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Abstract

Viral phylogenies provide crucial information on the spread of infectious diseases, and many studies fit mathematical
models to phylogenetic data to estimate epidemiological parameters such as the effective reproduction ratio (Re) over
time. Such phylodynamic inferences often complement or even substitute for conventional surveillance data, particularly
when sampling is poor or delayed. It remains generally unknown, however, how robust phylodynamic epidemiological
inferences are, especially when there is uncertainty regarding pathogen prevalence and sampling intensity. Here, we use
recently developed mathematical techniques to fully characterize the information that can possibly be extracted from
serially collected viral phylogenetic data, in the context of the commonly used birth-death-sampling model. We show
that for any candidate epidemiological scenario, there exists a myriad of alternative, markedly different, and yet plausible
“congruent” scenarios that cannot be distinguished using phylogenetic data alone, no matter how large the data set. In
the absence of strong constraints or rate priors across the entire study period, neither maximum-likelihood fitting nor
Bayesian inference can reliably reconstruct the true epidemiological dynamics from phylogenetic data alone; rather,
estimators can only converge to the “congruence class” of the true dynamics. We propose concrete and feasible strategies
for making more robust epidemiological inferences from viral phylogenetic data.
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Introduction
For rapidly evolving pathogens, such as RNA viruses, genetic
diversity accumulates on the same timescale as transmission
(Drummond et al. 2003). Thus, pathogen genealogies recon-
structed from patient samples can provide valuable informa-
tion on the transmission dynamics of diseases (Pybus and
Rambaut 2009; Volz et al. 2013). As sequencing technology
and computational methods continue to improve, such phy-
logenetic approaches (Grenfell et al. 2004; Bouckaert et al.
2019) are increasingly being used to help inform public health
policy during ongoing epidemics, such as during the 2013–
2016 Ebolavirus outbreak (Holmes et al. 2016), the 2015–2016
expansion of Zika virus (Faria et al. 2016), and the SARS-CoV-
2 pandemic that began in 2019 (Worobey et al. 2020). One of
the most popular mathematical frameworks used for such
phylodynamic inferences is the birth-death (BD) model
(Stadler et al. 2012, 2013; Kühnert et al. 2014), variants of

which are also used to reconstruct macroevolutionary dy-
namics (Morlon 2014). BD models are typically either fitted
to a given time-calibrated phylogeny (henceforth timetree) or
jointly estimated with the timetree from molecular sequen-
ces, to obtain estimates of the birth or speciation rate (k,
corresponding to transmission between hosts in epidemiol-
ogy or speciation in macroevolution), the death or extinction
rate (l, host death or recovery in epidemiology; extinction in
macroevolution), and the sampling rate (w, number of path-
ogen lineages sampled per time and per extant lineage)
through time. From these rates, one can calculate critical
epidemiological parameters such as the effective reproduc-
tion ratio Re ¼ k=ðlþ wÞ (Stadler et al. 2012, 2013).

Despite the increasing importance of phylodynamic esti-
mates to public health policy, it is generally unknown pre-
cisely what information we can hope to extract from
phylogenetic data and how robust these estimates are
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expected to be, particularly when all rates exhibit temporal
variation and are unknown a priori. In macroevolutionary BD
models, where only extant lineages are sampled, much work
has been done to understand identifiability limits (Kendall
1948; Nee, Holmes, et al. 1994; Nee, May, et al. 1994; Stadler
2009; Stadler and Steel 2019; Louca and Pennell 2020). That
work has shown that if the birth rate k and death rate l vary
through time, there are a vast number of alternative plausible
combinations of k and l that could explain any extant time-
tree (i.e., comprising only extant species) equally well. Such
“congruent” scenarios cannot be distinguished from one an-
other statistically, even in the presence of an infinitely large
and completely sampled timetree—in other words, it is im-
possible to design asymptotically consistent estimation meth-
ods for k and l based on extant timetrees alone and without
strong prior assumptions (Louca and Pennell 2020).

