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Abstract
T cell antigen receptors (TCRs) expressed on cytotoxic or helper T cells can
only see their specific target antigen as short sequences of peptides bound to
the groove of proteins of major histocompatibility complex (MHC) class I, and
class II respectively. In addition to the many steps, several participating
proteins, and multiple cellular compartments involved in the processing of
antigens, the MHC structure, with its dynamic and flexible groove, has perfectly
evolved as the underlying instrument for epitope selection. In this review, I have
taken a step-by-step, and rather historical, view to describe antigen processing
and determinant selection, as we understand it today, all based on decades of
intense research by hundreds of laboratories.
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Introduction
T cells and B cells are two major components of the adaptive and 
specific immune system. While B cells can recognize antigens as 
a whole via their B cell receptors, T cells can only see a processed 
form of antigens, that is, short peptide sequences bound to the 
proteins of major histocompatibility complex (MHC) class I and  
class II. There are also two major classes of T cells: cytotoxic  
T cells (Tc), which are restricted to MHC class I, express CD8 
accessory molecules on their cell membranes, and function by 
killing their targets, and helper T cells, identified by restriction 
to MHC class II and expression of CD4 accessory molecules. 
Helper T cells function by producing cytokines that help B cells 
in antibody production and isotype switching, as well as helping 
CD8+ T cells to develop into memory cells. Helper T cells are 
divided into several subclasses, each having different functions1. 
CD8+ T cells are generally responsive to antigens such as viruses 
which have been endogenously expressed, while helper T cells 
present antigens taken up from exogenous sources. The machinery 
that best generates short peptides that bind to MHC molecules is 
present in antigen-presenting cells (APC). While a variety of cells 
might be able to process antigens under certain circumstances, 
dendritic cells (DC), B cells, and macrophages are considered 
professional APCs. Antigen processing for presentation by MHC 
class I follows a different biosynthetic pathway than that of MHC 
class II2,3. In the following sections, I focus on MHC class II, 
discussing different aspects of epitope generation and selection 
as assisted by the accessory molecules and processing enzymes 
that allow flawless completion of this complex process. At the 
end, I will briefly review attempts at identifying peptides that bind 
MHC molecules.

MHC molecules have optimal structures for presenting 
antigens
For the presentation of antigen to helper T cells, APC must achieve 
an ambitious goal. One or few epitopes from a given antigen must 
be selected to fit stably and specifically in the groove of MHC 
class II. However, the number of possible epitopes to bind 
each MHC molecule is infinite, while each individual carries a  
maximum of six to eight MHC class II alleles. How is it possi-
ble for those few MHC molecules to bind peptides stably but non- 
specifically? The crystal structure of MHC class II, HLA-DR14, 
revealed two sets of interactions with the bound peptide: side chains 
of peptides interacting with five pockets (pockets 1, 4, 6, 7, and 
9), and a series of 13 H-bonds that formed between peptide main 
chains and the non-polymorphic residues of the MHC groove. It 
appears that by adopting a combination of pockets that accommo-
date peptide side chains, the MHC molecule meets the specificity  
criterion, and by forming H-bonds, complex stability can be 
achieved.

The next challenging demand from the MHC class II structure is 
to ensure that peptides from the exogenous antigens bind to the  
groove of MHC II efficiently. The solution here is provided by 
evolving a peptide-binding groove that is highly flexible and  
susceptible to collapsing in the absence of a bound peptide5–7. I  
will write more about this topic later.

