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Abstract

Background: The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-
type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression.
The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type
spliceosome has previously been shown to be essential in the fly.

Methodology/Principal Findings: We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential
component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the
organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during
larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed
that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In
contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to
various metabolic pathways constituting the largest group.

Conclusions/Significance: U12-type intron-containing genes exhibited variable gene-specific responses to the splicing
defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual
U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed
analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may
be the primary cause of the various downstream effects detected in the microarray analysis.
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Introduction

The removal of noncoding introns by the spliceosome is an

essential step in the posttranscriptional processing of mRNAs in

eukaryotic organisms. Most multicellular organisms, including

plants, vertebrates and insects, and some unicellular eukaryotes

have two distinct spliceosomes that remove divergent intron types.

In addition to the ubiquitous U2-type ‘‘major’’ spliceosome that

removes the majority of all introns, the U12-type ‘‘minor’’

spliceosome excises a subset of introns containing highly conserved

59 splice site (59ss) and branch point sequences (BPS) [1,2,3,4].

Both spliceosomes use a similar mechanism for intron removal

and consist of five small nuclear RNAs (snRNA) assembled into

ribonucleoprotein (snRNP) particles containing more than 150

different protein species (for reviews, see [5,6]). The snRNA

composition differs between the two systems. The specific snRNAs

of the U12-type spliceosome are U11, U12, U4atac and U6atac,

and the functional analogs in the major spliceosome are U1, U2,

U4 and U6, respectively [7,8,9]. U5 snRNA and most protein

components are shared between the two spliceosomes [8,10], but

at least the mammalian system utilizes seven protein species

specific to the U12-dependent spliceosome [11].

Splicing of U12-type introns begins with a cooperative

recognition of both the 59ss and the BPS by the U11/U12 di-

snRNP [7,8,12,13], followed by the entry of the U4atac/

U6atac.U5 tri-snRNP to the spliceosome [9]. Rearrangements in

RNA-RNA interactions [9,14,15] and changes in protein

composition [16] result in the formation of the catalytically active

spliceosome, in which the U6atac and U12 snRNAs are base

paired together and to 59ss and BPS, respectively, to bring the

catalytically important parts of the intron together for the first step

of splicing [9,17].

The U12-type spliceosome is believed to be essential in all

organisms that have it, yet the relevance of maintaining two
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separate spliceosomal systems has remained elusive. Indispensable

role at the whole organism level has been shown in Drosophila in

which homozygous P-element insertions into the U12 and U6atac

snRNA genes were found lethal at early embryogenesis and at the

3rd larval instar stage, respectively [18]. Similarly, the knockdown

of specific protein components in mammalian cells arrests cell

proliferation [11,19]. A recent study reported that the in vivo

splicing of U12-type introns is at least 2-fold slower than U2-type

introns [20]. Consistently, increased levels of unspliced U12-type

introns can be detected in the steady-state pool of cellular total

RNA in both insect and vertebrate cells [21,22]. The lower

efficiency of U12-type splicing has been suggested to lead to

nuclear retention and subsequent degradation of the transcripts

thus providing rate-limiting regulation to a subset of genes and

pathways [21,23]. A single study suggested that U12-type splicing

may instead take place in cytoplasm [24], but this work was

subsequently challenged by several studies that showed that U12-

dependent spliceosome components are localized in the nucleus

and interact with components of the U2-dependent spliceosome,

and that the splicing of U12-type introns takes place in the nucleus

and is in fact co-transcriptional [20,25,26,27].

We set out to investigate the impact of U12-dependent splicing

on specific cellular pathways at the whole organism level. In

mammals, genes containing U12-type introns have been assigned

to a broad category of ‘‘information processing genes’’, encoding

for proteins operating at various stages of the gene expression

pathway, and include members of several signaling pathways,

cytoskeleton proteins and a large group of cellular ion channels

[1,28,29]. In contrast to mammals that have more than 600 genes

containing U12-type introns [4,30], the Drosophila genome has only

about 20 genes containing a putative U12-type intron [30,31,32].

Even though the number is more than an order of magnitude

smaller than in mammalian genomes, most of the few Drosophila

U12-type introns are conserved between mammals and flies

[4,30,32] and show a similar preference to information processing

genes as their mammalian counterparts [1,2,31].

Here we used a Drosophila line with a P-element inserted into the

U6atac snRNA gene and analyzed the genome-wide effects of the

mutation on splicing and gene expression. Even though previous

studies have shown that the homozygous U6atac mutation leads to

at least a partial loss of splicing of U12-type introns [18], we found

only relatively mild detrimental effects on the splicing of most

genes containing U12-type introns, with significant levels of fully

spliced mRNAs. Only two U12-type intron-containing genes were

significantly downregulated in the flies carrying homozygous

U6atac mutation. In contrast, our microarray analyses document-

ed progressive perturbations in the expression of a large number of

genes that do not carry U12-type introns, suggesting that defective

U12-type intron splicing leads to significant downstream effects on

genes that do not contain U12-type introns. Furthermore, our

results suggest that the downstream effects may initiate from a

single U12-type intron containing gene, a Drosophila homolog to

the mitochondrial chaperone prohibitin, the expression of which is

the most severely inhibited of all U12-type intron-containing

genes.

