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ABSTRACT: Predicting the fraction unbound of a drug in plasma plays a significant role in understanding its pharmacokinetic
properties during in vitro studies of drug design and discovery. Owing to the gaining reliability of machine learning in biological
predictive models and development of automated machine learning techniques for the ease of nonexperts of machine learning to
optimize and maximize the reliability of the model, in this experiment, we built an in silico prediction model of a fraction unbound
drug in human plasma using a chemical fingerprint and a freely available AutoML framework. The predictive model was trained on
one of the largest data sets ever of 5471 experimental values using four different AutoML frameworks to compare their performance
on this problem and to choose the most significant one. With a coefficient of determination of 0.85 on the test data set, our best
prediction model showed better performance than other previously published models, giving our model significant importance in
pharmacokinetic modeling.

B INTRODUCTION nutrients, hormones, and proteins to the tissues and waste
Computational drug discovery has rapidly evolved into an products back from the tissues for elimination (Figure 1).

alternative to the development of novel drugs,' and in the last As it is known that unbound drug in plasma is capable of
few years, it has also been reported that the majority of new showing pharmacological activity by interacting with the targets
drugs have originated from academia.”? Although a large such as proteins, enzymes, receptors, and channels, for the

number of drugs have been reported by academic researchers,
the majority of them fail to interest the pharmaceutical industry
due to the lack of proper pharmacokinetic and toxicity studies.”
Given the above, accurate in silico prediction models of

construction of a pharmacokinetic model, the fraction unbound
in plasma (f,,,) of a drug is an important factor in determining
the drug efficacy. It has also been reported that f, , influences

; istributi ; i i various other factors of drug efficacy and side effects’ rangin
absorption, distribution, metabolism, excretion, and toxicity g <y ging
(ADMET) can be a valuable asset to pharmaceutical scientists. from renal glomerular filtration to total clearance and hepatic
These models can help in screening the novel druglike metabolism.® Considering the importance of fup in determining
compounds for consideration in clinical trials. the efficacy of the drug molecule, it is important to make a

Plasma is an important component of the cardiovascular
system that plays a significant role in the transportation of drugs
throughout the body, especially during intravenous admin-
istration. Plasma is the straw-colored liquid portion of blood. Received: December 1, 2020
About 55% of our blood is plasma, and the rest 45% comprises Accepted: February 19, 2021
red blood cells (RBCs), white blood cells (WBCs), and platelets Published: March 5, 2021
that are suspended in the plasma, occupying arterial and venous
space including space within the tissues, Plasma helps in
interconnecting different organs and tissues for transportation of

precise prediction of f, , during drug development.
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Figure 1. Structure of a simplified PBPK model for human body
pharmacokinetics with tissues interconnected by plasma (black arrows)
and lymph (green arrows) flows.

Owing to the importance of f,, in drug discovery, various
QSAR models of f, , are available, but most of these models are
focused only on individual plasma proteins,”” confined to a
narrow data set'® or specific to categorical drugs.'' Only a few
models are generated using large data sets, but almost all of these
models rely on commercial software to generate descriptors with
almost none using freely available software.*”"* In addition to
these predictive models, there are some commercial software
that predict f, . To the best of our knowledge, no prediction
model is available that uses free software and a fingerprint-based
approach at this moment.

In the field of bioinformatics, the generation of predictive
models using machine learning algorithms for building an
accurate model to predict a variable of interest is gaining
attention.''” However, choosing an appropriate model
requires sample characterization, fine-tuning of parameters,
and comparing configurations.'® These extensive steps to find a
suitable model for the given data pose significant problems,
especially to nonexperts of machine learning. Given this,
recently, automated machine learning (AutoML) is being
looked into, where AutoML takes advantage of data complexity
and automatically identifies the most appropriate model along
with the hyperparameters, thus simultaneously optimizing the
performance and maximizing the reliability of the model."”
Considering the advantages of AutoML, many different AutoML
frameworks have been developed, with auto-sklearn,”® Auto-
WEKA,'”*! AutoKeras,”> H20 AutoML,* PyCaret,24 and
TPOT? being a few examples.