Resistance to SDS-mediated denaturation as a means of 
detecting peptide binding in vivo
The flexibility of the groove is a theme that I shall revisit throughout 
this review. To appreciate this concept, the readers of this review 
are likely to benefit from a brief history of peptide binding to MHC 
class II as part of its folding. Harden McConnell’s group was the 
first to realize that there were kinetic and structural intermediates 
in peptide binding to MHC II8–11. Using a simple SDS-PAGE 
assay where samples were kept at room temperature, the team 
demonstrated that naturally formed peptide/MHC (pMHC) com-
plexes, purified from APC, migrated differently if peptides were 
dissociated. A loosely bound pMHC, or a peptide free MHC 
molecule, migrated as a slower migrating species that was named 
floppy dimers, relative to a faster migrating species called compact 
dimers. Compact dimers were shown to contain peptide, and  
unstably bound pMHC dissociated into single chains in SDS-
PAGE (SDS sensitive)10,11. Importantly, when peptides that could 
form stable complexes with MHC II molecules were added back to 
MHC II, the partially unfolded floppy dimers and the dissociated 
chains reverted to compact conformations6,7. It was of great signifi-
cance that the in vitro findings were confirmed in cells. In pulse- 
chase experiments, analyzed by SDS-PAGE, newly synthesized 
MHC II molecules that were not in complex with peptides from 
exogenous sources (pulse) dissociated into single chains, whereas 
MHC class II molecules that had formed complexes with exoge-
nous peptides (chase) migrated as SDS-stable dimers12,13. By this 
criterion, class II molecules were shown to associate with peptides 
in the endocytic route prior to cell surface expression, a proc-
ess that requires proteolytic digestion of the protein antigens13.  
It was also shown that SDS stability did not always correlate 
with the stability of pMHC complexes; altered MHC mutants 
bound peptides loosely yet formed the characteristic SDS-stable  
conformation14. Those original observations have been confirmed 
through numerous techniques over two decades of research by  
independent laboratories15–19.

The remarkable characteristic of MHC class II to resist SDS 
denaturation when in complex antigenic peptides allowed new 
discoveries that revealed steps in MHC class II synthesis, asso-
ciation with invariant chain (Ii), exposure to antigen-processing 
enzymes, MHC II trafficking, interaction with accessory molecules, 
peptide binding and editing, and more, as discussed below.

Antigen-processing machinery
Antigen presentation to CD4+ T cells begins by the uptake of exoge-
nous antigens by APC and their processing by proteolytic enzymes, 
mainly different cathepsins (Cat). The process involves transfer 
through a series of vesicular subcompartments containing suitable 
denaturing environments, a variety of accessory molecules and 
molecular chaperones, as well as cathepsins20. Cathepsins present 
in processing compartments contribute by cutting and trimming of 
the protein antigens.

Cathepsins
Antigen-processing proteases, or cathepsins, are amongst the 
most significant contributors to antigen processing and act as 
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exoproteases, or endopeptidases21. Expression levels and the activ-
ity of cathepsins are highly regulated in different cell types and 
activation states. Historically, two main roles have been described 
for cathepsins in antigen processing: to cleave off Ii and to process 
protein antigens. A new important function for cathepsins in the 
selection of immunodominant epitopes has recently been described 
and will be discussed later22. Some of the most extensively  
studied cathepsins are CatB, CatD, CatL, and CatS23–27. CatS was 
reported to be involved in Ii cleavage and antigen processing28–31. 
Recent studies by Kim et al.22 using a cell free processing system 
showed that inclusion of only three cathepsins (CatB, CatH, and 
CatS) was sufficient to mimic the processing conditions necessary 
to produce the immunodominant epitopes from several protein 
antigens. It is of note that cathepsins involved in antigen process-
ing require acidic pH for their proteolytic function, which itself is 
highly regulated. Indeed, DC maturation promotes activation of 
vacuolar proton pumps and enhances lysosomal acidification32.

Invariant chain
Upon synthesis, every allele of the MHC II heterodimers forms 
complexes with a third nonpolymorphic chain, called class II Ii,  
which acts as a chaperone in folding among its several other func-
tions. The Ii was first discovered by Jones and McDevitt, and 
was found to bind to all MHC II alleles33. After intense research 
by numerous laboratories, it became clear that Ii acts as a chap-
erone for the newly synthesized MHC II34. Its structure is rather 
segmented, each having a different function. Using nuclear mag-
netic resonance (NMR) techniques, Jasanoff et al.35–37 reported 
that a soluble recombinant Ii in complex with MHC II was mainly 
disordered except for two regions, one that included a region of 
24 amino acids corresponding to the class II-associated Ii peptide 
(CLIP) and the other which participated in trimerization of the Ii 
to form nonomeric assemblies. The CLIP region binds in the 
peptide-binding groove of class II molecules in the endoplasmic 
reticulum (ER) and remains bound in cleaved form in the peptide- 
loading compartment, where the rest of the Ii is cleaved off by 
cathepsins38–41. Another important function of Ii is to target the newly 
synthesized MHC class II to the proper endocytic compartments42, 
where it intercepts with protein antigens. The specialized endosomal 
compartments, called MIIC or CIIV43–47, were discovered as lyso-
some-like compartments which contained all necessary machinery 
for the processing of antigen and the optimal binding and selection 
of the peptides for presentation to the T cells48. These vesicles are 
dense membranous structures that fall between the early endosomes 
and lysosomes in density, as well as their denaturing environment  
to include acidic pH49, denaturing and proteolytic enzymes.