It is largely unknown to what extent and in what form
such congruency issues exist in epidemiological BD models,
that is, with continuous sampling through time. Although
some relatively minor parameter correlations have been
known for special cases (Stadler et al. 2013; Gavryushkina et
al. 2014), an understanding of general identifiability limits is
lacking, and the macroevolutionary case has taught us that
parameter correlations known for specific cases might se-
verely underestimate the full extent of the problem. This
question is nontrivial: although epidemiological BD models
appear similar to macroevolutionary BD models, they are
more complex because pathogen sequences are typically
not sampled at a single final time point. Samples obtained
serially through time provide additional information on an
epidemic; however, new uncertainty is introduced when the
sampling rate (w) is unknown and, especially, when it varies
over time.

Here, we provide a definite answer to the above questions
and demonstrate that, similar to the macroevolutionary case,
there are fundamental limits to how much information can
be gleaned from timetrees sampled through time in the ab-
sence of strong additional constraints. Specifically, we prove
mathematically that for any one hypothesized birth-death-
sampling (BDS) scenario—that is, with specific time-varying
k, l and w, there exist an infinite number of alternative,
markedly different, and yet plausible BDS scenarios that are
statistically indistinguishable from the hypothesized scenario,
even with infinitely large phylogenetic data sets. Using simu-
lations and real sequence data from an HIV outbreak in
Northern Alberta, Canada, we demonstrate that this identifi-
ability issue means that many epidemiological inferences
from phylogenetic data alone may not be as well-supported
as previously thought. Fortunately, and in contrast to the
macroevolutionary case, we are able to identify concrete
and feasible approaches toward resolving these issues in
practice.

Identifiability of General BDS Models
Our starting point is the general BDS model with arbitrary
time-dependent birth rate k, death rate l, and sampling rate
w, where we make the common assumptions that sampled

lineages (tips in the phylogeny) are immediately removed
from the pool of extant lineages and that branching events
correspond to transmission events (MacPherson et al. 2021).
We use the term “BDS scenario” (or “epidemiological
scenario”) to refer to a specific choice of profiles over time
for the parameters k, l, and w. Using mathematical techni-
ques similar to those developed for macroevolutionary mod-
els (Louca and Pennell 2020), we find that the likelihood of
any timetree under a given epidemiological scenario is en-
tirely determined by only two model parameters, called the
pulled birth rate (denoted ~k) and pulled sampling rate
(denoted ~w). Here, ~k is equal to the birth rate, k, multiplied
by the probability that a lineage is included in the phylogeny,
whereas ~w is equal to the sampling rate, w, divided by the
probability that a lineage is included in the phylogeny (over-
view of symbols in table 1). The ~k and ~w are thus the
expected occurrence rate of internal nodes and tips, respec-
tively, over time when divided over the current number of
lineages in the tree and in the limit of infinitely large trees
(proof in supplementary S.1.3, Supplementary Material on-
line). Note that ~k and ~w are purely theoretical properties of
the BDS scenario that can be calculated from k, l, and w, and
do not depend on any particular data set. We henceforth call
any two BDS scenarios congruent if they have the same pulled
birth rate ~k and the same pulled sampling rate ~w. By exten-
sion, the congruence class of any BDS scenario henceforth
refers to the set of all congruent BDS scenarios. Any two
congruent BDS scenarios generate timetrees with the same
probability distribution (supplementary S.1.3 and S.1.4,
Supplementary Material online) and will yield identical like-
lihoods for any given timetree. This means that there is no
way to distinguish between two congruent scenarios solely
based on the properties of sampled timetrees, no matter how
large. This result is analogous to that of macroevolutionary
BD models (i.e., when all the tips are contemporaneous),
where the probability distribution of generated timetrees is
entirely determined by the pulled birth rate, and any two
scenarios with identical pulled birth rates are statistically in-
distinguishable. This result is also analogous to identifiability
issues discovered for population demographic models, where
markedly different population demographies can generate
the same sample frequency spectrum for arbitrarily large sam-
ple sizes (Myers et al. 2008; Bhaskar and Song 2014).