In this study, we built an f, , prediction model trained on a
comparatively very large data set of experimental values from
5471 compounds. We implemented an automated machine
learning approach focusing on molecular-descriptor-free model-
ing for the ease of users. To create a large and diverse data set, we
compiled the experimental values from the CAEMBL*® database
and processed the data for consistency using ad hoc scripts.
Then, the PubChem fingerprint (ftp: //ftp.ncbi.nlm.nih.gov/
pubchem/specifications/pubchem_fingerprints.pdf) of each
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molecule was calculated to train the model avoiding any
molecular descriptors to represent the chemical structures.
Later, the prediction models were generated using the AutoML
technique. With auto-sklearn being declared the overall winner
of the ChaLearn AutoML Challenge twice, AutoKeras utilizing
Tensorflow, which is backed by industrial experts, PyCaret being
a low-code machine learning library that automates machine
learning workflow, and TPOT being an automated machine
learning tool that optimizes machine learning pipelines, we have
utilized auto-sklearn v0.8.0, AutoKeras v1.0.4, PyCaret v2.2, and
TPOT v0.11.2 to build the model and as well to evaluate their
performance on this problem. The prediction models fared
excellently when compared to previously available models.

B MATERIALS AND METHODS

Data-Set Preparation. ChEMBL, a manually curated
database of druglike molecules, was used in this study. For the
construction of the prediction model, the reported values of PPB
or f,, obtained from ChEMBL were considered.

From the ChEMBL 27 database, about 16 million records of
molecules containing activity data are filtered and downloaded.
Then, the records containing human f,, or PPB data were
extracted from the obtained data using “PPB”, “Unbound
plasma”, and “%PFU” as keywords in the “standard type” field,
resulting in 9463 records. To filter records that are incomplete or
that did not satisfy the inclusion criteria, the records with ranged
values such as “ > 7, “ <7, “ > =7 and “>" were removed,
resulting in 8810 records. If a molecule had more than one entry,
the average of their values was taken into consideration,
ultimately resulting in 5471 records.

Descriptor Calculation. Although a large number of
descriptors can be calculated using various descriptor calculation
software, considering the information available in a PubChem
fingerprint, only PubChem fingerprints of the compounds were
used to train the model. PaDELPy, a Python wrapper for
PaDEL-Descriptor software, was used for calculating the
PubChem fingerprints.

Data Analysis. Data analysis was performed in Python, and
the results were visualized using Matplotlib.”” The diversity of
the data set was visualized by constructing a histogram of the
number of compounds per 1% bracket of f, , percentage values.
Further, Simpson’s diversity index (SDI)*® was calculated to
statistically evaluate the diversity of the data set. SDI measures
the community diversity with a value ranging between 0 and 1,
with values closer to 1 indicating a high diversity. The SDI was
calculated by classifying the compounds into 20 different species
based on their f, , percentage value with classifying compounds
in every 5% bracket as the same species.

Model Construction. Auto-sklearn, AutoKeras, PyCaret,
and TPOT, the Python modules, and automated machine
learning toolkits were used in building the prediction models.
The PubChem fingerprints, each containing 881 binary values as
calculated by PaDEL, were used in model construction. The data
set was split into training (4103 records) and test (1368 records)
sets using random selection at a ratio of 3:1 before constructing
the regression model. Finally, the best models constructed by
auto-sklearn, AutoKeras, and PyCaret were evaluated for their
performance on the test set using a range of metrics, and further,
the models were saved for predictions. To evaluate and find the
most effective automated machine learning toolkit for a
nonexpert of machine learning, all of the optional parameters
were largely set to their default values.

https://dx.doi.org/10.1021/acsomega.0c05846
ACS Omega 2021, 6, 6791-6797
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Auto-Sklearn. Auto-sklearn is a robust AutoML library based
on scikit-learn, a Python-based machine learning package. It
generates the prediction model considering 14 feature
preprocessors, 4 data preprocessors, and 15 classifiers,
constructing a hypothesis space with 110 hyperparameters. To
generate an efficient prediction model, auto-sklearn uses a meta-
learning technique for optimization that is known to show a
considerable boost in efficiency. It also includes an automated
ensemble constructor to construct a prediction model
considering all of the classifiers that were found by the
optimizer, further increasing the efficiency.