In addition to its other chaperoning functions, binding of Ii to 
MHC II was originally considered a means of preventing unpro-
ductive binding of peptides present in the ER39. However, when the 
first Ii knockout mice were reported, it turned out that the MHC 
II molecules of Ii-deficient mice did not bind as many peptides 
as did the MHC II molecules of Ii-sufficient mice50,51. With better 
understanding of the flexibility and instability of the peptide- 
binding groove in the absence of a bound peptide52–56, it became 
clear that an unappreciated function of the CLIP region is that it 
acts as a surrogate peptide for shaping the MHC II groove. These 
studies demonstrated that the MHC class II groove collapses in the 
absence of a bound peptide and that a poor binding peptide, such 

as CLIP, maintains the groove in proper conformation. Upon disso-
ciation of CLIP, a peptide-receptive conformation is generated that 
can scan peptides or unfolded proteins in the antigen-processing 
compartments55,56. Ii shuttles the MHC II molecules to MIIC, where 
Ii is proteolyzed by different cathepsins, including CatS, until 
only the CLIP fragment remains bound in the MHC II peptide- 
binding groove26,31,57,58. CLIP must then be exchanged for exoge-
nous peptide, a function best performed by the accessory molecule 
HLA-DM in humans or H2-M in mice (DM, from now on)59.

HLA-DM
DM is a non-polymorphic MHC II-like molecule that does not 
bind peptides itself60 but is necessary for the efficient displacement 
of CLIP from the MHC groove59,61–69. The significance of DM in 
antigen presentation was first discovered through the observation 
that some APC lines did not process protein antigens for presenta-
tion to specific T cells. Those cell lines were found to have defec-
tive DM genes70. Later, it was discovered that HLA-DR molecules 
from an antigen-processing mutant cell line were occupied with 
invariant chain peptides61,71. Hence DM was critical for the removal 
of CLIP and its exchange for the exogenous peptides.

Mechanism of DM function. Understanding the mechanism of 
the function of DM posed a problem for a long period of time, 
as it was generally believed that DM dissociated all bound pep-
tides from MHC II molecules. This concept created a dilemma: 
how could any peptide remain bound in the groove of MHC II 
when every peptide was susceptible to dissociation? The prob-
lem was partially solved by the finding that not all peptides were 
equally susceptible to DM-mediated dissociation72,73. Certain pep-
tides that would fit the MHC II groove and formed a rather rigid 
or compact conformation remained resistant to DM-mediated  
dissociation74–84. It was proposed that DM functions by recogniz-
ing conformations of pMHC II complexes that vary based on the  
nature of the bound peptides. For the best-studied MHC II  
molecule, HLA-DR1, it is well established that P1 interaction is 
the key determinant of pMHC II complex stability14,52,85 and that 
peptides interacting non-optimally in the P1 pocket are highly  
susceptible to DM-mediated peptide exchange15,74,75,80,82,86,87. DM 
interaction induces major conformational alterations in the P1 
area of the MHC II groove, leading to destabilization of the bound 
peptide and preventing the formation of H-bonds, hence pep-
tide dissociation. When peptide is released, a peptide-receptive  
MHC II is generated74,86, which can quickly sample a large pool  
of sequences from the available proteins.