Several questions follow from this: For any given BDS sce-
nario, 1) how can one easily determine if another given sce-
nario is congruent?; 2) how many congruent scenarios are
there?; and 3) how different can the epidemiological implica-
tions of these congruent scenarios be? To answer these ques-
tions, it is useful to consider a number of alternative model
parameters, the first of which is called the pulled diversifica-
tion rate and defined as:

~r ¼ k� l� wþ 1

k
dk
ds
; (1)

where s denotes age or time before present (table 1). The
pulled diversification rate is equal to the net diversification
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rate r ¼ k� l� w (or net exponential growth rate in the
case of an infectious disease) when the birth rate k is constant
over time, but differs from r otherwise. As we prove in sup-
plementary S.1.3, Supplementary Material online, two BDS
scenarios are congruent if and only if they have the same
pulled diversification rate ~r and the same pulled birth rate
~k. Hence, to check if two BDS scenarios are congruent one
can simply compare their ~r and ~k. Equivalently, two BDS
scenarios are congruent if and only if they exhibit the same
deterministic branching density ~b and the same deterministic
sampling density ~r, which can be interpreted as rescaled
probability densities over time of any randomly chosen ob-
served branching event or sampling event, respectively, in the
limit of infinitely large trees (precise definitions in supplemen-
tary S.1.2, Supplementary Material online). Hence, the shapes
of ~b and ~r contain easily interpretable information about the
temporal distribution of branching and sampling events in
the tree. Similarly to ~k and ~w, or ~k and ~r , so ~b and ~r con-
stitute an alternative parameterization of congruence classes,
however, we stress that all of these parameters do not contain
sufficient information for recovering the original model
parameters k, l, and w.

Having introduced the above new parameters, it becomes
easy to answer questions (2) and (3). For any given scenario
ðk; l;wÞ and any given alternative death rate l�, one can
find a corresponding k� and w� such that the new scenario
(k�; l�;w�Þ has the same pulled diversification rate and the
same pulled birth rate, that is, such that the new scenario is
congruent to the first one (supplementary S.1.5.2,
Supplementary Material online). Indeed, one just needs to
solve the differential equation:

dk�

ds
¼ k� � ð~r þ l� � k�Þ þ kw (2)

with any initial condition, and choose w� ¼ kw=k�. Many
other analogous ways exist for creating congruent scenarios:

For example, one can first specify an arbitrary sampling rate
w� and then adjust k� and l� accordingly, or first specify an
arbitrary birth rate k� and then adjust w� and l� accordingly,
or first specify an arbitrary effective reproduction ratio R�e and
adjust k�; l�, and w� (details in supplementary S.1.5,
Supplementary Material online). We note that some scenar-
ios in a congruence class may have negative birth, death, or
sampling rates and are therefore biologically irrelevant (Louca
and Pennell 2021). Since l� (or w� or k� or R�e ) can be chosen
nearly arbitrarily and can depend on an arbitrary number of
free parameters, the space of congruent BDS scenarios is in-
finitely large and infinite-dimensional. Many congruent sce-
narios can appear similarly plausible and similarly complex,
and yet exhibit markedly different features, including very
different values and opposite trends in k, l, w, or Re (exam-
ples in fig. 1).

This ambiguity limits the identifiability of epidemiological
scenarios when based solely on phylogenetic data, even for
infinitely large data sets. Indeed, whatever the true epidemi-
ological history was, there will always exist an infinite number
of congruent epidemiological histories. When fitting specific
functional forms for k, l, and w, such as piecewise constant
profiles known as skyline models (Stadler et al. 2013), estima-
tors will generally converge to the scenario closest to the
congruence class of the true epidemiological history, but
not necessarily to the scenario closest to the true epidemio-
logical history itself (fig. 2). Depending on the particular func-
tional forms chosen for k, l, and w, this can yield markedly
different rate profiles over time that may not even approxi-
mately resemble the true epidemiological history, including
wrong trends and major spurious features (e.g., fig. 2C). This
can occur even if the fitted functional forms are flexible
enough to reasonably approximate the true epidemiological
history (e.g., fig. 2B). In other words, even if one can closely
identify the congruence class that best explains the data (e.g.,
in terms of the ~k and ~w, or in terms of the ~b and ~r), without

Table 1. Overview of Main BDS Parameters Discussed.