Results

P-element insertion to U6atac gene leads to larval death
We used the Drosophila line l(2)k01105 with a defect in the U12-

dependent spliceosome to investigate the organismal level effects of

U12-type intron splicing. This line contains a P{lacW} element

inserted in the U6atac gene at position 70 (Fig. 1A), which leads to

defects in the splicing of U12-type introns and larval lethality at

the 3rd instar stage as described by Otake et al. [18]. Recent

Drosophila genome maps indicate that the U6atac gene is located

within an alternative intron of the protein-coding gene CG13394

(Fig. 1A). We found that the P-element insertion also leads to a loss

of transcripts that contain the alternative exon 4 (not shown). To

ask if any of the phenotypic effects of the P-element insertion are

due to changes in CG13394 expression, we investigated the fly line

MB08402 containing a putative null allele of CG13394 as a

consequence of a Mi{ET1} transposon insertion in the first exon.

Homozygous MB08402 flies were viable and fertile and did not

display any apparent phenotypic abnormality. RT-PCR analysis

using primers specific to Mi{ET1} transposon and CG13394 gene

followed by sequencing confirmed the identity of chimeric

transcripts containing both transposon- and CG13394-specific

sequences (Fig. 1B, lanes 1, 2). Thus, while the insertion disrupts

the reading frame of CG13394, it does not destabilize the chimeric

mRNA. We conclude that the loss of a splicing isoform from

CG13394 has a negligible effect on l(2)k01105 phenotype,

indicating that a defect in U12-type intron splicing by P-element

insertion to U6atac leads to larval lethality.

We also confirmed the presence of chimeric U6atac snRNAs in

the developing larvae. In the first instar larvae, maternally

contributed wt U6atac is still present (Fig. 1C, lane 7), but by

the third instar, wt U6atac disappears from homozygous mutant

larvae and only the longer chimeric version is detected (Fig. 1C,

lane 9) as described earlier [18]. In contrast, heterozygous larvae

appear normal and exhibit no splicing defects compared to wt

larvae (data not shown). Additionally, in heterozygous larvae, the

levels of chimeric U6atac snRNA are low (Fig. 1C, lanes 4–6),

possibly because of decreased stability, as suggested earlier [18].

Therefore, we used heterozygotes as controls in our subsequent

experiments to minimize any variation due to environment or

genetic background.

Gene expression profiling
We investigated the effects of the U6atac mutation on global

gene expression using custom microarrays. The array contained

probes for most exons in the Drosophila genome annotated in the

Ensembl database, except for few very short or low-complexity

exons. Additionally, exon-exon junction probes were designed for

genes containing U12-type introns, but these were ignored in the

subsequent analysis after quality checks indicated that a subset

of these long probes may bind even if the intron is present in

the mRNA. Thus we considered them too unreliable for the

quantification of spliced vs. unspliced products (not shown). Array

experiments were conducted using total RNA samples from

pools of first, second, and third instar larvae of U6atac 2/2 and

U6atac 2/+ lines.

Additionally, we used total RNA from 3rd instar larvae from the

MB08402 line to identify genes potentially affected by mutations

of the host gene (CG13394) of the U6atac snRNA. However, we

did not detect any statistically significant changes in gene

expression in the homozygous MB08402 larvae using exon

microarray with cutoff p,0.01 (data not shown). This suggests

that the effects detected in the U6atac mutant line l(2)k01105 are

caused by the disruption of U6atac snRNA and not by the loss of

the last alternative exon of CG13394. This result is consistent with

the observation that the homozygous MB08402 flies do not show

any apparent changes in their viability or other phenotypic

characteristics.

In contrast, the homozygous U6atac/U6atac line showed

progressive changes in gene expression during larval development.

At the level of individual exon probes (Fig. 2A), only few

statistically significant changes were observed at the 1st larval
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instar, but the number of statistically significant changes in gene

expression was progressively escalated in 2nd and 3rd instar

larvae. Importantly, the observed trend of gene expression

changes, which mostly initiate at the 2nd instar when the

maternally contributed wt U6atac snRNA runs out (Fig. 1C), is

consistent with the scenario in which the loss of wt U6atac snRNA

indeed triggers the observed changes in gene expression. Further

support to this scenario is the observation that most of the detected

gene expression changes are additive with respect to the larval

developmental stage so that changes in the earlier developmental

stages are observed also in the later stages (Fig. 2A). A similar

pattern was also observed with a gene-level analysis (Fig. 2B). The

majority of significant genes (416 out of total 632 genes) are

downregulated in the U6atac 2/2 larvae at the 3rd instar. In

contrast, at the 2nd instar, the majority of genes were upregulated

(39 up, 23 down).