The significance of P1 in interaction with DR1 was demonstrated 
by a mutagenized DR1 that expressed a partially filled P1 pocket 
and failed to interact with DM15,74,82. The mutant molecule, 
DR1(bG81Y), carrying a single amino acid change from G to Y, 
was constitutively peptide receptive and migrated as compact dim-
ers in gentle SDS-PAGE (Figure 1). Indeed, the DR1(bG81Y) 
molecule resembled murine I-Ek, which has a shallow pocket 115 
and itself is resistant to the DM editing function. In agreement with 
the structural characteristics of I-Ek, DM knockout haplotype K  
mice did not show the characteristic defects in peptide bind-
ing and occupancy with CLIP associated with H-2b mice88. Thus, 
DM can only affect peptide exchange in MHC II alleles of certain 
structural requirements89.
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With the solution of the crystal structure of the DM/DR complex 
using a cleverly designed DR1/peptide complex that allowed for 
the DR1 groove to remain open, it was established that DM would 
bind the P1 pocket of HLA-DR molecules if empty and would 
remain bound until a P1 filling peptide bound the groove17,84,90. The 
above findings were complemented by the measured thermodynam-
ics of peptide binding to DR1, indicating that a greater entropic 
penalty, versus a smaller penalty, was associated with structural 
rigidity rather than with the flexibility of the pMHC complexes87. 
Consistent with the previous reports, the authors found that DM 
senses flexible complexes, in which the P1 area residues are 
rearranged at a higher frequency than in more rigid complexes. 
Moreover, a new and unexpected observation reported that confor-
mational changes in the P1 area could be negated if the P9 pocket 
anchor residue of peptide was substituted for a stronger binding 
residue16. The findings suggest that an overall dynamic MHC II 
conformation, in addition to P1 pocket occupancy, determines sus-
ceptibility to HLA-DM-mediated peptide exchange and provides 
a molecular mechanism for HLA-DM to efficiently target poorly 
fitting pMHC II complexes, editing them for more stable ones. 
Hence, in addition to the removal of CLIP, DM helps in shaping 
epitope selection (more details to follow).

Biological significance of DM. As discussed earlier, DM plays 
an important role in selecting the right peptides that can stay in 
the groove of MHC II long enough for T cell recognition91. This 
characteristic of DM contributes to T cell immunity in a sig-
nificant way. Lymphocytes usually respond to a small propor-
tion of the potential determinants on a protein antigen defined as  
“immunodominant”92. Immunodominant epitopes are the essential 

targets of the immune response against infectious diseases, cancer, 
autoimmune diseases, and allergy. Consequently, much attention 
has been devoted to the understanding of epitope selection and  
immunodominance. However, in spite of the complexities of 
antigen processing and presentation, T cell epitope discovery 
has been a challenging task. Some of the factors contributing to  
immunodominance are described below.

Epitope accessibility and its relation to immunodominance. 
Among many contributing factors to an epitope gaining immun-
odominance is how accessible the location of sequence is to the 
groove of the MHC II molecule and/or to the processing enzymes93. 
The denaturing environment in the antigen processing compart-
ments (acidic pH and reducing conditions) helps to partially unfold 
protein antigens to reveal hidden epitopes. Of particular interest 
is a specialized enzyme, gamma-interferon-inducible lysosomal 
thiol reductase (GILT), that releases disulfide bonds in proteins94, 
making denaturation more efficient. In support of the significance 
of GILT in the release of dominant epitopes is the fact that GILT-
deficient mice failed to present buried determinants of hen egg 
lysozyme (HEL) and an HA protein of influenza; HEL and HA 
both have four disulfide bonds95,96. Support of the “epitope acces-
sibility” model for immunodominance comes from accumulated 
evidence that many of the naturally selected epitopes localize on 
flexible strands of protein antigens93 or at the C- or N-terminus 
of protein antigens97–99. For a more comprehensive review on the 
subject of accessibility, the readers are referred to 102.

One question that might come to the mind of readers is how is it 
that the MHC II and their accessory molecules are not denatured 

Figure 1. DR1(βG86Y) is always in a peptide-receptive conformation. Substitution of glycine for tyrosine at position 86 of DR1 beta chain 
generates a P1 pocket that is partially filled and resistant to DM-induced effects14.

