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Mesoscopic chaos mediated by Drude electron-
hole plasma in silicon optomechanical oscillators
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Chaos has revolutionized the field of nonlinear science and stimulated foundational studies

from neural networks, extreme event statistics, to physics of electron transport.

Recent studies in cavity optomechanics provide a new platform to uncover quintessential

architectures of chaos generation and the underlying physics. Here, we report the generation

of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the

strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole

plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic

characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation

dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov

exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast

adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics,

bifurcations and stable regimes, along with distinct transitional routes into chaos. This

provides a CMOS-compatible and scalable architecture for understanding complex dynamics

on the mesoscopic scale.
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I
nvestigation of chaos and the associated nonlinear dynamics
has spurred fundamental progress of science and technology.
It brought new perspectives in a multitude of fields spanning

from recurrent neural networks1, relativistic billiards-like electron
transport2, fractal space and time3 to self-organization in the
natural sciences4, amongst others. Chaos in optical systems has
emerged and drawn much attention owing to its unique features
and broad applications, including chaos-based synchronized
secure optical communications5–7, high-performance light
detection and range finding8 and ultrafast physical random bit
generation9. Studies of chaos generation in III–V laser
components have further shown progress in harnessing the
broadband carriers in both the near infrared and the mid-infrared
wavelength ranges10–17, although the challenges of monolithic
integration and circumventing the seemingly universal
requirement of external perturbations remain to be solved.

Concurrently, significant efforts in nanofabrication technology
and cavity optomechanics have led to the demonstration of
regenerative oscillations in mesoscopic resonators18–21. Excited
by centrifugal radiation pressure, optomechanical chaotic
quivering was experimentally observed in toroidal whispering-
gallery-mode microcavities22. Recently, in the toroidal
whispering-gallery-mode microcavity, stochastic resonance and
chaos have been transferred between two optical fields23 with the
chaotic physical basis through a strong nonlinear optical Kerr
response from the nonlinear coupling of the optical and
mechanical modes. This is complemented by recent theoretical
studies on chaos including electro-optomechanical systems and
potential routes into chaos24,25.

Here, we couple the prior single optomechanical basis with a
second basis—that of electron–hole plasma oscillations in
the same cavity—to deterministically generate dynamical
chaos in a silicon photonic crystal cavity. Differing from
the prior studies, the silicon experimental platform enables
electron–hole plasma dynamical generation, destabilizing the
system dynamics and provides a route for chip-scale planar
electronic–photonic integration. Our photonic crystal implemen-
tation is based on a slot-type optomechanical (OM) cavity
with sub-wavelength [E0.051(l/nair)3] modal volumes V, and
high quality factor-to-volume ratios Q/V (refs 26,27).
This provides strong optical gradient oscillation26,28 to achieve
operating intracavity energies of B60 fJ and enables near-single-
mode operation. Our two-oscillator OM cavity is designed with
comparable dynamical oscillation timescales between the Drude
electron–hole plasma and radiation pressure optomechanics,
which allows the chaotic attractors and unique trajectories to be
uncovered. We present the statistical and entropic characteristics
of the nonlinear dynamical regimes and illustrate the transition
routes into and out of chaos. Our first-principles numerical
modelling, including coupled oscillations in seemingly unrelated
degrees of freedom (two-photon-induced free-carrier and thermal
dynamics with radiation pressure dynamics) capture the
experimental observations, the multi-period orbits and the
trajectory divergence into chaotic states.

Results
Experimental observation of chaos. Figure 1a shows the
scanning electron micrograph of the slot-type optomechanical
photonic crystal cavity mediated by Drude electron–hole
plasma investigated in this study. The air-bridged photonic
crystal cavity is introduced with shifted-centre air holes that
are shifted by 15, 10 and 5 nm, respectively, as shown in Fig. 1b.
The width-modulated line-defect photonic crystal cavity
design has a total quality factor Q of 54,300 (Fig. 1c) and a
sub-wavelength modal volume of 0.051(l/nair)3 (Fig. 1b inset) at

