
© 2025 Journal of Medical Signals & Sensors | Published by Wolters Kluwer - Medknow� 1

Address for correspondence: 
Dr. Vahid Abootalebi, 
Department of Electrical 
Engineering, Yazd University, 
Yazd, Iran. 
E‑mail: abootalebi@yazd.ac.ir

Abstract
Background: Accurate classification of electroencephalogram (EEG) signals is challenging given the 
nonlinear and nonstationary nature of the data as well as subject‑dependent variations. Graph signal 
processing (GSP) has shown promising results in the analysis of brain imaging data. Methods: In this 
article, a GSP‑based approach is presented that exploits instantaneous amplitude and phase coupling 
between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the 
Hilbert‑transformed EEG signals is obtained, in which simultaneous diagonalization of covariance 
matrices provides the basis of a subspace that differentiates two classes of right hand and right foot 
MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted 
in the spectral domain of the graphs by ranking the graph frequency components using a feature 
selection method. The selected features are fed into a binary support vector machine that predicts 
the label of the test trials. Results: The performance of the proposed approach was evaluated on 
brain–computer interface competition III (IVa) dataset. Conclusions: Experimental results reflect that 
brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG 
signals show comparable performance with the best results reported on these data in the literature, 
indicating the efficiency of the proposed method compared to the state‑of‑the‑art methods.
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Introduction
Graph signal processing  (GSP) is a recently 
emerged data analysis paradigm that enables 
applying signal processing techniques to data 
that reside on graphs.[1‑3] A graph is a structure 
consisting of a set of vertices (nodes) that are 
connected by edges (links). In particular, GSP 
has shown promising results in the analysis of 
human brain functional magnetic resonance 
imaging,[4‑6] for example, for enhanced brain 
activation mapping,[7] classification,[8,9] and 
dimensionality reduction.[10] More recently, 
by deriving the underlying graph structure 
embedded in electroencephalogram  (EEG) 
data, GSP has provided the means 
for enhanced characterization of EEG 
signals.[11‑14]

In contrast to their high temporal resolution 
in the range of milliseconds, EEG signals 
suffer from poor spatial resolution, which 
stems from two main factors: volume 
conduction effect of the head and low 

signal‑to‑noise ratio. Each EEG electrode 
records the electric field generated from 
millions of neurons, which get smeared 
during transmission from the source of 
activity to the scalp, known as volume 
conduction. Low spatial resolution of EEG 
signals sheds light on the importance of 
considering the latent spatial organization 
in these data. Graphs can be leveraged 
to unravel this hidden structure in EEG 
data and to extract spatial features. GSP 
techniques have been successfully utilized 
in denoising,[11] dimensionality reduction,[12] 
and motor imagery  (MI)  decoding[13,14] of 
EEG signals. In the study by Cattai et al.,[11] 
a GSP‑based algorithm is proposed to 
address the problem of denoising common 
functional connectivity estimates to improve 
the detectability of different connectivity 
states. A  dimensionality reduction method 
is proposed in the study by Tanaka 
et  al.[12] for multiclass  EEG classification. 
In this method, dimensionality reduction is 
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achieved by spectral decomposition of a predefined brain 
graph. The brain graph is derived from a geometrical 
distribution of EEG electrodes. A novel GSP‑based method 
on learned graphs is presented in the study by Miri et al.[13] 
for transforming EEG data into a spectral representation 
to extract spatial signal information from data. The 
applicability of the method was validated within the setting 
of classifying MI tasks.

Discrimination of dynamic states arising during the 
imagination of different motor tasks from EEG data is 
a challenging task in brain–computer interface  (BCI) 
systems.[15,16] Many methods have been suggested in the 
literature for classifying MI‑BCI tasks using EEG signals, 
focusing on features derived from the time, spatial, or 
frequency domains.[17‑19] The use of wavelet transform, 
Riemannian geometry, transfer learning, and deep learning 
have been proposed for this purpose.[20‑23] Although 
deep learning‑based methods provide high classification 
accuracies, these approaches have two main drawbacks: the 
learning process of networks is time‑consuming; moreover, 
these methods suffer from overfitting problem, especially 
for data with a small number of training trials in each class.