Figure 1. Description of U6atac and CG13394 mutations. A. Schematic picture of U6atac and CG13394 genes. Transposon insertion sites in
the U6atac mutant (P{lacW}) and MB08402 line (Mi{ET1}) are indicated. Black arrows indicate the location of primers in CG13394 sequence. B. PCR
amplification of cDNA sequences from MB08402 line (lanes 1–5) and U6atac 2/+ line (6–9). Primer locations are indicated in A. MIR; primer oriented
outwards from the inverted repeat sequence of the Mi{ET1} construct. C. Northern blot showing the expression of wt and mutant U6atac snRNA.
Total RNA from wt (w1118; lanes 1–3), U6atac 2/+ (lanes 4–6) and U6atac 2/2 (lanes 7–9) larvae in the three larval stages as indicated above was
analyzed on a denaturing PAGE. The blot was probed also for the U12 snRNA as a loading control.
doi:10.1371/journal.pone.0013215.g001
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U12-type intron-containing genes
Our expectation was that the mutation in the U6atac snRNA

would primarily affect genes that contain U12-type introns as

suggested earlier based on the analysis of a subset of Drosophila

transcripts [18]. Quite surprisingly, our microarray results

revealed only relatively mild effects on most of the 19 genes

containing putative U12-type introns (Table 1). The results for

genes containing U12-type introns are illustrated by probe-level

volcano plots in which the expression levels and the statistical

significance are plotted separately for the three differently

behaving groups (upregulated, downregulated, and neutral) in

each of the three larval stages. In the first group we observed clear

effects of upregulation that became visible at the 2nd instar and

was further enhanced in 3rd instar larvae (Fig. 3A–C). The

Figure 2. Venn diagrams depicting the microarray results. The numbers of significantly changed probes (A) and genes (B) at p,0.01 were
plotted in the three larval stages. The positive numbers indicate upregulated and the negative downregulated probes or genes. The number of
nonsignificant probes or genes is shown in the lower right corner of each panel.
doi:10.1371/journal.pone.0013215.g002

Table 1. Probe-wise changes in U12-type intron genes.

Symbol Flybase ID Name
Human
ortholog1

Unique
probes 1st instar 2nd instar 3rd instar

Mutation
phenotype2

UP DOWN UP DOWN UP DOWN

CG11984 FBgn0037655 KCMF1 9 0 0 0 0 4 0 viable

CG34392 FBgn0085421 Epac RAPGEF3 18 0 0 0 0 2 0 viable

CG7736 FBgn0037084 Syx6 STX6 5 0 0 1 0 2 0 lethal

CG18177 FBgn0036039 NAT15 5 0 0 1 0 2 0 viable

CG34449 FBgn0085478 ZDHHC8 10 0 0 0 0 1 0 viable

CG15081 FBgn0010551 l(2)03709 PHB2 5 0 0 0 1 0 3 lethal

CG33108 FBgn0053108 C19orf54 4 0 0 0 0 0 1 viable

CG7892 FBgn0011817 Nmo NLK 8 0 0 0 0 0 0 lethal

CG11328 FBgn0028703 Nhe3 SLC9A7 15 0 0 0 0 0 0 viable

CG8408 FBgn0030850 TMEM41B 4 0 0 0 0 0 0 viable

CG6323 FBgn0039465 Tsp97E TSPAN13 5 0 0 0 0 0 0 viable

CG3294 FBgn0031628 ZRSR2 3 0 0 0 0 0 0 viable

CG15899 FBgn0029846 Ca-alpha1T 23 0 0 0 0 0 0 viable

CG15735 FBgn0030364 LSM12 5 0 0 0 0 0 0 viable

CG4894 FBgn0001991 Ca-alpha1D CACNA1D 31 0 0 0 0 0 0 lethal

CG16941 FBgn0038464 SF3a1 SF3A1 7 0 0 0 0 0 0 viable

CG17228 FBgn0004595 Pros PROX1 4 0 0 0 0 0 0 lethal

CG11839 FBgn0039271 ZNF830 2 0 0 0 0 0 0 viable

CG17912 FBgn0032600 ZNF207 7 0 0 0 0 0 0 lethal

1Ensembl release 58.
2Phenotypes inferred from Flybase FB2010_04.
doi:10.1371/journal.pone.0013215.t001
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strongest effects were seen with the two downregulated genes. The

CG15081/l(2)03709 probes showed mild downregulation already

at the 1st instar and the effect was exacerbated at subsequent

stages (Fig. 3D–F). In contrast, the second downregulated gene,

CG33108, was first affected at the 2nd instar, but was similarly

further downregulated at the 3rd instar. In the unaffected U12-

type intron group, most probes were slightly upregulated, but did

not typically display any clear directional effect during larval

development as seen in the other two groups (Fig. 3G–I). The two

exceptions were CG7892/Nmo and CG11328/Nhe, which both

showed moderate upregulation in 3rd instar larvae, but fell short

of the statistical limit set in this study. The direction of the response

with any of the genes containing a U12-type intron did not

correlate with the properties of the gene or U12-type intron, e. g.

position of the intron within the gene, U12-type intron subtype

(GT-AG or AT-AC), or expression level.