To construct a prediction model using auto-sklearn, the
training set was subjected to the regression module of the auto-
sklearn toolkit. The model was constructed using a fivefold
cross-validation resampling strategy, with other parameters set
to default. Further, the model was evaluated using the test set
and the graphs are plotted for visualization.

AutoKeras. AutoKeras is an AutoML library that is based on
Keras, which is built on top of TensorFlow and is an industrial-
grade framework that is used in scientific organizations of
significant importance around the world. Just like other AutoML
libraries, the goal of AutoKeras is to help domain experts who are
not familiar with machine learning techniques to use the power
of ML in their domain of expertise. Unlike many other libraries,
AutoKeras focuses on model construction using deep learning
techniques through efficient neural architecture search with
network morphism.

To construct a prediction model using AutoKeras, the
structured data regression function of AutoKeras was used to
train the model. The training set was used to train the model
specifying the test set as the validation data while setting all other
parameters including maximum trials and maximum epochs per
trial to the default value. The graphs of the constructed and
hyperparameter tuned model were plotted for visualization.

PyCaret. PyCaret is a Python wrapper around several
machine learning libraries and frameworks such as scikit-learn,
XGBoost, Microsoft Light GBM, and spaCy, among others. Also
featuring hyperparameter tuning and ensembling techniques to
increase the efficiency of the identified model, it aims to reduce
the time taken to construct a suitable machine learning model,
thus helping researchers perform experiments quickly and
efficiently.

To construct a prediction model using PyCaret, the whole
data set was passed to the regression module of PyCaret 2.2,
which splits the data set into training and test sets of 70% (3829)
and 30% (1642) records, respectively, by default. Further, all of
the models from the available machine learning libraries and
frameworks were trained on the training set, and the top five
models based on their R* score were selected for further steps.
The selected models were subjected to hyperparameter tuning,
specifying to optimize the R* score. Further, all of the tuned
models were ensembled using the bagging method, which is
known to improve the stability and accuracy of the regression
models. After ensembling, the best of all of the models were
calculated and selected using the AutoML function, further
optimizing the R* score before finalizing the model for saving.

TPOT. TPOT, built on top of scikit-learn, is an AutoML
library that is designed to select and optimize efficient machine
learning models and their parameters using genetic program-
ming. TPOT explores thousands of possible pipelines to identify
and optimize the best analysis pipeline for the given data.

The training set was subjected to the regression module of
TPOT, and the constructed pipeline was evaluated using the test
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set. The generations and population size were set to the default
value of 100 each while setting all other parameters to default.
The evaluation graphs of the pipeline are plotted for
visualization.

B RESULTS

Chemical Space Diversity Analysis. To visualize the
diversity of the data set obtained from ChEMBL, a histogram
plot of the number of compounds per 1% bracket of f,, values
was generated. The histogram plot with the y-axis plotted on a
logarithmic scale for ease of visualization is shown in Figure 2. As
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Figure 2. Histogram plot of the frequency of compounds from the data
set concerning the f, , value per 1% bracket on a logarithmic scale.

seen, although the data set was largely diverse, it was skewed
toward higher percentages of f,, values. Therefore, to
statistically confirm the diversity measure of the data set, the
SDI of the data set was calculated. As stated, the SDI helps in
measuring the diversity of the population. With an SDI of 0.728,
the data set is considered to be highly diverse and can be used for
training the prediction model.

Performance of Regression Models. The regression
models of f,, were generated using auto-sklearn, AutoKeras,
PyCaret, and TPOT. For a diverse data set, the coeflicient of
determination (R*) along with RMSE is considered to be a
reliable statistic for the evaluation of the prediction model. The
statistical significance of the generated continuous models on
the training set and the test set giving their coefficient of
determination (R?), the mean absolute error (MAE), and the
root-mean-square error (RMSE) is given in Table 1.