Typically, changes that appear in EEG data during MI 
tasks are measured by estimating the EEG signal power in 
specific frequency bands. However, the use of amplitude or 
phase information of EEG signals has also recently shown 
promising results in this application.[24,25] Considering that 
EEG signals are nonlinear and nonstationary, utilizing 
instantaneous amplitude or phase coupling between EEG time 
series enables a better understanding of the dynamic behavior 
of these signals. In the study by Huang et al.,[24] phase‑locking 
value  (PLV) and Phase‑lag index  (PLI) networks were 
combined with convolution neural networks for EEG motor 
movement/imagery classification. A  method based on time–
frequency‑space pattern optimization was presented in the 
study by Liu et  al.[25] that utilizes the Hilbert transform and 
common spatial patterns for MI EEG classification.

Inspired by the successful application of GSP in brain 
signal analysis, in this work, we propose a method for 
decoding MI tasks by deriving a graph representation 
from the instantaneous amplitude and phase of EEG 
signals. In the first step of the proposed method, a proper 
graph that captures the intrinsic underlying relation in the 
brain data should be defined. Consistent with prior related 
works,[13,14] we considered each electrode as a node of the 
graph. To obtain graph edges, we utilized four Hilbert 
transform‑based functions to characterize the functional 
connectivity between EEG signals. In the next step, the 
brain data is mapped onto the Laplacian harmonics of the 
defined graphs. Then, the covariance matrix of the resulting 
spectral representations for each class of data is calculated. 
These covariance matrices are simultaneously diagonalized 
to form the basis of a subspace, in which two classes of MI 
tasks are maximally differentiated. To determine the most 

discriminative subspace, we explored the spectrum of the 
graphs by ranking the frequency components using a feature 
selection method. A  binary support vector machine  (SVM) 
was then trained using the selected features to predict the 
label of the test trials. Finally, the results obtained from 
the proposed method are compared to some state‑of‑the‑art 
methods. The following sections of this article are structured 
as follows: Section “materials and methods” reviews the 
fundamental concepts and presents the proposed approach. 
Section “experimental results” elaborates on the results of 
the conducted experiments, and Section “discussion and 
conclusions” concludes with a discussion and final remarks.

Materials and Methods
Data

To conduct experiments and examine the performance of 
the proposed algorithm for classifying motor imagery tasks, 
publicly available EEG signals from BCI Competition 
III‑Dataset IVa were used.[26] These signals were captured 
from five healthy individuals  (labeled as aa, al, av, aw, 
and ay, respectively) with a sampling frequency of 100 Hz 
utilizing 118 electrodes organized according to the 10/20 
system. Each subject was shown 280 visual cues for 3.5 s, 
providing 140 trials per class for right hand and right 
foot MI classes. According to the competition instruction, 
recorded trials have been divided into two sets of training 
and test data with different set sizes in each subject. For 
the first two subjects, aa and al, 60% and 80% of trials 
were labeled as training sets. For the other three subjects, 
av, aw, and ay, respectively, 30%, 20%, and 10% of the 
trials were considered as training sets. The rest of the trials 
in each subject were considered for the test sets.

Graph signal processing fundamentals

Let G = (V, E, A) represent an undirected, weighted graph, 
where V = {1, 2,…, N} refers to the N nodes  (vertices) of 
the graph, E is the edge set (pairs [i, j] for i, j∈V), and A is 
the graph weighted adjacency matrix which is a symmetric 
matrix. To exploit the spectral properties of the graph, 
the graph Laplacian matrix is defined as L  =  D‑A, where 
D is the degree matrix, i.e.,  Dii = ∑j Aij. The symmetric 
normalized graph Laplacian is given as:

 � � �
� � � �
D L D I D A D

1
2

1
2

1
2

1
2 , � (1)

Where I indicates the identity matrix. Given that   
is positive semidefinite and real, it allows for eigen 
decomposition, represented as:

 � U U� T , � (2)

where T indicates the transpose operator, U =  {u1, 
u2,…, uN} is the matrix of eigenvectors containing the 
orthonormal eigenvectors of   in its columns, and Λ is a 
diagonal matrix that includes the corresponding eigenvalues 
0= λ1 ≤ λ2 ≤ … ≤ λN ≤ 2.
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f is a graph signal that can be described as an N×1 vector. 
The n-th element of f reflects the signal value associated 
with node n in G.  Graph signal f can be mapped onto 
the Laplacian eigenvectors and converted into a spectral 
representation called the graph Fourier transform  (GFT) of 
f[2] as:

ˆ= .Tf U f � (3)

The eigenvalues of the Laplacian matrix characterize the 
graph spectrum, while the associated eigenvectors provide 
an orthonormal basis that spans the graph spectral domain. 
Similar to the classical Fourier transform that encodes the 
temporal variation of signals, GFT encodes the spatial 
variability of graph signals. As such, graph Laplacian 
eigenvectors associated with higher eigenvalues capture a 
greater degree of spatial variability.[1,27] More explanation 
on GSP fundamentals is provided in supplementary 
information.