We next investigated if the U6atac mutation would cause

systematic effects on the splicing of U12-type intron-containing

genes by plotting the exon array data of those genes and

comparing this to the structures of individual genes. Besides a

slight bias for more pronounced fold-changes for 39-end probes,

which is probably introduced during cDNA synthesis or

amplification steps, we did not detect any consistent general

changes that would have indicated unusual aberrant splicing

patterns near the U12-type introns. A representative set of

individual genes belonging to each of the three classes of U12-

type intron-containing genes (upregulated, neutral, and downreg-

ulated) are presented in Figs. 4 and S1. From this data we noticed

that both the upregulated and neutral genes on the array shared a

similar trend in which the individual exon signals are typically

progressively upregulated at the 2nd and 3rd instars. For example,

the upregulated CG34449 gene (Fig. 4A) showed only one

statistically significantly upregulated exon at the 39 end, but most

of the other probes were also upregulated in 2nd and 3rd instar

larvae without reaching the statistical cut-off set in the study. The

neutral gene CG11328/Nhe (Fig. 4B) did not show any statistically

significant changes at the probe level even though all the probes

were slightly upregulated (or neutral, as probe 12). In contrast,

most of the probes for the downregulated gene CG15081/

l(2)03709 were significantly downregulated in the homozygous

U6atac mutant larvae, with several probes reaching the statistical

cut-off of the study (Fig. 4C). The exception was probe 2a, which

Figure 3. Volcano plots representing the probes for U12-type intron-containing genes. Fold change (x axis) was plotted against p value (y
axis) in each larval instar. A–C. Upregulated probes. D–F. Downregulated probes. G–I. Nonsignificant probes.
doi:10.1371/journal.pone.0013215.g003
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specifies an mRNA species containing a retained intron in the

59UTR. This probe displayed a low signal in our array data

indicating that such mRNAs have low expression levels.

To further investigate the effect of the U6atac mutation on U12-

type intron splicing, we analyzed genes from each category by RT-

PCR with primers flanking a short U12- or U2-type intron to

detect both unspliced and spliced mRNAs in the same reaction.

Consistent with the splicing defect reported earlier [18], we

detected significantly elevated levels of unspliced U12-type introns

from genes belonging to each of the three categories in the

homozygous U6atac mutant larvae (Fig. 4D). Additionally, we also

detected substantial levels of spliced U12-type introns (Fig. 4D),

suggesting that the U6atac mutation does not completely abolish

the activity of the U12-dependent spliceosome. Therefore, the

fully processed mRNA levels for the U12-type intron-containing

genes are somewhat lower than estimated from the array data,

which does not distinguish partially processed and fully processed

mRNAs. The outcome is, as judged from the ratio of spliced vs.

unspliced U12-type introns in Figure 4D, that the functional

mRNA levels are either near the wt level or somewhat reduced for

most of the upregulated or neutral genes and severely reduced for

the two downregulated genes.

Enrichment of genes encoding for metabolic functions
on U6atac 2/2 larvae

Most of the genes affected in the 2nd and 3rd instars did not

contain U12-type introns (Fig. 2). Presumably they are situated

downstream in the pathways that are disturbed by the splicing

defect in the (few) primary genes containing U12-type introns. We

next sought to understand which of the cellular pathways are

disturbed in the U6atac 2/2 larvae as this would also help to

identify those U12-type genes that are primarily responsible of

larval lethality. First we used clustering analysis on the array data

to ask the association of U12-type intron-containing genes with the

other genes displaying statistically significant changes in our array

experiment. A heatmap showing expression differences in each

larval stage is shown in Figure 5. We found that the five

upregulated U12-type intron-containing genes are clustered in a

group of mildly upregulated genes (cluster 7 in Figure 5), whereas

the two downregulated genes are in the same slightly downreg-

ulated group (cluster 5). The ordered list of significantly changed

genes was subjected to GO term analysis using DAVID functional

annotation tool (Table S1) [33,34,35]. Enrichment analysis was

done separately for each cluster in the heatmap, for all up- or

downregulated clusters, and for all clusters combined. We found

that the most highly upregulated clusters were enriched with genes

involved in defense response (such as drosomycin-5 involved in

fungal defense) and several groups of enzymes with detoxification-

related transferase activities such as members of P450 family,

UDP-glucuronosyl/UDP-glucosyltransferase and glutathione-S

transferases (Table S1). In contrast, the most downregulated

clusters were enriched with genes related to lipid, nucleotide, and

amino acid metabolism. A further KEGG pathway analysis

implicated several metabolic pathways, including amino acid

degradation and fatty acid metabolism, as being affected (Table

S1). We validated several of the most affected genes by qRT-PCR

in the three larval stages and found a good correlation between the

microarray and qRT-PCR results (Table 2).