A B
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in such an aggressive environment? It is of note that acidification 
of the antigen processing compartments in DC is developmentally 
regulated. Hence, the vacuolar proton pump that acidifies MIIC 
and activates cathepsins for processing of internalized antigens is 
activated only upon DC maturation32. Also of importance is that 
MHC II and DM molecules resist denaturation and cleavage100 by 
the harsh acidic pH and proteolytic conditions likely present in the 
late endosomes.

A cell free reductionist antigen processing system. A need for 
epitope accessibility together with the open-ended groove of MHC 
class II hint at binding of MHC II to the whole antigen rather 
than precut peptides. While there have been several examples of 
MHC II binding to full length antigens101–103, the prevailing dogma 
assumes that peptides are cut first, and then binding to MHC II 
and selection by DM takes place104. However, direct evidence in 
support of binding of full length protein to MHC II and determinant 
selection by DM was put forth by the design and use of a reduc-
tionist cell free antigen processing system, which documented that 
full-length proteins, or a mixture of protein fragments, could be 
processed and the immunodominant epitopes could be selected by 
a minimal number of ingredients100 (Figure 2). The components of 
this minimalist system include MHC class II, HLA-DR, full-length 
denatured protein antigen, three processing enzymes, cathepsins S 

(an endopeptidase), B, and H (exopeptidases), and HLA-DM, all 
placed in a tube in acidic pH. After allowing time for processing 
of the antigen, peptide binding, and DM editing, DR molecules, 
now bound to the selected epitopes, are immunoprecipitated and 
the bound peptides are released by exposure to low pH and are then 
subjected to mass spectrometry. In the following steps, the iden-
tified peptides, which usually are not very many, will be tested 
for immunogenicity in HLA-DR1-expressing Tg mice immu-
nized with the full-length protein antigens. The results were quite 
pleasing: peptides identified by the reductionist system were 
immunodominant epitopes because they recalled nearly full T cell 
responses. Importantly, even when tested in human volunteers, the 
peptides identified by the reductionist system proved to accurately 
reflect antigen processing in human APCs100. It is significant that 
the immunodominant epitopes were identified when DM was 
included in the system whereas, in the absence of DM, other non-
dominant epitopes were also found among the eluted peptides.

The results from the reductionist system suggested that DM 
plays a key role in the selection of the immunodominant epitopes 
from exogenous antigens22,100,105,106. In a later extensive study, 
Yin et al. compared affinity, intrinsic dissociation half-life, and 
DM-mediated dissociation half-life as well as two epitope predic-
tion algorithms (more below) for many peptides derived from the 

Figure 2. A reductionist cell free antigen processing system. Purified MHC class II and accessory molecules are exposed to full-length 
antigens and cathepsins under denaturing conditions. MHC class II molecules are then isolated and subjected to peptide elution and mass 
spectrometry100.
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entire Vaccinia genome for inducing CD4+ T cell responses. The 
results confirmed that pMHC II complex kinetic stability in the 
presence of DM was the determining factor for distinguishing the  
immunodominant epitopes from the non-dominant bound  
peptides107. In agreement with results from the reductionist sys-
tem, these analyses demonstrated that DM editing governs peptide  
immunogenicity by favoring the presentation of peptides with 
greater kinetic stability. However, it is of note that not all stable 
pMHC complexes are immunodominant. Moreover, autoimmune 
epitopes may or may not be resistant to DM-mediated dissociation22.

The use of the cell free reductionist system also enabled the authors 
to gain a new understanding of dominant epitope selection22,105,106,108.  
The authors showed that peptides derived from pathogens, 
or autoantigens, behaved differently in response to DM. For 
autoantigens, resistance to DM-mediated dissociation was not 
a required criterion, whereas for pathogen-derived dominant 
epitopes, DM resistance was a crucial factor. Immunodomi-
nance emerged as a result of the combined effects of DM and the 
antigen processing cathepsins. Autoantigen-derived immunodo-
minant epitopes were resistant to digestion by cathepsins in the 
system, whereas pathogen-derived epitopes were sensitive. As 
such, sensitivity to cathepsins necessitated the capture of pathogen-
derived epitopes by MHC II prior to cathepsins processing, and 
resistance to DM-mediated-dissociation preserved those epitopes 
from pMHC release and degradation22. The overall findings dem-
onstrated that immunodominance is established by the higher 
relative abundance of the selected epitopes that survive cathepsins 