Graph representation of brain signals

In order to obtain a graph representation of brain signals, 
we defined subject‑specific graphs by quantifying the 
functional connectivity between the signals acquired 
from electrodes. To compute the functional connectivity, 
we utilized the Hilbert transform of time courses. More 
precisely, the analytical form of signals is determined using 
the Hilbert transform as:

x x xa

j t
t t j t t e� � � � � � � � � � � � �{ } A � � (4)

Where x(t) is the signal located on an electrode, xa(t) is the 
analytical signal, and { }x t� �  is the Hilbert transform of 
x(t) which is obtained as:
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Where PV is Cauchy Principal Value and A(t) and � t� �  
in Eq. 4 indicate the instantaneous amplitude and phase 
of the signal, respectively. The amplitude and phase of 
the analytical signal is considered to obtain different types 
of functional connectivity. In this article, we utilized four 
types of Hilbert transform‑based definitions of connectivity 
to define EEG graphs: one based on the amplitude and 
three based on the phase information. In the following, a 
description of these graphs is presented.

Amplitude envelope correlation

The amplitude envelope is defined as the absolute value 
of the Hilbert transform of the brain signal and reflects 
fluctuations in signal energy over time. Amplitude envelope 
correlation  (AEC) is obtained by calculating the Pearson’s 
correlation between the instantaneous amplitude of signals 
and computes the synchrony between the brain’s functional 
networks. The range of AEC is between 0 and 1, with 

higher values indicating the synchronous fluctuations of 
amplitude envelopes.[28]

Phase‑locking value

PLV calculates the time‑varying phase difference between 
two signals as a measure of phase synchronization between 
the signals as:

PLV e j t� �
��

�
��

� �
E

��
, � (6)

where �� t� �  is the phase difference between two time 
points of the signal and E[.] denotes the expected value. 
The range of PLV is between 0 and 1 with 0 indicating no 
phase locking and 1 indicating complete phase locking.[29]

Phase‑lag index

PLI is another measure that is used to quantify phase 
synchrony between the signals from different brain 
regions. The PLI provides information about the functional 
connectivity of the brain based on the stability of the phase 
difference between two signals. This measure is defined as:

PLI sgn t� � �� ��
�

�
�E �� , � (7)

and is determined by calculating the average of the values 
obtained from the sign function applied to the difference of 
the instantaneous phase values of two signals, where sgn(.) 
denotes the sign function; note that PLI values fall within 
the continuous range [0 1]. Higher values of PLI indicate 
stronger phase synchronization between signals.[30]

Phase linearity measurement

This measure, which is a generalization of PLI, measures 
the synchrony of brain regions by observing their phase 
difference in time while accounting for small differences 
between the main frequency components of the signals. In 
particular, phase linearity measurement  (PLM) calculates 
the percentage of spectral energy in a 2B narrow band 
centered at 0 in terms of the total signal energy.
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Where �� t� �  is the phase difference between two time 
points of the signal, T is the number of time points located 
on each node of the graph, and B is considered to be 1 Hz 
by default.[31]

Proposed method

First, EEG graphs specific to each subject are extracted. 
By considering each subject’s EEG data as graph signals, 
a spectral representation for the graph signals residing 
on these graphs is obtained by computing the GFT 
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coefficients of the EEG signals. Then, to account for 
signal temporal dynamics, the FK transform has been 
used, which operates on the GFT coefficients and provides 
a discriminative subspace in the graph spectrum domain 
that can be employed to differentiate between two types of 
motor imagery tasks.[32] More precisely, by simultaneous 
diagonalization of covariance matrices of the GFT 
coefficients, a basis is obtained by mapping on which in 
one class, the variance of the signals is maximized, whereas 
for the other class, it is minimized. In this way, maximum 
differentiation between the classes of data is provided in 
a reduced dimension space. Finally, the variance of the 
representations mapped into this subspace is used as feature 
vectors to train and test the classifier.

