 and 0.39. Figs 2
and 3 also illustrate what we mean by host importance. The fact that the percentage of infected
individuals decreases as a function of epsilon is consistent with the fact that in the higher deciles
(higher ε values) there is a higher probability of a vector encountering an infected host than in
the lower deciles (lower ε values). This does not imply, of course, that the pathogen is transmit-
ted. It is however, once again, a necessary if not sufficient condition.

Besides validating both the general methodology as well as the specific model for Leishmani-
asis of [36], our results also provide an extensive list of new hosts for Leishmania (L.)mexicana
in Mexico that substantially changes what we know about the transmission cycle of the patho-
gen and the potential efficacy of interventions and/or surveillance efforts. As 33% of collected
species tested positive for the presence of L. (L.)mexicana our results are completely consistent
with the prediction that L. (L.)mexicana is a very generalist pathogen and that Lutzomyia is a
very generalist genus. Furthermore, if we consider the probability that a species is a true nega-
tive at the 95% confidence level with respect to the null hypothesis of a 6.7% infection rate
across all species, then we see that there are no true negatives. The closest isHeteromys desmar-
estianus with N = 30 and a probability of 88% of being a true negative. Interestingly, though,
Heteromys desmarestianus has previously been identified as a host [49,59]. We also note that,
of the 24 identified host species, only four—Phyllostomus discolor, Peromyscus eremicus,

New Confirmed Hosts of Leishmaniasis in Mexico

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005004 October 7, 2016 15 / 21



Glossophaga commissarisi and Glossophaga soricina—are associated with a prevalence that,
with 95% confidence according to the Wilson score interval, is greater than the average preva-
lence across all species. Moreover, the first two species were associated with only one collection
so that one would not expect the Wilson score interval to be reliable. The exact probability for
an observed 100% prevalence with N = 1 is 6.7%.

Our principle result, as stated previously, is the validation of the methodology and the
explicit model of [36] for Leishmaniasis. However, we may also further analyse our experimen-
tal results. We have noted that they are quite consistent with the hypothesis that most host spe-
cies have prevalence values that are compatible with the null hypothesis of a constant
prevalence of 6.7% across species. For those positive species with N> 20 in fact prevalence is
very stable. Of course, heterogeneities are to be expected. This can be due not only to intrinsic
differences in host competence but also, potentially, to spatial heterogeneity associated with
epidemiological “hotspots” where many variables together may be favourable for transmission.
In Fig 4 we see that there is no noticeable relation between prevalence and ε. We would argue
that there should be a dependence if prevalence is averaged for a given species over several geo-
graphical locations that systematically sample the range of that species. However, the sampling
intensity of the present data is not capable of showing such effects at a species by species level.
The fact that the species by species infection rates are consistent with a relatively constant 6.7%
prevalence is compatible with the hypothesis that the competence of the different mammal
host species is relatively homogeneous. However, as can be seen in Fig 4, the degree of disper-
sion of the data is large. Partly this is due to the fact that several of the observed prevalences are
associated with very small sample sizes. For instance, the species with prevalence of 100% are
associated with only one individual. These can be considered as outliers. This heterogeneity in
sample size at the species level is one reason why a coarse grained analysis, as observed in Figs
2 and 3, is more appropriate. Taken at face value, the relative homogeneity of prevalence would
also argue against any potential dilution effect due to higher biodiversity as this depends on
strong competence heterogeneity amongst hosts. In fact, these results would be consistent with
the fact that Lutzomyias do not differentiate very much among different potential sources of
blood meal [60].

The results of this study stand in stark contrast to our previous understanding of the hosts
of different species of Leishmania: Of the more than 2000 mammal species on the American
continent only about 50 (2.5%) have been identified as hosts of Leishmania [44], while in
Mexico, 8 out of 419 (2.1%) have been identified as hosts [but see 61]. If our result that 33% of
collected mammal species are hosts is extrapolated to other non-collected species then poten-
tially hundreds of mammal species could be implicated as hosts of Leishmania. Of the collected
species that tested positive, 13 were bats, identified for the first time as hosts of Leishmania (L.)
mexicana in Mexico [61]. We also identified the grey squirrel as a peri-domestic host species
with a high degree of contact with human settlements [62].

If sandflies are generalists, in that they feed off a large number of species across many gen-
era, and pathogen competencies are relatively uniform, as is consistent with our observations,
then one would also hypothesize that Leishmania (L.)mexicana is also a generalist in that it
can infect a large number of potential host species. In the case of Chagas disease, the impressive
genetic plasticity and associated adaptability of Trypanosoma cruzi has been amply studied
[63–65], as well as its epidemiological implications. Our results suggest that L. (L.)mexicana
should also demonstrate a high degree of genetic plasticity and adaptability to be able to infect
such a wide array of mammal species. Recent work on the genetics of Leishmania seems to be
consistent with this viewpoint [66,67].

Given that previously there were only eight confirmed host species of Leishmania in
Mexico, the results of this paper change the risk landscape for this neglected disease in Mexico,
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both geographically, and in terms of its control or elimination, with similar potential conse-
quences for other countries. Although it is known that Lutzomyias have an ample geographic
range and therefore are a risk element for Leishmaniasis in many areas of Mexico, what the
present work demonstrates is that there are a large number, and potentially very many more,
of hosts involved in the transmission cycle of Leishmaniasis. This complicates both interven-
tions and surveillance. In terms of surveillance we would argue that our model yields a good
first approximation as to which host species to survey—those that have been identified as hosts
and have the highest ε values. Of course, further field and laboratory work should be carried
out to better understand the underlying factors influencing host competence, both at the spe-
cies level and across different geographical locations for the same species. It is also necessary to
test species that are high on the model list but up to now have not been checked. In terms of
interventions, with such a large host range, that spans both sylvatic and peri-domestic species,
it will be very difficult to eliminate any enzootic transmission cycle, with consequential difficul-
ties in the long term elimination of the vector. Geographically, as can be seen in Fig 5, a risk
map derived from the distributions of the eight host species known before the results of this
study is completely different to a risk map associated with the 30 species of host that we have
now confirmed indicating much higher risk in states such as Jalisco and Nuevo Leon that have
until recently been considered low risk compared to the south east.

Our results show that within species collection data there is a great deal of useful informa-
tion about interspecific interactions and community structure that may be deduced with inno-
vative modelling techniques, such as complex inference networks, and applied to important
problem areas such as multi-host diseases. It also shows the importance of the systematic and
unbiased collection of data associated with the distributions of potential vectors and potential
reservoirs. For instance, the models created showed a higher risk for presence of Lutzomyia in
the north of Mexico, along the border with the US, than had previously been the case. In fact,
recent human cases have been reported in this region, and recent field work has shown that the
presence of Lutzomyia is more extensive than had been previously thought [44,68].
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