digestion either by binding to MHC II and resisting DM-mediated- 
dissociation or by being chemically resistant to cathepsin degra-
dation. Non-dominant epitopes were found to be sensitive to both 
DM and cathepsins22 (Figure 3). Consistent with the autoimmune 
epitopes being resistant to proteolysis is the finding that large num-
bers of peptides derived from autoantigens have been identified in 
normal pre-nodal afferent human lymph109,110. The lymph peptidome 
must have resisted the variety of catabolic enzymes present in 
tissues, the function of which remains to be understood.

Possible role of DM in the quality of the peptide/MHC II complex. 
Intriguingly, there are reports documenting that some autoimmune 
T cells might discriminate among peptides that form complexes 
with MHC II in the presence or absence of DM. A clear exam-
ple has been pioneered by Unanue and colleagues, who showed 
two types of T cells: type A that recognize pMHC generated by 
intracellular processing machinery including DM and type B T 
cells that recognize pMHC formed in the absence of DM111,112. Of  
outstanding interest is that autoreactive CD4+ T cells specific for 
an insulin peptide were type B T cells; they did not recognize the 
insulin protein when processed by APC and, as such, could not have 
been deleted during thymic education113. These findings suggest that 
the topology of the complexes formed in the presence or absence 
of DM might be different. The findings of the Unanue and Sadegh- 
Nasseri laboratories hint at the possibility of a different path for anti-
gen processing for autoimmune epitopes. As discussed, autoimmune 
epitopes may or may not be sensitive to DM-mediated dissociation, 
and they are highly resistant to the proteases in antigen processing22. 

Figure 3. Auto-antigens and pathogen-derived antigens are processed differently. Influenza-derived HA protein (left) is captured as 
full-length denatured protein or large fragments by MHC class II, edited by DM, and then is exposed to cathepsin digestion. An example 
of an auto-antigen, collagen (right), is first cut into short peptides and then binds MHC class II; it may be either sensitive or resistant to 
DM-mediated editing22.
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Hence, it is very likely that for some autoimmune diseases, 
autoantigens are generated in an extracellular matrix where many 
proteases are already at work. The core epitopes that survive such 
a protease-rich milieu may get a chance to bind to the empty 
MHC II molecules expressed on APC membranes or in the early 
endosomal compartment where DM is not active114. Such com-
plexes would not be edited by DM and would fit the required ligand  
characteristic for type B T cells. Alternatively, some of the larger 
antigen fragments might be processed in the early endosomes  
where DM does not contribute to peptide editing, leading to the 
generation of type B pMHC complexes.

HLA-DO
In addition to DM, another non-classical MHC class II accessory 
molecule, HLA-DO, H2-O in mice, DO from now on, is known 
to play a role in peptide exchange115–117. Of importance, DO has 
restricted tissue expression; it is mainly expressed in B cells and 
thymic medullary epithelium, where thymic deletion takes place. In 
addition, certain subsets of DCs express DO under different condi-
tions. Cellular trafficking of DO depends on DM. Understanding 
how DO contributes to antigen processing has been a challenge 
for decades. Two recently solved crystal structures, DM/DO and 
DM/DR1, suggested that the DM/DO interface is shared with 
the DM interface with DR190,118. These findings were interpreted 
to imply that DO might act as a competitive inhibitor of DM 
in interaction with DR. While this model has previously been 
advocated117, peptide binding association and dissociation kinet-
ics conducted in the presence of DM, and/or DM/DO, put forward 
an alternative mechanism115,116. It was shown that DO binds to DR 
molecules. Rather than inhibiting DM, it was demonstrated that 
DO works together with DM to increase the binding of peptides 
that formed DM-resistant complexes with DR, while reducing the 
binding of peptides that are DM sensitive. Furthermore, the positive 
and negative effects of DO on peptide binding were shown to be 
restricted to the association phase, as the peptide dissociation phase 
remained unaffected by DO. Interestingly, DO could only bind to a 
peptide-receptive rather than peptide-occupied DR1. Because DO 
is always in complex with DM, and DM works by generating a 
peptide-receptive conformation, the authors proposed a model to 
suggest that DM might dissociate pMHC, leading to a peptide-
receptive DR that can be stabilized by DO. Thus, DO and DM work 
in synergy for optimizing peptide exchange and for selecting the 
DM-resistant peptides. The combined efforts of all the molecules 
discussed above, and perhaps others whose identities are yet to be 
discovered, lead to an impeccable selection process for the immu-
nodominant epitopes for MHC II groove occupancy and transport 
to the APC external membrane for CD4+ T cell stimulation.