Symbol Description Definition Congr.-Invariant

k Birth (speciation) rate — No
l Death (extinction) rate — No
w Sampling rate — No
Re Effective reproduction ratio k=ðlþ wÞ No
d Removal (become uninfectious) rate lþ w No
S Sampling proportion w=ðlþ wÞ No
E Probability of a lineage missing from the p

hylogeny
Equation (3) in supplementary S.1.1, Supplementary

Material online
No

~k Pulled birth rate ð1� EÞ � k Yes
~w Pulled sampling rate w=ð1� EÞ Yes
~r Pulled diversification rate k� l� wþ ð1=kÞdk=ds Yes
~b Deterministic branching density Equation (16) in supplementary S.1.2, Supplementary

Material online
Yes

~r Deterministic sampling density Equation (17) in supplementary S.1.2, Supplementary Material
online

Yes

~M Normalized deterministic LTT Equation (15) in supplementary S.1.2, Supplementary
Material online

Yes

NOTE.—A parameter is called congruence-invariant if it is identical across congruent BDS scenarios (and thus asymptotically identifiable). Noncongruence-invariant parameters
cannot possibly be estimated from phylogenies alone (no matter how large) in the absence of strong additional constraints. Note that each parameter may be time-dependent,
and that s denotes age (time before present). Definitions are provided for nonstandard BDS parameters. Birth and death rates refer to pathogen lineages, not the hosts.
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additional constraints or information one cannot determine
which member of the congruence class generated the data.
We emphasize that it is not necessary for multiple congruent
scenarios to exist within the class of fitted functional forms in
order to run into these issues. Further, since the scenarios in a
congruent class are indistinguishable for any data set of any
size, with some generally appearing simpler and others more
complex than the true epidemiological history, model selec-
tion techniques based on parsimony that do not incorporate
additional information (e.g., from independent studies) can-
not alone resolve this issue (detailed discussion in supplemen-
tary S.2, Supplementary Material online). In a Bayesian
context, the existence of vastly different congruent scenarios
means that the uncertainty in the estimated k, l, and w is
even more sensitive to the choice of priors than would be
apparent from comparing the posterior to the prior distribu-
tions of the parameters of some fitted model class. These
issues are also expected to affect hypothesis testing
approaches that rely on model fitting, for example, fitting a
linear profile for k and examining whether the fitted slope is
statistically significant to see if k has been changing in a
specific direction. Following the above arguments, the fitted
slope need not at all reflect the true trend in k (e.g., it could
point in the opposite direction), and for a sufficiently large
data set this wrong slope will inevitably be statistically signif-
icant. The above issues also apply to other equivalent model
parameterizations used in epidemiology, for example based
on Re, the sampling proportion (S ¼ w=ðlþ wÞ) and the
removal rate (d ¼ lþ w, also known as “become uninfec-
tious rate”) (Stadler et al. 2013). Note that, in contrast,
~k; ~w; ~r; ~b, and ~r are asymptotically estimateable, that is,
given sufficiently large trees (supplementary S.1.2,
Supplementary Material online).

It was previously demonstrated that for constant-rate sce-
narios (i.e., where the parameters k, l, and w do not vary with
time), it is impossible to simultaneously estimate k, l, and w
from timetrees alone, because alternative combinations of
constant k, l, and w yield the same likelihood function
(Stadler et al. 2013; Gavryushkina et al. 2014). It is also known
that when fitting BDS skyline models, at least one of the
parameters must be fixed in at least one of the time intervals
to eliminate correlations between parameter estimates
(Stadler et al. 2013). Our findings are a generalization of these
special cases and reveal that these underestimate the true
extent of the issue. As soon as one considers that epidemio-
logical parameters could vary over time in an unknown fash-
ion (Grassly and Fraser 2008; Nishiura and Chowell 2009;
Cowling et al. 2010), even if they can in principle be approx-
imated by the considered model type (e.g., fig. 2B), much
more information is needed to “collapse” the congruence
class and accurately reconstruct the true epidemiological dy-
namics. In particular, fitting generic BDS skyline models to real
molecular data without constraints (or only constraining one
parameter in one time interval), as is common practice
(Stadler et al. 2013; Kühnert et al. 2016; Resende et al.
2021), cannot be expected to yield an accurate reconstruc-
tion, no matter how large the data set.