the 1572.8 nm resonance wavelength (lo, with effective mode
index n). The optomechanical cavity consists of two
(16.0 mm� 5.5 mm� 250 nm) micromechanical photonic crystal
slabs, separated by a 120 nm slot width across the photonic crystal
line defect. The in-plane mechanical mode has a 112 MHz
fundamental resonance and, when driven into the regenerative
oscillation regime, has a narrow sub-15-Hz linewidth at ambient
pressure and room temperature29. The large optical field gradient
from the tight slot cavity photon confinement enables a large
coherent optomechanical coupling strength, g0, of B690 kHz
(detailed in Supplementary Note 4), resulting in low-threshold
optomechanical oscillation (OMO)26–29. Concurrently, on the
same cavity, strong nonlinearities such as two-photon absorption
(TPA), free-carrier and thermo-optic dynamical effects lead to
modulation of the intracavity field30. Note the characteristic
timescales of the OMO and the photonic crystal carrier dynamics
are made comparable through our designed mechanical modes
and intrinsic free-carrier diffusion times, enabling the coupled
equations of motion to have sufficient overlap and degrees of
freedom for chaos generation.

Figure 1d depicts the transition into chaos as the pump
detuning to the cavity resonance D (¼ lL� l0, where lL is the
injection light wavelength) is scanned from 0.2 to 4.2 nm with the
injection power fixed at 1.26 mW detailed in Methods section).
The chaos region as well as the associated dynamical transitional
states can be identified. First, a stable pure fundamental OMO at
112 MHz is observed at the beginning of the detuning drive. With
increased detuning, aperiodic and sub-oscillatory structures
emerges when D is set in the range of 1.2–2.0 nm. Unstable
pulses (USP) occur first, before the system is driven into a series
of stable sub-harmonic pulse states such as the fomo/4 states
(oscillation period being four times the OMO period), the fomo/3
states and the fomo/2 states, respectively. For detuning D between
2.0 and 2.33 nm, the system exhibits a chaos region characterized
by both a broadband radio frequency (RF) spectrum and an
intricate phase portrait. For detuning D42.33 nm, the system is
driven to exit the chaos region by evolving into a fomo/2 state
(D¼ 2.33–3.2 nm) before cumulating into a self-induced optical
modulation (SOM) state (D¼ 3.2–4.2 nm)30,31. Of note, the
oscillation period of SOM (B13–17 ns), mainly determined by
the Drude plasma effect and the thermal dissipation rate, is
comparable with that of OMO (B9 ns). The close oscillation
frequencies of SOM and OMO facilitate their effective interaction
in the photonic crystal nanocavity and the occurrence of
chaos4,18.

Figure 2 shows an example chaotic oscillation in the temporal
domain and its RF frequency spectrum with the recorded raw
temporal waveform shown in Fig. 2a, illustrating the irregular and
intricate fluctuations. Figure 2b presents the phase portrait of
chaos in a two-dimensional plane spanned by the power of the
temporal waveform (P, horizontal axis) and its first time
derivative (s, vertical axis)32. The reconstructed trajectory is
useful for illustrating the complex geometrical and topological
structure of the strange attractor, showing the local instability, yet
global stable nature, of a chaos structure32. To reveal the
topological structure of chaos attractors, a state-space procedure
is implemented to average the temporal waveform points in an
m-dimensional embedded space32 (detailed in Supplementary
Note 1) by removing stochastic noise from the recorded raw data.
The noise removal enables a clear depiction of the topological
structure of the attractor and is also useful for the estimation of
correlation dimension and Kolmogorov entropy, the most
commonly used measures of the strangeness of chaotic
attractors and the randomness of chaos33–36. Furthermore,
Fig. 2c shows the corresponding RF spectrum, where the signal
distributes broadly and extends up to the cutoff frequency of the
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Figure 1 | Observations of dynamical chaos in mesoscopic optomechanical cavities. (a) Scanning electron micrograph of the optomechanical cavity.