As the lethal phenotype in the U6atac 2/2 larvae is most likely

mediated by a small number of U12-type intron-containing genes

acting upstream, we analysed their possible links to metabolic

pathways or lethal larval phenotype. Of all the U12-type intron-

containing genes in Drosophila, six are known to have lethal

mutation phenotypes (Table 1). Importantly, among those is

CG15081/l(2)03709, the most significantly downregulated U12-

type intron gene in U6atac 2/2 larvae, which encodes an

ortholog to prohibitin 2 (PHB2). Prohibitin is an essential

mitochondrial protein conserved in eukaryotes from yeast to

mammals [36] and functions as a holdase/unfoldase chaperone

stabilizing membrane proteins [37]. As this U12-type intron-

containing gene displayed the most severe effects in the U6atac

mutant with strong downregulation at the 2nd and 3rd instars

(Fig. 3E, F) we considered it to be the most likely candidate leading

many of the phenotypic changes observed in the U6atac 2/2

larvae.

To find out if the expression of genes encoding for mitochon-

drial components was affected in the U6atac larvae, we further

analyzed the effect of the U6atac mutation on the expression of

nuclear-encoded genes linked to mitochondrial functions. As

shown in Figure 6, we detected widespread changes in the

expression of genes related to mitochondrial functions that were

exacerbated towards the 3rd larval stage. Even though there were

both up- and downregulation in the mutant flies, the downreg-

ulated genes formed the most prominent group (Fig. 6A). Among

genes linked to mitochondrial inner membrane, the bias towards

negative expression change was even stronger (Fig. 6B). Finally, we

compared our data to a recent microarray study in which a

Drosophila line with a mutation in the technical knockout (tko) gene that

encodes the mitoribosomal protein S12 was analyzed using

Affymetrics platform [38]. We did this comparison because

prohibitin mutations have not been analysed in genome-wide

fashion in Drosophila. In the tko mutant line, 970 genes were

identified as significantly altered in males and/or females. We

found that ,15% of the significant genes (95 out of 644 genes) in

the U6atac 2/2 line were shared with the tko line. Assuming that

both experiments shared all the unique FlyBase genes present on

our array (13764 genes), the number of shared genes was 2.1-fold

higher than expected by chance (p,2.6*10212, hypergeometric

test). Furthermore, 67% of these displayed the same direction of

change in both studies (28 up- and 36 down-regulated,

p,6.6*1025 in Fisher’s exact test; see Fig. 6C and Table S2).

The similarities were remarkable because in the Fernández-Ayala

et al. [38] study the flies survived until adulthood and were

sampled at this stage, compared to the 3rd instar larvae used in

our study. We conclude that the phenotypic and gene expression

level effects observed with U6atac 2/2 line are most likely

initiated with a defect in the splicing of the U12-type intron in

prohibitin gene. However, the splicing defects in the other genes

containing U12-type introns probably exacerbate this and further

contribute to the larval lethality.

Figure 4. Expression changes in three representative U12-type intron-containing genes. A–C. Probe-wise microarray results for three
genes representing upregulated (A), nonsignificant (B) and downregulated (C) categories. Error bars indicate standard deviation. Significant changes
at p,0.01 are marked with ‘*’. Schematic drawings of the most common splicing isoforms that indicate the positions of individual probes (horizontal
bars and probe numbers above the exons) and U12-type introns are shown below each bar chart. Filled rectangles indicate exons of the coding
sequence and open rectangles UTR regions. Introns are indicated as lines; the dotted lines indicate large introns that have been truncated in the
schematic picture. D. Validation of microarray results by RT-PCR. Primers were located in exons at either side of the intron indicated.
doi:10.1371/journal.pone.0013215.g004
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Discussion

The Drosophila line with a P-element insertion in the U6atac

gene is unique as it allows investigations on U12-type intron

splicing defects at the organismal scale. An earlier study reported

that this mutation is lethal at the 3rd larval stage [18], but the

information on gene expression changes was limited to few genes

containing U12-type introns. Here we used exon microarrays to

investigate the genome-wide effects of the U6atac mutation on

larval gene expression. We found that this mutation leads to a

large number of cumulative changes in gene expression,

particularly in 2nd and 3rd instar larvae (Figs. 2, 5). Surprisingly,

we found that the exon signals of most genes containing U12-type

introns were not significantly affected by the U6atac mutation. Of

the nineteen documented genes containing U12-type introns only

two were downregulated and five were upregulated at the exon

probe level. However, in each case RT-PCR analysis detected

both unspliced and spliced U12-type introns. The residual U12-

type splicing activity is most likely due to a low level of activity of

the chimeric U6atac snRNA containing both U6atac and P-

element sequences. In addition to the observed changes in U12-

type intron-containing genes, a large number of genes that do not

contain U12-type introns were either up- or downregulated.

Enrichment analysis indicated that genes related to defense

response and detoxification of xenotoxic compounds were the

most significant upregulated gene groups. Conversely, genes

related to various cellular metabolic pathways were enriched

among the downregulated genes.