The above results are analogous to the macroevolutionary
case, where the pulled birth rate is asymptotically identifiable,
but does not contain sufficient information for recovering the
true birth and death rates (Louca and Pennell 2020). Further,
as in the macroevolutionary case, so here two congruent BDS
scenarios have identical deterministic lineages-through-time
(dLTT) curves (i.e., the number of lineages one would expect
in the tree over time based on a deterministic interpretation
of the rates k, l, and w) when conditioned on the number of
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FIG. 1. Examples of congruent epidemiological scenarios. (A–F) Birth (or speciation) rate (A), death (or extinction) rate (B), sampling rate (C),
effective reproduction ratio Re ¼ k=ðlþ wÞ (D), removal rate d ¼ lþ w (E), and sampling proportion S ¼ w=ðlþ wÞ (F) of a specific epide-
miological scenario (thick black curves), compared with various alternative congruent (i.e., statistically indistinguishable) scenarios (dashed
curves). Similarly, colored curves across subfigures A–F correspond to a specific diversification scenario. No viral phylogeny, no matter how large,
could possibly distinguish between these (and in fact a myriad of other) scenarios. (G–L) Similar to A–F, but showing scenarios congruent to a
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lineages at some given time point. In contrast to the macro-
evolutionary case, however, the reverse needs no longer be
true, that is, two BDS scenarios with identical dLTTs need not
necessarily be congruent. Moreover, although in the macro-
evolutionary case a congruence class could be uniquely de-
scribed by a single time-dependent parameter (e.g., the dLTT,
or the pulled birth rate over time), here a BDS congruence
class is determined by two time-dependent parameters (e.g.,
the pulled birth rate and pulled diversification rate).

Simulation Examples
To demonstrate the challenges for epidemiological inference
stemming from the existence of model congruencies, we sim-
ulated various hypothetical but realistic epidemiological sce-
narios and then used two alternative well-established
approaches for reconstructing the original dynamics from
the generated data. In the first approach, we used the true
timetree as an input and estimated the epidemiological dy-
namics via maximum-likelihood fitting. In the second ap-
proach, we used nucleotide sequences simulated along the
timetree as input, and jointly estimated the timetree together
with the epidemiological dynamics using Bayesian Markov
chain Monte Carlo (MCMC). The latter approach resembles
the common situation in molecular epidemiology where the
phylogeny is not a priori known, thus introducing additional
uncertainty in the reconstruction of the epidemic’s dynamics.
To avoid introducing our own biases, for example in the
choice of priors, the Bayesian analysis was performed in a
blinded way, with some members of our team conducting
the simulations and others conducting the Bayesian
inference.

For the maximum-likelihood inference, we simulated time-
trees with >50,000 tips and fitted generic piecewise-linear
profiles for k, l, and w to each timetree, while selecting the
optimal number of inflection points using AIC. We used such
massive timetrees to avoid errors stemming from small sample
sizes, thus focusing on identifiability issues. The fitted models
matched the LTTs of the timetrees and the deterministic LTTs
of the true scenarios nearly perfectly (fig. 3D and supplemen-
tary fig. S1G, Supplementary Material online). The fitted mod-
els also adequately explained the timetrees based on three
different statistical tests performed via parametric bootstrap-
ping (Brown and Thomson 2018) (Kolmogorov–Smirnov tests
on the distributions of node ages, tip ages, and edge lengths,
P> 0.05 in all cases). Despite the large sizes of the data sets and
the adequacy of the models in explaining the data, the corre-
sponding estimated k, l, w, Re, d, and S were nearly always
very different from the true profiles used in the simulations,
sometimes even exhibiting opposite trends (fig. 3A–C and
supplementary figs. S1A–F and S2A–F, Supplementary
Material online). Importantly, the fitted models nearly exactly
reproduced the deterministic branching density ~b and deter-
ministic sampling density ~r of the true scenario (R2 > 0:99 in
all cases), which, as explained earlier, implies that the fitted
models came very close to the true scenario’s congruence class
(figs. 3E and F). This confirms our expectation that fitting yields
an estimate of the true epidemiological history’s congruence
class, but not necessarily of the true epidemiological history
itself. These issues are expected to be even more pronounced
with the smaller data sets typical in epidemiology, due to
elevated stochasticity.