Search for the immunodominant epitopes
Clearly, finding peptide epitopes that bind to MHC molecules and 
represent a given antigen is highly desirable for use in therapeutics 
and vaccine designs. A variety of methods have been used for this 
purpose. Among those is the screening of hundreds of overlapping 
synthetic peptides that span the entire sequence of an antigen of 
interest for binding to MHC II molecules. The screening may 
involve biophysical methods to measure MHC II binding, T 
cell readout assays, or tetramer-guided epitope mapping. Hun-
dreds of tetramers would be made using hundreds of overlapping  

peptides for detection of the T cells reactive to the antigen119. These 
methods are generally labor intensive, costly, and often insufficient 
because, with the exception of tetramer-guided mapping, they do 
not take into account steps involved in the processing of antigens 
as it happens in the cellular environment. In the identification of 
autoimmune epitopes, the task is even more arduous because  
autoimmune epitopes, in addition to the characteristics  
discussed above, often include post-translational modifications119, 
which makes screening of the peptides based on the amino acid  
sequences of the proteins rather hopeless.

Computational approaches and mass spectrometry
Computational approaches are popular alternative methods for 
predicting possible epitopes that bind MHC class II molecules 
with high affinity. The guiding principle in all computational 
methods is the structural information available on different MHC 
grooves. Although somewhat successful for predicting MHC 
class I epitopes, computer prediction algorithms have been gen-
erally unsuccessful in identifying CD4+ T cell epitopes120–122. 
The open-ended MHC class II groove versus the better-defined 
pocket-fitting residues for MHC class I adds to the complexity of 
structure-based predictions exponentially. In addition, there is no  
computational way yet available for predicting how DM and DO 
would contribute to the epitope selection107.

The next popular method in epitope discovery is the use of mass 
spectrometry. Mass spectrometry for the identification of pep-
tides eluted from MHC class I and class II was first reported in 
the early 1990s123 and required large amounts of purified MHC 
molecules. Thousands of self-peptides are generally eluted from 
MHC molecules isolated from even uninfected APCs. In recent 
years, because of the great progress in the development of highly 
sensitive instruments for mass spectrometry, the need for high 
quantities of starting numbers of APCs (~1011) has been signifi-
cantly reduced124. However, for an accurate determination of the 
dominant epitopes by peptide elution, it is necessary to utilize  
quantitative mass spectrometry because immunodominant  
epitopes are often displayed at the highest prevalence22, yet 
quantitative mass spectrometry has its own associated extreme  
complexities125.

Concluding remarks
As discussed above, antigen processing is a complex multistep 
process that has evolved for the identification of the best-fitting 
epitopes for T cell recognition and functions. A number of chap-
erones together with the uniquely evolved MHC class II molecu-
lar structure, which requires a peptide as part of its fully folded 
state, contribute to this ultimate goal. While much has been learned 
over the past decades about antigen processing and presentation, 
because of the complexities involved, a successful peptide pre-
diction strategy has yet to be discovered. The divergent paths for 
the processing of proteins of exogenous versus self-antigens open 
up new fields to explore. Understanding the biology of DO and 
its effects on the development of autoimmune diseases is another 
area that has remained challenging. Finally, the expression of 
MHC II upon T cell activation and its impact on immune responses 
begs further research. We can only hope that current and future 
research will focus on these unanswered questions.
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