The relatively weak effect of the U6atac mutation on the

mRNA levels of the genes containing U12-type introns was

unexpected since the U6atac snRNA is a central component of the

U12-dependent spliceosome and is involved in the splicing

catalysis [9,14,17,39], similarly as the U6 snRNA in the U2-

dependent spliceosome [40,41]. A more detailed analysis of a

subset of U12-type intron-containing genes that were either

upregulated or not affected by the U6atac mutation revealed a

substantial level of splicing activity of U12-type introns, but also

accumulation of mRNA species containing unspliced U12-type

introns (Fig. 4D). Together these results suggest that there are two

mRNA populations derived from U12-type intron-containing

genes: fully spliced mRNAs that are presumably efficiently

exported to the cytoplasm, and mRNAs that contain unspliced

U12-type introns that are most likely retained in the nucleus and

possibly subject to nuclear degradation pathways. RT-PCR

analysis indicated that in the U6atac 2/2 larvae the levels of

spliced U12-type introns are approximately 30–50% of the levels

found in heterozygotes (Fig. 4D) or wt larvae (not shown). Thus

our results reinforce the earlier suggestion that the mutated U6atac

snRNA may have retained partial catalytic activity [18].

Alternatively, trace amounts of maternally contributed wt U6atac

snRNA that were not visible in our Northern blot analysis might

still be present in 3rd instar larvae.

Paradoxically, the mRNA-level response to the U6atac

mutation among the individual U12-type intron genes was highly

variable, and most genes containing U12-type introns did not

display any changes at the exon probe level (which measures both

spliced and unspliced mRNAs), while a subset showed either up-

or downregulation. This result is possibly linked to nuclear

retention and/or degradation of the unspliced mRNAs, which

may vary between the individual genes similarly as has been

Figure 5. Hierarchical clustering of the significant genes in the
three larval stages. Clustering was done in JMP/Genomics 7.1/3.1
(SAS) using two-way clustering, with complete clustering method. The
input data was the mean expression difference (probe average)
between U6atac 2/2 and 2/+ larvae for the genes that contained
one or more statistically significant probes. The U12-type intron-
containing genes are highlighted in the heatmap. The genes containing

U12-type introns have been indicated on the left. The cluster numbers
on the right relate to the supplementary Table S1.
doi:10.1371/journal.pone.0013215.g005
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described previously in yeast microarray studies of the U2-

dependent spliceosome [42,43]. Similarly to the yeast studies, we

were not able to identify any common denominators, such as

expression level, splice site strength, or U12-type intron subtype,

from the small group of Drosophila U12-type intron-containing

genes that would have explained the observed gene-specific

differences.

Many of the upregulated or neutral genes containing U12-type

introns displayed substantial amounts of fully spliced mRNA and

therefore it was questionable whether their mRNA levels would be

low enough to contribute to the larval lethality. In contrast, two

genes, CG15081/l(2)03709 and CG33108 showed strong down-

regulation, suggesting that their transcripts may become unstable

upon deficient processing. We hypothesized that one or both of

these genes may play a central role in the larval death, since they

are significantly affected already at the 1st or 2nd larval stage at

the same time when the maternally contributed wt U6atac snRNA

is depleted in the U6atac 2/2 larvae (Fig. 1, 3D–F). Our

enrichment analyses of the genes significantly affected by the

U6atac mutation revealed that many metabolic pathways were

affected. Earlier reports have shown that genes linked to metabolic

functions are mostly devoid of U12-type introns that are instead

concentrated in so-called ‘‘information processing genes’’ [1,4,28].

Even though the number of Drosophila genes containing U12-type

introns has been significantly reduced during dipteran evolution, a

similar enrichment can be observed in this organism (Table 1,

[32]). Only one gene of a known function, CG15081/l(2)03709,

can be directly linked to metabolic pathways. CG15081/

l(2)03709, the fly homologue of prohibitin 2, is the most severely

downregulated gene in U6atac 2/2 larvae that contains a U12-

type intron. The prohibitin complex consists of two subunits,

PHB1 and PHB2, which have multiple roles in the cell. The most

prominent function of the PHB complex is in the mitochondrial

inner membrane, where it is believed to function as a holdase/

unfoldase chaperone stabilizing membrane proteins [37]. It also

has roles in the maintenance of mitochondrial morphology and the

degradation of mitochondrial membrane proteins [44,45]. Dis-

ruption of the PHB complex causes premature ageing accompa-

nied with accumulation of mitochondrial defects and shortening of

replicative lifespan in yeast [46], larval death in Drosophila [47],

and more complex and severe phenotypes in other multicellular

organisms, including animals and plants [48,49]. Our finding that

genes encoding for mitochondrial proteins, in particular those

related to the inner membrane, are affected in the U6atac 2/2

larvae suggests a widespread mitochondrial dysfunction (Fig. 6A,B)

and supports the important role of prohibitin in larval death. More

importantly, a comparison of our data with microarray data from

the tko fly line with a mutation in the mitochondrial protein S12

[38] revealed that a subset (,15%) of genes affected in the U6atac

mutant are also affected in the tko line despite the differences in

developmental stage (adult vs. larvae) or different microarray

platform used. Remarkably, 67% of the affected genes showed a

similar expression change between the two lines (Fig. 6C, Table

S2). The shared genes include detoxification-related transferases,

cytochrome P450 genes and enzymes with functions in nucleotide,

amino acid and fatty acid metabolism, which all are among the

most affected genes in our analyses. Strikingly, the metabolic genes

detected in our study, particularly those related to nucleotide and

amino acid metabolism, are upregulated after overexpression of

MnSOD in Drosophila mitochondria, which extends the lifespan in

Drosophila by decreasing the effect of oxidative stress in mitochon-

dria and by modulating a variety of metabolic pathways through

retrograde signaling of nuclear genes [50]. Similar signaling

pathways may lead to the downregulation of metabolic genes in

mutant U6atac flies as a consequence of prohibitin downregula-

tion.