For the Bayesian inference, we considered two alternative
epidemiological scenarios to simulate timetrees of sizes
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typical in molecular epidemiology (590 and 540 tips, spanning
about 15 years, supplementary fig. S3, Supplementary
Material online). The epidemiological scenarios and the nu-
cleotide substitution models exhibited parameters typically
reported for HIV-1 (Leitner et al. 1997; Posada and Crandall
2001; Duchêne et al. 2015). The profiles of k, l, w, Re, d, and S
exhibited moderate variation over time that could be well-
approximated using skyline models with three to four inter-
vals. For each of the two scenarios, we then conducted a BDS
skyline model inference in BEAST2 (Bouckaert et al. 2019)
using the sampled sequences as input data. As indicated
above, this inference was internally blinded, that is, the
team members performing the inference had no knowledge
of the true epidemiological scenarios used in the simulations.
The sole information provided was 1) that model parameters
were within the typical ranges known from HIV-1, 2) that four

time intervals are sufficient for reasonably approximating the
true dynamics with a skyline model (thus avoiding complica-
tions in the selection of the number of intervals), 3) the nu-
cleotide substitution model and number of rate categories
used, and 4) the value of the present-day sampling propor-
tion, to account for known identifiability issues within skyline
models (one parameter in one time interval must be fixed to
eliminate correlations between parameters according to
Stadler et al. [2013]). Each of the parameters Re, d, and S
varied over time with rate shifts 2, 4, and 8 years before the
present, and the sampling proportion in the present was fixed
to its known value. The adequacy of the posterior models to
explaining the true tree was fully confirmed via predictive
posterior simulations (Brown and Thomson 2018) based on
the same statistical tests as used for the maximum-likelihood
fits. The molecular clock rate and the parameters of the
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FIG. 3. Limits to reconstructing an epidemic’s dynamics via maximum likelihood. (A–C) Maximum-likelihood estimates (grey dashed curves) of the
effective reproduction ratio (Re), removal rate (d ¼ lþ w), and sampling proportion (S ¼ w=ðlþ wÞ) over time, based on a timetree with
175,440 tips simulated under a hypothetical BDS scenario (blue continuous curves). Rates are in day�1. Model adequacy was confirmed via
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nucleotide substitution model were also largely accurately
estimated (supplementary figs. S10 and S12, Supplementary
Material online).

In contrast, in both scenarios, the estimated k, l, w, Re, d,
and S deviated substantially from their true profiles, in many
cases exhibiting different trends over time or differing by
more than an order of magnitude (e.g., when considering
the maximum-posterior or median-posterior profiles, fig.
4A–C and supplementary figs. S5 and S7, Supplementary
Material online), consistent with our expectations.
Moreover, the posterior 95% equal-tailed credible intervals
barely overlapped with the true profiles of these parameters,
suggesting that the inferred posterior distributions severely
underestimate the true uncertainty of the parameters. This is
not surprising, since these posteriors only reflect the uncer-
tainty stemming from finite data sizes, but do not account for
congruencies. Importantly, in all cases, the posterior distribu-
tions of the deterministic branching and sampling densities
(~b and ~r) predicted by BEAST2 closely resembled their true
profiles (fig. 4D–F). This implies that BEAST2 accurately in-
ferred the congruence class of the true epidemiological his-
tory, just not the true epidemiological history itself (again,
consistent with our predictions). To further test this interpre-
tation, we repeated the Bayesian inference while fixing the
removal rate to its true profile (approximated by a piecewise
constant curve for compatibility with the skyline model). In
both scenarios, the inferred BDS model parameters much
more closely resembled their true profiles (supplementary
figs. S6 and S8, Supplementary Material online), consistent
with the fact that fixing the removal rate profile and the
present-day sampling proportion collapses the congruence
class to a single scenario (mathematical proof in supplemen-
tary S.1.5.7, Supplementary Material online). Together, these
results confirm our expectations that any tool attempting to
reconstruct an epidemic’s dynamics based on phylogenetic
data alone and without strong additional constraints, no mat-
ter how large the data set, can only reconstruct the congru-
ence class of those dynamics rather than the true dynamics.