Figure  1 provides a schematic representation of the 
proposed approach. Time points from 0.5 to 2.5 s after the 
visual cue for each trial were used to extract graph signals. 
Specifically, the EEG signal values across 118 electrodes 
per time instance were treated as one graph signal, resulting 
in 200 graph signals per trial. Given that motor imagery 
tasks modulate the mu and beta rhythms, EEG signals 
were filtered using a third‑order Butterworth filter with a 
passband of 8–30 Hz.

To extract features for classification, we derived 
subject‑specific graphs from the whole set of EEG trials at 
hand, using the methods described in the previous section. 
Let F =  [f1,…, fT] denote a set of graph signals at T time 
instances, where X  =  FT contains signals residing on the 
electrodes in its columns, such that xi(t) is the signal 
residing on electrode i, for i  =  1,…,118 and t  =  1,…, T. 
By computing the analytical form of xi  (t) signals, the 
instantaneous amplitude and phase of the signals located 
on the electrodes were determined, which were used to 
obtain the AEC, PLV, PLI, and PLM graphs for each 
subject. Adjacency matrices and histogram of the Laplacian 
eigenvalues for the graphs of subject aa are presented in 
Figure  2. The eigenvectors of the normalized Laplacian 
matrix of each graph were utilized to compute the GFT 
coefficients for graph signals that have been demeaned 
and normalized. As such, a graph spectral representation 

of EEG signals was obtained. A  representative subset of 
eigenvectors of the graphs derived for subject aa is shown 
in Figure 3.

The covariance matrix of the GFT coefficients for each 
class of data was then computed. In order to take into 
consideration the temporal information embedded in the 
EEG data, we used the FK transform, which simultaneously 
diagonalizes these two symmetric covariance matrices. This 
transform consists of three steps: whitening, simultaneous 
diagonalization, and finding the projection matrix. The 
projection matrix W maximizes the variance of EEG 
signals for one class while minimizing it for the other class. 
The W matrix was used to project the GFT coefficients to 
a discriminative feature space for two MI classes of right 
hand and right foot. More details and formulation of the FK 
transform are provided in Appendix 1 for interested readers. 
Then, the features extracted from this two‑dimensional 
subspace were used for classification using a binary SVM 
classifier.

Experimental Results
As explained before, to obtain a graph representation of 
EEG signals, the methods described in section “graph 
representation of brain signals” were used. In our 
experiments for MI classification, the training set assigned 
to each subject was used to train the algorithms, and the 
performance of the proposed method was evaluated by 
determining the label of the trials belonging to the test set. 
In the first step, five different subsets of GFT coefficients 
were used to determine the mapping matrix and extract the 
feature vectors: all frequencies (AF), low frequencies (LF), 
medium frequencies (MF), and high frequencies (HF). This 
splitting was chosen as an initial coarse division of the 
spectrum, based on the prior works,[5,11] and was obtained 
by splitting the graph spectrum into three equal subbands. 
Concatenating the two subsets LF and HF provides the fifth 
subset, LF + HF.[11]

In the next step, these subsets of GFT coefficients are 
separately subjected to the FK transform to extract two 

Figure 1: A schematic overview of the proposed method
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discriminative filters placed in the rows of the mapping 
matrix W. The filters derived for subject aa using the 
four studied graphs are shown in Figure  4. Consequently, 
the logarithm of the variance of the GFT coefficients 
projected onto W provides features for classifying two MI 
tasks using SVM with linear kernel. SVM was selected 
because of its robustness and superior performance in 
BCI applications compared to other classifiers,[16] and low 
computational cost. Results of Using RBF Kernel in SVM 
is provided in supplementary information. Tables 1-4 show 
the classification performance achieved using four brain 
graphs for each subject separately, as well as the average 
across all subjects in five different frequency bands.

Across all graphs, classification performance achieved using 
the LF subset of the GFT coefficients notably outperforms 
the accuracy obtained using the MF and HF subsets which 
is consistent with previous studies.[12] Using both the AEC 

and PLV graphs, in four subjects and on average across 
all subjects, classification accuracy in the LF subband 
outperforms using the other subbands. For subject av, the 
best accuracy was obtained using all GFT coefficients. In 
the PLI and PLM graphs, the best accuracies are obtained 
in three of five subjects for both the AF and LF  +  HF 
subbands. In subject ay, LF coefficients resulted in the best 
accuracy. Moreover, classification accuracy on average 
across all subjects in the PLI and PLM graphs achieved 
the best result using the LF + HF subset. Overall, the best 
accuracy on average across all subjects was obtained using 
the PLV in the LF subband.