In summary, we conclude that in Drosophila, the deficiency in

U12-type splicing caused by a P-element insertion to the U6atac

gene leads to a relatively mild splicing defect of U12-type introns.

In most cases, accumulation of pre-mRNAs containing unspliced

U12-type introns, but also formation of fully spliced mRNAs, is

observed. Additionally, the expression of genes related to several

metabolic pathways is significantly downregulated while genes

related to defense responses are markedly upregulated. While it is

likely that the U6atac mutant phenotype results from the

combined influence of insufficient expression of several U12-type

Table 2. Validation of array results by quantitative RT-PCR.

Symbol Flybase ID Name Instar Array log2-fold change qPCR log2-ratio1

CG10091 FBgn0038020 GstD9 1 0.7642 1.4359

2 2.0693 3.6536

3 3.0899 3.1499

CG10812 FBgn0035434 Dro5 1 2.7641 23.4804

2 4.0783 4.0391

3 6.5669 10.1461

CG4486 FBgn0015039 Cyp9b2 1 1.2309 0.2940

2 3.2867 4.7071

3 2.7985 2.9747

CG8864 FBgn0028940 Cyp28a5 1 21.6696 24.2821

2 21.6160 21.8039

3 22.2946 21.5560

CG11455 FBgn0031228 Gh23780p 1 21.0328 20.1779

2 21.3075 20.6010

3 21.5422 20.2134

1The results were calculated with Lightcycler software (Roche Diagnostics) and the control/mutant ratio was transformed into log2 space for comparison.
doi:10.1371/journal.pone.0013215.t002
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intron-containing genes and their downstream effects, our data

suggests that disruption of the prohibitin complex functions may

play a central role.

Methods

Fly strains
The U6atac mutant line l(2)k01105 [51] and the CG13394

mutant line MB08402 (stock BL26111) were obtained from

Bloomington fly stock center, Indiana, USA. The flies were

maintained on standard food at 25uC.

RNA isolation
Larvae were homogenized with Ultra-Turrax tissue homoge-

nizer (IKA-Werke, Staufen, Germany) in Trizol reagent (Invitro-

gen) followed by RNA isolation according to manufacturer’s

instructions except additional acid phenol (pH 5.0) and chloro-

form extractions were performed prior to precipitation. RNA

Figure 6. The effect of U6atac mutation on the expression of mitochondrial genes. A. Volcano plots showing the effect of the U6atac
mutation on all nuclear-encoded mitochondrial genes in the three larval stages. B. Volcano plots showing the effect of the U6atac mutation on the
expression of genes encoding for mitochondrial components related to the inner membrane. C. Comparison of the expression profiles of
U6atac 2/2 and tko mutants. Microarray results from 3rd instar U6atac 2/2 larvae were compared with tko adults [38]. The red color indicates
significant genes in the present study that show unidirectional change in both U6atac 2/2 and tko lines (either up- or downregulated). The blue
color indicates significant genes in the present study that show the opposite direction of change between the U6atac 2/2 and tko lines.
doi:10.1371/journal.pone.0013215.g006
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samples were treated with the DNA-free kit (Ambion/Applied

Biosystems) prior to use in RT-PCR or microarray experiments.

RT-PCR
RNA samples were reverse transcribed with RevertAid M-

MuLV (Fermentas) according to manufacturer’s instructions using

a d(T)20 primer. PCR was performed with 26–28 cycles of 94uC
for 30 s, 62uC for 30 s, 72uC for 30 s. Products were analyzed on

standard agarose or MetaPhor agarose (Lonza) gels with SYBR

Green I (Invitrogen) staining and imaged on LAS-3000 (Fujifilm).

Quantitative PCR
qPCR was performed with Lightcycler 480 real-time PCR

system (Roche Diagnostics) in 10 ml reactions on 384-well plates

using Lightcycler 480 SYBR Green I Master complemented with

5 pmol of primers and cDNA corresponding to 40 ng of total

RNA used in reverse transcription. Three replicates for each

reaction were included in the PCR runs. Results were analyzed

with Lightcycler Software 1.5.0.39.

Northern blotting
Total RNA was analyzed in denaturing polyacrylamide gels

(PAGE) as described [22], probed with full-length probes labeled

with Rediprime II (Amersham/GE Healthcare) and imaged using

BAS-1500 phosphoimager (Fujifilm).