To further confirm that the above issues are likely to occur
in practice, we performed multiple simulations of random
epidemiological scenarios (i.e., with k, l, and w having ran-
domly constructed but plausible profiles over time) and ex-
amined the accuracy of maximum-likelihood fitted BDS
models with generic piecewise-linear profiles (the grid size
was chosen according to AIC [Akaike 1981]). Trees comprised
between 500 and 50,000 tips, and we only considered cases
where the fitted model adequately described the data, based
on the same Kolmogorov–Smirnov tests as above (details in
supplementary S.3, Supplementary Material online). In the
vast majority of cases, and even for the largest trees, the es-
timated parameters k, l, w, Re, S, and d poorly reflected the
true profiles used in the simulations, often exhibiting opposite
long-term trends and spurious major features, and sometimes
even deviated by orders of magnitude from the truth (over-
view in supplementary figs. S17 and S19, Supplementary
Material online, examples in supplementary figs. S18 and
S20, Supplementary Material online). For example, the coef-
ficient of determination (R2) between the true Re and the

fitted Re was almost always below 0 (supplementary figs. S17A
and S19A, Supplementary Material online). In contrast, the
deterministic branching and sampling densities (~b and ~r)
were generally accurately estimated (typical R2 > 0:9, sup-
plementary figs. S17D, 17E and S19D, 19E, Supplementary
Material online). Similarly, the mean error relative to the av-
erage was about an order of magnitude lower for ~b and ~r
(average �7%) than for Re (average �80%). These findings
show that most fitted models did converge toward the true
congruence classes, but not to the actual true scenarios.

Illustration for an HIV Epidemic
To further illustrate the practical implications of model con-
gruencies, we considered the dynamics of HIV-1 subtype B in
Northern Alberta, Canada, over the course of roughly
20 years, reconstructed from 563 molecular sequences using
Bayesian BDS skyline models in BEAST2 (Stadler et al. 2013;
Bouckaert et al. 2019). We assumed that Re, d, and S varied
over time and shifted in 1998 (when triple antiretroviral ther-
apy became available) and in 2010 (to achieve a roughly bal-
anced partitioning of sampling dates). Rate priors were
chosen conservatively to reflect the general uncertainty across
HIV outbreaks (see Materials and Methods) and an uncorre-
lated log normal relaxed clock was supported over a strict
clock based on nested sampling (Russel et al. 2019). We found
that the posterior distribution of BDS models (fig. 5E–H)
strongly suggests a decline of Re over time, a stabilization of
the sampling rate in the last two intervals, and a dramatic
increase in transmission and recovery rates when comparing
the first to the last time interval. The narrow posterior 95%
equal-tailed credible intervals for Re in the second and third
time intervals (fig. 5H) suggest that Re is well-constrained.

However, this posterior is misleading because the inferred
credible intervals do not properly capture the ambiguities
stemming from model congruencies. Indeed, recall that
what we are really estimating is the congruence class of the
true epidemiological history, and not the true epidemiological
history itself. For illustration, consider the sampled model
with maximum posterior probability shown in figure 5I–L.
This representative scenario is congruent to a myriad of al-
ternative and markedly different epidemiological scenarios,
many of which are similarly complex and a priori similarly
plausible (examples in fig. 5I–L). All of these alternative sce-
narios are equally likely to have generated the data at hand,
and this would be true for any other phylogenetic data set as
well. Ruling out some of these congruent scenarios in favor of
others requires additional knowledge, such as strong priors on
the parameters. Hence, the true uncertainty in the inferred
epidemiological parameters is largely determined by the im-
posed priors, rather than by the computed posterior densities.
However, many of the congruent scenarios are not in strong
contrast to our priors (examples in fig. 5A–D), which are
typical in the epidemiological literature. In other words,
much stronger priors would be needed to collapse the con-
gruence class down to a practical size (e.g., suitably precise for
policy decisions), even with massive phylogenetic data sets.
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Ways Forward
In our recent analysis of macroevolutionary BD models (Louca
and Pennell 2020), we proposed that researchers could de-
velop methods to draw insight from asymptotically identifi-
able variables (i.e., those which are identical between
congruent scenarios); in the epidemiological case such quan-
tities include ~k; ~w; ~r; ~b, and ~r. Indeed, for the macroevolu-
tionary case, such identifiable variables do contain useful
information about historical diversification dynamics (Louca
et al. 2018). A similar strategy could potentially be fruitful for
epidemiological data, although we do not further explore that
possibility here. Instead, in the following, we discuss a number
of ways, some of which build upon current practices in the