Based on the statistical values, it appears that PyCaret
generated a highly significant prediction model with an RMSE of
8.44 on the test set, while auto-sklearn and TPOT overfitted the
prediction model on the training data. On the other hand,

Table 1. Statistical Values of the Generated Prediction
Models on the Training and Test Sets

R%: MAE: RMSE: R%: MAE:  RMSE:
model train train train test test test
Auto- 0.94 3.52 5.54 0.55 10.23 15.80
sklearn
AutoKeras 0.88 5.18 7.61 0.54 10.80 15.97
PyCaret 0.86 5.59 8.50 0.85 5.52 8.44
TPOT 0.92 4.21 6.59 0.51 9.40 15.02

https://dx.doi.org/10.1021/acsomega.0c05846
ACS Omega 2021, 6, 6791-6797
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Figure 3. Plots of the experimental and predicted f,, , by the generated models on training and test sets: (a) PyCaret, (b) auto-sklearn, (c) AutoKeras,

and (d) TPOT.

AutoKeras generated an insignificant and least reliable model
with an RMSE of 15.97 on the test set. The plots between the
experimental and predicted f,, as predicted by the generated
models are shown in Figure 3, where the X-axis and Y-axis
represent the experimental and predicted values, respectively,
and the blue and red colors represent the training and test sets,
respectively. The black diagonal line represents the identity line.

The statistical values reveal that AutoKeras, auto-sklearn, and
TPOT overfitted the model onto the training set that largely
comprises compounds with high range values. The model
generated by PyCaret is the best of all four and is also better than
most of the previously published models. The saved file of the
best model is provided in the Supporting Information file S1.zip
along with the instructions for usage.

Considering the statistical results and the plots, the model
generated by PyCaret can be used for prediction of fraction
unbound in human plasma and PyCaret can also be used
seamlessly for generating prediction models in bioinformatics.

Analysis and Comparison of the Best Model. To
evaluate our best model further, the data diversity of the
training and test sets as split by PyCaret is plotted as a frequency
histogram of the number of compounds per 1% bracket on a log
scale as shown in Figure 4, where the orange bars represent the
training set, the green bars represent the test set, and the blue
bars represent the complete data set. The frequency histogram
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plot of the training and test sets reveals that the split data sets are
relatively unbiased toward high or low ranges when compared to
the complete data set.

As it is known that PyCaret is a wrapper around several
machine learning libraries and frameworks, the model
constructed by PyCaret is further analyzed to understand the
details of the best algorithm selected by the AutoML function.
The best selected model is found to be the bagging regressor,
with the base estimator as the Light GBM Regressor.

Further, our best model was compared with a previously
published freely available prediction model using the DruMAP
Web server.'® Five hundred molecules were randomly selected
from our test set, and the SMILES notion of each molecule was
converted into a two-dimensional SDF format using Open
Babel,”” and their fup values were predicted using the DruMAP
server. As the DruMAP server provides outputs in a range of 0—
1, the predicted values are multiplied by 100 for consistency with
our model and an experimental vs predicted value plot is plotted
for visualization, as shown in Figure 5. The statistical RMSE
value of 81.64 and the experimental vs predicted value plot on
our test set suggest that the previously published model available
on the DruMAP Web server is highly insignificant in predicting
the f,, values when compared to our model.

https://dx.doi.org/10.1021/acsomega.0c05846
ACS Omega 2021, 6, 6791-6797


http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05846/suppl_file/ao0c05846_si_001.zip
https://pubs.acs.org/doi/10.1021/acsomega.0c05846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05846?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c05846?ref=pdf

ACS Omega

http://pubs.acs.org/journal/acsodf

103 4

Frequency
-
o

=

o
r
!

10° 4

40

60

Fraction unbound plasma %
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Figure 5. Plots of the experimental and predicted f, , by the DruMAP
server and our best model on 500 randomly selected compounds from
the test set.