Scale bar, 5 mm. (b) Zoom-in of 120 nm slot cavity with localized resonant mode formed by perturbed neighbouring holes at the cavity centre, with

amplitude displacements denoted by the coloured arrows (yellow: 15 nm; green: 10 nm; and red: 5 nm). The lattice constant is 500 nm and the ratio

between hole radius and lattice constant is 0.34. Scale bar, 500 nm. Inset: finite-element model of the fundamental mechanical mode field, with normalized

displacement magnitude shown in colour (red as maximum displacement and blue as zero displacement). (c) Measured optical transmission spectrum

with a cold cavity loaded quality factor Q of 54,300 under low injection power and centred at 1572.8 nm. Inset: |E|2 field distribution of the fundamental

optical resonance, with normalized intensity magnitude shown in colour (red as maximum intensity and white as zero intensity). (d) 2D RF spectral

map illustrating the evolution of nonlinear and chaotic dynamics, detailed as OMO (OMO) state - USP state-fomo/4 state-fomo/3 state-chaos state-fomo/2

state-SOM state, under controlled laser-cavity detuning D and at 1.26 mW injection power.
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Figure 2 | Frequency-time characterization of the chaos. (a) Raw temporal waveform of chaotic output. (b) Corresponding phase portraits of the

noise-reduced temporal waveform, where the colour evolution from cyan to orange to red is proportional to the data point density (DPD) in the measured

temporal orbit. (c) Corresponding measured RF power spectral density (PSD). The grey curve is the reference background noise floor.
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measurement instrumentation, showing a hallmark spectral
feature of chaos.

Figure 3 illustrates the detailed properties of several different
dynamical states, including RF spectra, temporal waveforms and
phase portraits. First, Fig. 3a shows the frequency and temporal
characteristics of the fomo/2 state. We observe three characteristic
features of the fomo/2 state:distinct fomo/2 components in the RF
spectrum (Fig. 3a), pulses with period (E17.8 ns) at two times the
OMO period (E8.9 ns) in the temporal waveform (Fig. 3b), and
clear limit cycle37 features in the phase portrait (Fig. 3c).
Similarly, Fig. 3d–f,g–i show the frequency spectra, the temporal
waveforms at a third and a quarter of the fundamental oscillation,
and the corresponding limit cycle phase portraits of the
transitional fomo/3 and fomo/4 states, respectively. We note the
satellite bumps next to the main peaks in the temporal
waveforms; they represent the relatively weak OMO
fundamental oscillations. Figure 3j,k next show the frequency
and temporal features of the chaos state, where a broadband
spectrum and a fluctuating temporal waveform are observed. In
the phase portrait (Fig. 3l), the trajectory evolves intricately and
scatters widely in phase space, being quite different from other
periodical dynamics. With this slot cavity and at 1.26 mW
injection power (B60 fJ intracavity energy), the specific transition
route is OMO-USP-fomo/4-fomo/3-fomo/2-chaos-fomo/2-SOM,
exhibiting a clear sub-harmonic route to chaos. The complete
set of routing states into/out of chaos is detailed in Supplementary
Note 2.

Dynamical characterization of chaos. Next, statistical analysis is
performed to uncover the detailed dynamical properties of the

chaotic states. A three-dimensional phase space is constructed in
Fig. 4a, in a volumetric space spanned by the power (P), the first
time derivative of P (s) and the second time derivative of P (x).
The green curves are the projections of the trajectory onto each of
the three phase planes, showing the geometric structures. Three
statistical measures, Lyapunov exponents (LEs), correlation
dimension and Kolmogorov entropy, are commonly employed to
illustrate and characterize the dynamical properties of chaos32–38.
Details of these measures are provided in Supplementary Note 1.
LEs, which describe the divergence rate of nearby attractor
trajectories, are the most widely employed criteria in defining
chaos33. In Fig. 4b, we show the calculated LEs, converging to
values l1E0.329, l2E� 0.087 and l3E� 0.946 ns� 1

respectively, or equivalently, when expressed on the intrinsic
optomechanical photonic crystal cavity, timescale
(tomo¼ fomo

� 1E8.9 ns) l1E2.94tomo
� 1, l2E� 0.78tomo

� 1 and
l3E� 8.45tomo

� 1. The maximal LE is positive, illustrating a fast
divergence rate between adjacent orbits and indicating that the
system is chaotic32,33. We further analyse the correlation
dimension D2:

D2¼ lim
D!1
r!0

d ln CDðrÞð Þ
d lnðrÞ ð1Þ

where CD is the correlation integral of vector size D in an r radius
sphere and d is the Euclidian norm distance36. A conservative
estimate of the attractor correlation dimension is implemented
through the Grassberger-Procaccia algorithm36,38 as detailed in
Supplementary Note 1. As shown in Fig. 4c, the correlation
integrals CD vary with sphere radius r. In Fig. 4d, the plot of the
correlation integral slope versus sphere radius r is obtained by
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extracting the slope from Fig. 4c. A clear plateau of the
correlation integral slope is observed, supporting the estimated
value of D2 at B1.67 (D2E2.0 without noise filtering).
The correlation dimension D2 highlights the fractal
dimensionality of the attractor and demonstrates the
strangeness of the complex geometrical structure34. We note
that this D2 value is already higher than that of several canonical
chaos structures such as the Hénon map (at 1.21), the logistic
map (at 0.5), and the Kaplan-Yorke map (at 1.42), and is even
close to that of Lorenz chaos (at 2.05)36.

Furthermore the waveform unpredictability can be
characterized by the second-order Renyi approximation of the
Kolmogorov entropy K2:

K2¼ lim
D!1
r!0

1
t

ln
CDðrÞ

CDþ 1ðrÞ

� �
ð2Þ

where t is the time series sampling rate, a measurement of
the system uncertainty and a sufficient condition for chaos38.
A positive K2 is characteristic of a chaotic system, while a
completely ordered system and a totally random system will have
K2¼ 0 and K2¼N respectively. With the Grassberger-Procaccia
algorithm, K2 is calculated as E0.17 ns� 1 or expressed
equivalently as E1.52tomo

� 1, representing that the mean
divergence rate of the orbit section (with adjoining point pairs
in the phase space) is rapid within 1.52 times the fundamental
OMO period. It characterizes the gross expansion of the original
adjacent states on the attractor38 and, therefore, indicates the
significant unpredictability in the dynamical process of such
solid-state systems.

Theoretical simulation of chaos. To further support the physical
observations, we model the dynamics of the optomechanical
photonic crystal cavity system under the time-domain nonlinear
coupled mode formalism, taking into account the OMO21,

TPA31, free-carrier and thermo-optic dynamics30,31:

d2x
dt2
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dx
dt
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where x, A, N and DT represent respectively the motional
displacement, the intracavity E-field amplitude, the free-carrier
density and the cavity temperature variation. do¼oL�o0 is the
detuning between injection light, oL, and photonic crystal cavity
resonance, o0, and Pin is the injected optical power (detailed in
Supplementary Note 3, Supplementary Table 1). Equation (3)
describes the optically driven damped mechanical harmonic
oscillation with self-sustained OMO oscillations when pumped
above threshold. The mechanical oscillations then in turn result
in modulation of the intracavity optical field (first term on the
right-hand side of equation (4)). On the other hand, the plasma
induced thermal-optic effect and free-carrier dispersion in the
cavity (second and third terms on the right-hand side of
equation (4)) lead to another amplitude modulation of the
intracavity field. Here, the high-density Drude plasma is
generated by the strong TPA in silicon (equation (5)). With the
increased intracavity power, the free-carrier dispersion effect
leads to blue-shifts of the cavity resonance while the free-carrier
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absorption induced thermo-optic effect results in red-shifts of the
cavity resonance. The dynamical interplay between these two
effects results in the regenerative SOM (refs 30,31). The
mechanism is detailed in Supplementary Fig. 6 and
Supplementary Note 6. We note that our photonic crystal
design ensures that the characteristic timescales of the SOM and
OMO oscillations are on the same order of magnitude
(Supplementary Fig. 8), strengthening the effective
inter-oscillator coupling. The coexistence of OMO and SOM
mechanisms adds extra degrees of freedom to the dynamic space
of system and results in increased susceptibility to destabilization
(detailed in Supplementary Note 2)16,18,21.When the drive power
is between the SOM and OMO thresholds, TPA-associated
amplitude modulations disrupt the OMO rhythm, breaking the
closed OMO limit cycles and creating the non-repeating chaotic
oscillations. On the other hand, if the frequency ratio between
OMO and SOM is close to a rational value, they will lock each
other based on the harmonic frequency locking phenomena39,40.
Consequently, different sub-harmonic fomo states are also
observed in Fig. 3. Effects of the Drude free-carrier plasma, the
detuning do, the optomechanical coupling strength g0 and the
injected drive power Pin on the chaotic transitions and routes are
detailed in Supplementary Notes 4–7.