To identify the key features that are most effective for 
the classification of MI data, we used a feature selection 
algorithm that ranks the spectral graph components 
using the Wilcoxon statistical test. The logarithm of the 
variance of GFT coefficients was used as the input of 

Figure 2: (a) Adjacency matrices of the graphs obtained for subject aa. (b) Histogram of the normalized Laplacian eigenvalues of the graphs shown in a
b

a

Figure 3: The first five and the last five eigenvectors of the amplitude envelope correlation (a), phase‑locking value (b), phase‑lag index (c), and phase 
linearity measurement (d) graphs derived for subject aa

d

c

b

a
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the rank features function in MATLAB, and the score 
of each feature was determined. More distinct features 
were assigned higher scores. The optimal number of 
top‑ranked features selected for classification was 
determined using 10‑fold cross‑validation on the training 
sets in each subject. First, the classification accuracy was 
calculated using the selected features from the entire set 
of GFT coefficients, the results of which are presented in 
Table 5.

Figure  5 shows the scores of the GFT coefficients on 
average across subjects in each studied graph. In the AEC 

and PLV graphs, the highest scores are for GFT coefficients 
associated with eigenvalue in the lowest one‑third of the 

Table 2: Classification results (%) for the test sets using 
phase‑locking value graphs

PLV aa al av aw ay Mean±SD
AF 70.53 100 70.92 88.84 72.22 80.50±13.32
LF 83.03 100 67.86 91.96 83.73 85.32±11.96
MF 56.25 67.86 50.51 60.71 57.94 58.65±6.35
HF 56.25 71.43 52.04 55.80 46.03 56.31±9.40
LF + HF 66.96 100 70.41 91.07 82.94 82.28±13.85
PLV – Phase‑locking value; AF – All frequency; LF – Low 
frequency; HF – High frequency; MF – Medium frequency; 
SD – Standard deviation

Table 1: Classification results (%) for the test sets using 
amplitude envelope correlation graphs

AEC aa al av aw ay Mean±SD
AF 71.43 100 69.90 87.95 72.62 80.38±13.16
LF 88.39 100 61.73 93.30 82.14 85.11±14.62
MF 63.39 66.07 49.49 58.93 52.38 58.05±7.05
HF 51.78 71.43 53.57 59.37 51.19 57.47±8.45
LF + HF 66.96 98.21 69.90 87.95 82.14 81.03±12.90
AF – All frequency; LF – Low frequency; HF – High frequency; 
AEC – Amplitude envelope correlation; SD – Standard deviation

Table 4: Classification results (%) for the test sets using 
phase linearity measurement graphs

PLM aa al av aw ay Mean±SD
AF 73.21 100 70.92 90.62 70.63 81.08±13.45
LF 70.53 98.21 60.71 56.25 84.52 74.05±17.32
MF 68.75 82.14 53.57 87.95 50.40 68.56±16.70
HF 65.18 98.21 68.88 59.82 71.43 72.70±14.91
LF + HF 80.36 100 70.92 79.91 80.16 82.27±10.69
PLM – Phase linearity measurement; AF – All frequency; LF – Low 
frequency; HF – High frequency; SD – Standard deviation

Table 3: Classification results (%) for the test sets using 
phase‑lag index graphs

PLI aa al av aw ay Mean±SD
AF 75.00 100 71.43 90.62 71.82 81.77±12.87
LF 72.32 96.43 66.33 71.87 85.32 78.45±12.23
MF 64.28 80.36 58.16 58.48 71.03 66.46±9.37
HF 65.18 100 60.71 58.03 60.71 68.93±17.56
LF + HF 80.36 100 70.41 90.62 75.00 83.28±12.00
PLI – Phase‑lag index; AF – All frequency; LF – Low frequency; 
HF – High frequency; SD – Standard deviation

Table 5: Classification results (%) for the test sets using 
features selected from all frequency bands