Microarray design
A total of 69,975 Drosophila melanogaster exon sequences were

retrieved from the Ensembl database (build BDGP5.4) via

BioMart service [52]. The fasta-formatted exon sequences were

imputed into Agilent eArray webservice and 64,558 60-mer probes

were retrieved by using the default parameters (https://earray.

chem.agilent.com/). The probes were further tested for possible

partial cross hybridization and 56,163 probes were finally utilized

for producing 105 K Agilent custom arrays. This set of probes

covers all the annotated exons in Drosophila but excludes some very

short or low-complexity exons. In addition, probes spanning the

exon-exon junction were designed for each junction in genes

containing a U12-type intron, but these probes were later

excluded from the analysis due to unreliability. When analyzed

independently, the probes allowed screening the expression of

56,163 exons; additionally, when grouped by gene, they could be

used to measure the expression of 13,974 genes.

Microarray experiments
1 mg of each RNA sample was labeled with Amino Allyl

MessageAmpTM II aRNA Amplification Kit (Ambion/Applied

Biosystems) according to instructions. In vitro transcription

reaction was incubated for 8 hours. Cy3 or Cy5 dyes (Invitrogen)

or ARES Labeling Kit with Alexa Fluor 488 (Invitrogen) was used

to label 5 mg (Cy dyes) or 3.5 mg (Alexa dye) of resulting

aminoallyl-modified RNA. 0.75 mg of each three samples per

array were hybridized with Gene Expression Hybridization kit

(Agilent). Replicate experiments were made with each three colors

for each sample except U6atac 2/+ third instar, for which only

two replicates were made. For CG13394 experiments, no

replicates were made.

Microarray data analysis
The gpr files were imported into R 2.9.0 (cran.r-project.org/)

and analyzed with the BioConductor (www.bioconductor.org)

package Limma [53]. Data exploration and quality control were

performed using the Limma package. The median foreground

probe intensities were utilized for the analysis, without any

background correction, as recommended by Zahurak et al. [54].

For the exon-wise analysis, the probe values from each channel

were log2 transformed and normalized by the quantile method

[55]. The data have been deposited in NCBI Gene Expression

Omnibus database (accession number GSE24148). For the gene-

wise analysis, the average expression values per gene were similarly

processed.

Analysis of variance and moderated t-test were carried out for

finding the differentially expressed exons and genes in each

developmental stage, using the methods implemented into the

Limma package. Furthermore, Fisher’s exact test was used for

finding biological themes over-represented in the differentially

expressed gene lists with DAVID software using GO term

(biological process, cellular component, molecular function),

Interpro domain and KEGG pathway enrichment with default

settings [35].

Statistical comparison of U6atac and tko mutant array data was

done with hypergeometric test (http://elegans.uky.edu/MA/

progs/overlap_stats.html). In the tko mutant, some genes were

significantly expressed in only one sex. The comparison of the

direction of expression changes between the two experiments was

carried out using the expression data from male tko mutant flies,

when available (only one of the genes shared between U6atac

mutant and tko data changed in the opposite direction in tko

females than males), using Fisher’s exact test.

Supporting Information

Figure S1 Expression changes in U12-type intron-containing

genes. Plots depict probe-wise microarray results for upregulated

(CG11984, CG34392, CG7736 and CG18177), downregulated

(CG33108) and nonsignificant (CG7892, CG8408, CG6323,

CG3294, CG15735, CG16941, CG17228, CG11839 and

CG17912) U12 intron genes. Similar plots for CG34449,

CG15081 and CG11328 are shown in Fig. 4. CG15899 and

CG4894 were not plotted due to a large number of exons. Error

bars indicate standard deviation. Significant changes at p,0.01

are marked with ‘*’. Schematic drawings of the most common

splicing isoforms that indicate the positions of individual probes

(horizontal bars and probe numbers above the exons) and U12-

type introns are shown below each bar chart. Filled rectangles

indicate exons of the coding sequence and open rectangles UTR

regions. Introns are indicated as lines; the dotted lines indicate

large introns that have been truncated in the schematic picture.

Found at: doi:10.1371/journal.pone.0013215.s001 (0.25 MB

PDF)

Table S1 Functional analysis of significantly changed genes.

Significantly changed genes in 1st, 2nd or 3rd instar U6atac 2/2

larvae compared to control are ordered by hierarchical clustering

(sheet 1). The coloring of the clusters corresponds with the

heatmap shown in Fig. 5; for description of the clustering method,

see legend to Fig. 5. Other sheets show an enrichment analysis

with DAVID software (see Methods for details) for GO-terms (BP,

biological process; CC, cellular component; MF, molecular

function), protein domains (Interpro) and KEGG pathways, in

different levels of the hierarchical cluster (all clusters combined,

up- or downregulated clusters only and individual clusters

separately). Results of the enrichment analysis are shown for each

of the terms (sheets 2, 4, 6 & 8), and grouped by functional

clustering method (sheets 3, 5, 7 & 9).

Found at: doi:10.1371/journal.pone.0013215.s002 (1.57 MB

XLS)
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Table S2 Comparison of array data from U6atac and tko

mutants. Array data from the U6atac mutant was compared to the

tko mutant data based on Flybase identifiers and the 95 shared

genes were grouped according to the direction of expression

change. In the tko experiment, males and females were studied

separately. Here, data from males was used for comparisons when

available. Expression values are indicated as fold change.

Found at: doi:10.1371/journal.pone.0013215.s003 (0.10 MB

XLS)
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