Figure 4e shows the dynamical distribution map simulated
numerically and parametrically with the normalized detuning
do/gi versus injection power Pin, where gi is the intrinsic cavity
linewidth from linear losses. The various regimes are denoted
with different colours, and rigorously identified through entropic
analysis of the temporal waveform uncertainty and periodicity of
the Fourier spectrum. The temporal waveforms are often strongly
periodic in the limit cycle states (such as OMO and USP) and
have low entropy (indicated by the darker colours), while
the chaotic oscillation has a significant uncertainty and high
entropy (indicated by the brighter colours). In Fig. 4e, the
crescent-shaped region (in bright orange) indicates the
parametric conditions of the complex chaos state. Around this
region, there are rich transitional dynamics related to chaos,
thereby enabling different routes into or out of chaos with
different parameter scanning approaches. When the pump power
is 1.26 mW, the numerical model predicts a bifurcation transition
to chaos via states OMO-USP-fomo/3-fomo/2-chaos-SOM as a
function of detuning, in a qualitative agreement with the
experimental observations. It is of note that the system of
coupled equations does not involve any initial noise terms,
illustrating the deterministic nature of the obtained chaotic
solutions.

Discussion
We demonstrate chaos generation in mesoscopic silicon
optomechanics achieved through single-cavity coupled oscilla-
tions between radiation-pressure- and two-photon-induced
free-carrier dynamics. Chaos generation is observed at 60 fJ
intracavity energies, with a correlation dimension D2 determined
at B1.67. The maximal LE rate is measured at 2.94 times the
fundamental OMO, and the second-order Renyi estimate of the
Kolmogorov entropy K2 is determined at 1.9 times the
fundamental OMO, both showing fast adjacent trajectory
divergence into the chaotic states. Furthermore, we route the
chaos through unstable states and fractional subharmonics, tuned
deterministically through the drive-laser detuning and intracavity
energies. These observations set the path towards synchronized
mesoscopic chaos generators for science of nonlinear dynamics
and potential applications in secure and sensing application, in
light of recent works about gigahertz OMOs41 and
synchronization of coupled optomechanical oscillators42.

Methods
Device design and fabrication. The optomechanical photonic crystal cavity is
fabricated with a CMOS-compatible process on 8-inch silicon wafers at the
foundry, using 248 nm deep-ultraviolet lithography and reactive ion etching on
250 nm thickness silicon-on-insulator wafers. To realize the critical 120 nm slot
width, the resist profile is patterned with a 185 nm slot linewidth, then transferred
into a sloped oxide etch. The resulting bottom 120 nm oxide gap is etched into the
silicon device layer through tight process control. Multiple planarization steps
enable high-yield of the multi-step optomechanical photonic crystal fabrication.
The optical input/output couplers are realized with silicon inverse tapers and oxide
overcladding coupler waveguides. The optomechanical photonic crystal cavities are
released by timed buffered oxide etch of the undercladding oxide.

Measurement set-up. The drive laser is a tunable Santec TSL-510C laser
(1,510–1,630 nm), which is also used to measure the optical transmission spectra.
The drive laser is first amplified by a C-band erbium-doped fibre amplifier and
then injected into the slot-type photonic crystal cavity with a coupling lens placed
on an adjustable 25-nm precision stage. A—fibre polarization controller with a
prism polarizer selects the transverse-electric polarization state for the cavity mode.
The output transmission of the photonic crystal cavity is collected into fibre
through a coupling lens, an optical isolator, and then into a New Focus (Model
1811) detector, before an electronic spectrum analyzer (Agilent N9000A) and
time-domain digital oscilloscope (Tektronix TDS 7404) characterization and
statistical analysis.

Numerical simulations. The coupled equations (1)–(4) are numerically solved
with the fourth-order Runge-Kutta algorithm. The time discretization is set as 10 ps
and each simulated temporal waveform contains 107 data points (100 ms). The
simulated RF spectrum is calculated with the fast Fourier transform method, which
is a discrete Fourier transform algorithm to rapidly convert a signal from its time
domain to a representation in the frequency domain. In frequency domain, we can
easily get the spectral characteristics of the signal. The long time span of the
temporal waveform (at 100ms) is also necessary for resolving the 25 kHz spectral
features and converging in the subsequent statistical analyses.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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