Graph aa al av aw ay Mean±SD
AEC 75.89 100 71.94 87.95 82.54 83.66±11.00
PLV 79.46 100 70.92 90.18 84.13 84.94±10.97
PLI 78.57 100 71.94 92.41 85.32 85.65±11.07
PLM 79.46 100 72.96 92.41 88.49 86.66±10.65
PLM – Phase linearity measurement; PLI – Phase‑lag index; 
PLV – Phase‑locking value; AEC – Amplitude envelope 
correlation; SD – Standard deviation

Figure 4: Filters extracted using FK transform for amplitude envelope correlation (a), phase‑locking value (b), phase‑lag index (c), and phase linearity 
measurement (d) graphs of subject aa

b

a c

d
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spectrum, while in the PLI, and especially in the PLM 
graphs, there are also high scores in the HF subband.

Considering the substantial classification accuracy resulting 
from the use of the LF subset of GFT coefficients in the 
AEC and PLV graphs, we attempted to specify the most 
discriminative features in this subband instead of on the 
entire spectrum. We repeated the same procedure for the 
PLI and PLM graphs, and the test set trials were classified 
using the selected features in the LF  +  HF subband. 
Classification results obtained from this analysis are shown 
in Table  6. Overall, the highest performance on average 
across subjects was achieved in the AEC graph using the 
features selected from the LF subband.

Finally, classification results obtained by the proposed 
method are compared with some state‑of‑the‑art techniques 
in Table 7. Among conventional studies conducted on these 
data, we considered those methods for comparison that 
use the same settings and data divisions as our proposed 
approach to classify MI tasks. More precisely, in these 
methods, the number of trials in the train and test sets 
of each subject as well as the preprocessing steps are 
completely in accordance with what we have considered 
in the present work. Two of these methods are based on 
GSP  (GL and GSL), and the other two use generalizations 
of FK transform (RCSSP and BECSP). The performance of 
our method, which uses a simple analytical definition of 
graphs based on the Hilbert transform of EEG data, is on 
par with the GL method that uses a graph structure learning 
approach to derive graphs from raw EEG data, both 
outperform the other three methods.

Discussion and Conclusions
This article presents a graph representation‑based 
framework for classifying motor imagery tasks from EEG 
data. Experimental results reflect that brain functional 
connectivity graphs derived using the instantaneous 
amplitude and phase of the EEG signals show comparable 
performance with the best results reported on these data in 
the literature. Even though methods based on deep learning 
show promising results,[36] they are resource‑intensive and 
therefore not a good option for individualized MI task 
decoding or neurofeedback applications. Moreover, GSP is 
advantageous over deep learning methods as it provides a 
means to link MI task decoding to a generating basis that 
can be used to break down EEG signals into interpretable 
subcomponents based on their contribution and significance 
for MI task decoding. Although the average accuracy 
across all subjects reported by the GL method is slightly 
higher than the average accuracy obtained by the proposed 
method, the proposed method outperforms the GL approach 
in three of five subjects. Only for subject ay, which has the 
smallest training set size, the proposed method shows lower 
accuracy compared to the GL method. It is worth noting 
that there is no need to learn the graphs in the proposed 
method; as such, the complex computations required for 
the optimization process are avoided.

Our results show that mapping the brain signals onto a 
low‑dimensional subspace derived from the graph Fourier 
components strongly differentiates two classes of MI. 
Moreover, overfitting to the training data is avoided, 

Figure 5: Scores of graph frequencies on average across five subjects in 
each graph

Table 6: Classification results (%) for the test sets using 
features selected from the low frequencies subband for 

amplitude envelope correlation and phase‑locking value, 
and the low frequencies + high frequencies subband for 

phase‑lag index and phase linearity measurement
Graph aa Al av aw ay Mean±SD
AEC (LF) 88.39 100 71.43 94.20 87.70 88.34±10.68
PLV (LF) 85.71 100 69.90 92.41 85.71 86.75±11.11
PLI (LF + HF) 82.14 100 70.92 91.52 87.30 86.38±10.84
PLM (LF + HF) 77.68 100 73.98 86.16 87.30 85.02±10.08
PLM  –  Phase linearity measurement; PLI  –  Phase‑lag index; 
PLV – Phase‑locking value; AEC – Amplitude envelope correlation; 
SD – Standard deviation; LF – Low frequency; HF – High frequency

Table 7: Comparing the performance of the proposed 
method with some alternative methods