B DISCUSSION

In recent years, the role of bioinformatics in drug discovery has
gone a long way from target identification to diverse applications
including commercial-level drug discovery.”® To further the
effectivity of academic research on in silico drug discovery,
pharmacokinetic prediction models prove to be highly cost-
effective in studying the pharmacokinetic properties of the drugs
during the screening process. Although there are many
prediction tools to study the pharmacokinetic properties of a
compound, most of them are limited to lipophilicity and
Lipinski’s rule of five.*!

It has been studied that protein plasma binding or fraction
unbound in plasma can significantly affect the clearance,
distribution, and effects of a drug, and because of this, accurate
prediction models of f,, are necessary to aid in in silico
pharmacokinetic studies. Although f,, values cannot directly
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ensure the success of a drug, it helps in deciding the dosage of the
drug, which is a highly important aspect in toxicity studies. In
this study, continuous regression models to predict the f,, , of the
drug were constructed with a large and diverse data set of 5471
experimental records using an automated machine learning
approach. To construct an optimized and reliability model, the
automated machine learning technique was used to construct
the model. To further help biologists who are nonexperts of
machine learning in successfully constructing a prediction
model, four well-known automated machine learning toolkits
and libraries were evaluated for their performance on this
problem. Further, considering the information represented in a
PubChem fingerprint, only the PubChem fingerprints of the
molecules were used to train the model.

As shown in Figure 2, the data set is weighted toward the
highly unbound compounds. To confirm the statistical diversity
of the data set, the SDI of the data set was calculated, which
revealed a score of 0.73, confirming its diversity. The model
constructed by auto-sklearn showed the lowest error rate among
the four models on the training set, but its performance on test
data along with TPOT was subpar when compared to other
models. Statistically speaking, auto-sklearn was better than
AutoKeras in all parameters, but the experimental vs prediction
plot reveals that AutoKeras performed slightly better than auto-
sklearn and TOPT in the lower ranges. On the other hand,
although the RMSE of the model generated by PyCaret on the
training set was lower than all of the other models, it performed
excellently on the test set. This model also performed better than
most of the previously available models and can be used for
prediction of f, , values. Conclusively, as only AutoKeras and
PyCaret consider the test set to fine-tune the hyperparameters
without directly training on them, these two AutoML frame-
works can be considered to build a prediction model on
biological data, with PyCaret proving better in this case. As it is
known that f,,, plays a significant role in other pharmacokinetics
such as clearance, elimination, and volume of distribution, we
believe that this model will boost drug discovery in academia and
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this study will also help biological researchers in constructing an
efficient prediction model by transiting toward the AutoML
approach.

Although in recent times bioinformatics models are playing an
important role in pharmaceutical and drug discovery studies,
these models do have their own limitations, which have to be
considered before employing their predictions in clinical studies.
Major issues of the bioinformatics models are their inability to
correctly model the complex biological parameters, biasness of
the data obtained for the study, and overfitting of the models
onto the data set. The inability to correctly predict the results of
the new data when it does not fall in the training data
distribution is also a major drawback of the bioinformatics
prediction models.

B CONCLUSIONS

In the present work, we curated ChEMBL, one of the largest
manually curated chemical databases of bioactive druglike
molecules, and generated a data set of compounds containing
plasma protein binding or fraction unbound plasma data. This
data set is used to develop a prediction model using automated
machine learning methods, by only using the PubChem
fingerprints of the compounds rather than chemical descriptors.
With all of the models validated on the test set, the best model
performed excellently in predicting the f,, , values on the test set.
Our study evaluates four different AutoML toolkits on this
problem to help biological researchers with no machine learning
expertise transit toward machine learning and construct highly
significant prediction models. In summary, we built a prediction
model of f,, that outperformed previously published models
and can be a useful tool in pharmacokinetic modeling and in
silico drug design and discovery.
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© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.0c05846.

Pickle file of the best model for predictions, along with the
instructions of usage and the PyCaret textual output of the
best model (ZIP)

Complete data set along with training and test sets of
PyCaret and the output of DruMAP used for comparative
analysis (XLSX)

2D SDF format of the molecules used for DruMAP
prediction (ZIP)
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