Method aa al av aw ay Mean±SD
Proposed 88.39 100 71.43 94.20 87.70 88.34±10.68
GL[13] 87.50 100 70.92 91.96 92.86 88.65±10.88
GSL[33] 85.71 98.21 75.00 85.27 90.48 86.93±8.46
RCSSP[34] 82.14 96.42 68.87 98.21 88.88 86.91±11.94
BECSP[35] 77.68 100 73.98 84.82 88.10 84.91±10.12
SD – Standard deviation; GL: Graph learning, GSL: Graph 
structure learning, RCSSP: Regularized common spatio‑spectral 
pattern, BECSP: Bispectrum, entropy and common spatial pattern
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which is especially important for subjects with small sizes 
of training data. Furthermore, our results confirm that 
incorporating temporal information with functional brain 
connectivity derived using the studied graph representations 
enhances the performance of the EEG signals classification 
in the proposed approach.

Results presented in Tables  5 and 6 show that, on average 
across all subjects, simultaneous diagonalization of 
covariance matrices computed from a selected subset of 
GFT coefficients yields a more differentiating subspace than 
employing frequency elements across the entire spectrum 
of the analyzed graphs, except for the PLM; in PLM, the 
energy of EEG graph signals is spread more broadly across 
the graph spectra for three of the five subjects (aa, aw, and 
ay); however, in subject av, using features selected from the 
entire set of graph frequencies deteriorates the classification 
performance.

Despite the identical results obtained for subject al in all the 
graphs [Tables 5 and 6] that indicate saturated performance, 
using a subband of the graph spectrum reduces the 
performance of the method for subject av in the first three 
graphs and for subject aw in the PLI graph. These results 
reflect the potential benefits of a subject‑specific definition 
of the appropriate subband for feature selection. Overall, 
the highest average accuracy was attained by leveraging 
only the features selected from the lower one‑third of graph 
frequencies in the AEC graphs.

The energy profiles of EEG graph signals for subjects 
aa and ay, are more localized to a subband of the graph 
spectrum that represents sparse or bandlimited graph 
signals  [Tables  1‑4]. On the contrary, for subjects al and 
av, the energy of signals is more broadly spread over the 
entire spectrum of the studied graphs. However, subject 
aw shows a more localized pattern in its energy profile for 
the AEC and PLV graphs compared to the PLI and PLM 
graphs.

Prior work suggests that information that explains brain 
activity is carried by both anatomically aligned and liberal 
components embedded in graph signals.[4] Considering that 
the eigenvalues of the normalized Laplacian matrix of the 
graphs are the basis of the graph frequency domain, graph 
signals are said to be aligned or smooth with the underlying 
brain structure if most of their energy is concentrated in the 
lower end of the graph spectrum. On the other hand, the 
energy of the liberal or localized graph signals is mainly 
concentrated in the higher end of the graph spectra. Unlike 
the AEC and PLV graphs on which the brain graph signals 
are smooth, the PLI and PLM graphs provide a substrate 
where the EEG graph signals manifest both liberal and 
aligned components [Tables 1‑4].

As previously mentioned, spatial leakage of activity‑induced 
electric fields, also known as volume conduction, leads 
to low spatial resolution of EEG data. Among the studied 

brain graphs, the AEC and PLV are susceptible to volume 
conduction. However, the PLI is insensitive to volume 
conduction because it excludes zero‑phase lag interactions 
between EEG electrodes. The PLM formulation also 
includes a correction for volume conduction by removing 
phase difference components  <  0.1  Hz.[31] It seems that 
the correction of volume conduction reflects better 
accuracies for the MI task classification using the GFT 
elements distributed across the graph spectra, compared 
to utilizing the graph frequency coefficients from the LF 
subband. Although correction of the volume conduction 
can be useful in some applications, it does not show any 
significant improvement in MI task decoding from EEG 
signals. It can be interpreted as a reduction in the inherent 
spatial smoothness of EEG signals by removing volume 
conduction. However, our analysis showed that MI tasks 
can be effectively decoded using only the lower subset of 
the graph frequency components, reinforcing the hypothesis 
that imagined motor activities are generally spatially 
smooth on brain graphs.[13]

Inspired by the promising results of using graph learning 
techniques in MI decoding,[13] in future work, we 
will explore alternative techniques for inferring brain 
graphs from EEG data by combining the instantaneous 
amplitude/phase of the signals and graph structure 
learning frameworks.[37] The proposed approach can be 
easily adapted to other imaging modalities such as MEG 
data. It can be interesting to further extend the proposed 
method to other phase‑based measures, apart from the 
ones we validated in this study, such as the modulation 
index,[38] which is based on a normalized entropy 
measure and detect phase‑amplitude coupling and could 
offer a more comprehensive view of cross‑frequency 
interactions. Considering that the studied brain graphs are 
subject specific, they can be used in online applications 
such as neurofeedback. Utilizing the derived graphs for 
fingerprinting applications would also be an intriguing 
avenue for future research. In the studies by Miri et al. and 
Miri et al.,[39,40] the effectiveness of the graphs learned from 
the amplitude of EEG signals in characterizing an individual 
is shown. The potential of using phase‑based EEG graphs 
in identifying individuals should be investigated in future. 
Moreover, these graphs can be derived from resting‑state 
EEG data to tap into understanding individual differences 
in cortical functional organization in health and disease. 
We will also direct our future efforts toward utilizing FK 
transform extensions to generalize the proposed approach 
to decoding multiclass EEG tasks.
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Supplementary Information
Graph Signal Processing Fundamentals
A visual representation of the construction of brain graphs and the graph signals residing on these graphs is shown in 
Supplementary Figure 1. A  representative graph consisting of six nodes  (vertices) and eight edges is shown, where nodes 
represent EEG electrodes or different brain regions, and their relationship is described by the edges connecting them. Brain 
signals are considered as time series captured by each electrode. At any particular time point, the amplitude of the time 
series corresponds to the values of the graph signals on the nodes.[1]

Results of Using RBF Kernel in Support Vector Machine
Supplementary Tables 1 and 2 show the classification performance achieved using radial basis function (RBF) kernel (default 
values) in the SVM classifier for different graphs for each subject separately, as well as the average across all subjects in 
two different frequency bands (AF and LF).

Reference
1.	 Aviyente S, Villafañe-Delgado M. Graph signal processing on neuronal networks. In Cooperative and Graph Signal Processing: Academic 

Press; 2018. p. 799-816.

Supplementary Table 1: Classification results (%) for the 
test sets using support vector machine with radial basis 

function kernel in the all frequencies band
Graph aa al av aw ay Mean±SD
AEC 65.18 100 69.39 86.61 71.03 78.44±14.53
PLV 64.28 100 69.9 87.05 71.43 78.53±14.67
PLI 66.96 100 70.41 86.16 71.43 78.99±13.86
PLM 67.86 100 68.37 85.71 68.65 78.12±14.37
PLM – Phase linearity measurement; PLI – Phase‑lag index; 
PLV – Phase‑locking value; AEC – Amplitude envelope 
correlation; SD – Standard deviation

Supplementary Table 2: Classification results (%) for the 
test sets using support vector machine with radial basis 

function kernel in the low frequencies subband
Graph aa al av aw ay Mean±SD
AEC 72.32 96.43 58.67 94.20 86.11 81.55±15.9
PLV 67.86 100 62.24 91.96 82.94 81±15.87
PLI 68.75 96.43 62.24 57.59 81.35 73.27±15.73
PLM 69.64 94.64 54.08 59.37 83.73 72.29±16.85
PLM – Phase linearity measurement; PLI – Phase‑lag index; 
PLV – Phase‑locking value; AEC – Amplitude envelope 
correlation; SD – Standard deviation

Supplementary Figure  1: An illustration of the graph’s fundamental 
concepts. (a) A representative graph of the human brain. (b) Time series 
corresponding to each node in a. (c and d) Graph signals resided on the 
graphs at two different time points[1]
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Appendix
Appendix 1: FK Transform

Let F denote an N×T matrix containing graph signals from one trial in its columns and F̂ denote its related GFT matrix. 
The sample covariance matrices for each class are computed as:
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where tr(.) indicates the trace operator, and Ki refers to the number of trials assigned to class i. First, C C C� �1 2  should 
be whiten such that:
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where the whitening transform P can be obtained through the singular value decomposition of C  as follows:
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In the next step, eigenvalue decomposition of C1  and C2  gives:
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C1 and C2  exhibit the same eigenvectors, with complementary eigenvalues. Accordingly, the eigenvector that is associated 
with the smallest eigenvalue of C1  aligns with the largest eigenvalue of C2 . The final transformation matrix is defined 
as:[32]
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