field, to robustly reconstruct typical epidemiological variables
of interest such as Re.

First, following on what is sometimes done in practice, one
can use additional clinical or surveillance data to constrain
specific epidemiological parameters. Although it is generally
recognized that parameter estimation benefits from the use
of available constraints, the precise effects of constraints in
phylodynamics remained poorly understood and their impor-
tance severely underestimated. Our results precisely clarify
the amount of information necessary to make an epidemio-
logical scenario asymptotically identifiable. For example, if one
of k or w is known beforehand, then the remaining variables
become asymptotically identifiable (details in supplementary
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S.1.5, Supplementary Material online). This is because in any
congruence class there exists at most one scenario with a
specific k or w. Indeed, when we fixed the sampling rate w
to its true profile in our earlier maximum-likelihood fitting
tests, the fitted BDS models closely reproduced the true sce-
narios (supplementary figs. S1H–N and S2H–N,
Supplementary Material online). Similarly, if l is somehow
independently known and either k or w is known on at least
one time point, then the full scenario again becomes asymp-
totically identifiable. Similar arguments can be made for Re, d,
or S (supplementary S.1.5.5, S.1.5.6, and S.1.5.8, Supplementary
Material online). Such constraints might be obtained in a
variety of ways. For example, in some situations, it might be
assumed that nearly all people are diagnosed and sampled, in
which case the sampling proportion might be fixed to 1.
Alternatively, one may estimate the true prevalence of a dis-
ease through occasional serological surveys of randomly cho-
sen individuals (Farrington and Whitaker 2003; Lai, Wang, et
al. 2020) and then divide the “background rate” of disease
detection by that estimate to obtain w. Further, clinical data
may be used to estimate the rate of host death or recovery
(i.e., l). During maximum-likelihood fitting, one can fix the
independently known parameters. In a Bayesian framework,

one can impose appropriate data-driven priors, that is, based
on independent information, to constrain the known param-
eters. However, we stress that in order to eliminate most
congruencies and accurately reconstruct the remaining
parameters, these priors will need to be much more restrictive
than in typical studies (Nadeau et al. 2021). For example, in
the second simulation of our Bayesian inference tests de-
scribed earlier the true removal rate was nearly constant;
when we used this information to constrain the removal
rate in BEAST2 (i.e., demanding that it is constant across all
time intervals), the parameters k, l, w, Re, d, and S were
estimated much more accurately than in the absence of
this constraint (supplementary fig. S9, Supplementary
Material online). Their accuracy improved further when we
fixed the removal rate to its true profile (supplementary fig.
S8, Supplementary Material online). Although constraints
such as the above are sometimes included in molecular ep-
idemiological studies, many studies still attempt to estimate
the full epidemiological dynamics (k, l, and w) solely from
phylogenies (Stadler et al. 2013; Paraskevis et al. 2015; Lai,
Bergna, et al. 2020). In contrast, multiple sources of informa-
tion are commonly utilized when fitting mechanistic epide-
miological models, such as differential equation models, or in
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nonparametric analyses of surveillance data over time. For
example, it is common for surveillance data to be combined
with independently determined infectivity profiles (Cori et al.
2013), which are essentially a generalization of k, or with
estimates of the serial interval (Najafi et al. 2020), to estimate
Re over time. Our mathematical results clarify that using ad-
ditional information beyond just molecular data, for example,
from clinical trials or serological surveys, is not just a means to
increase the number of data points—it is essential for ensur-
ing the identifiability of temporally variable epidemiological
histories. Developing new phylodynamic models that readily
integrate appropriate additional data sources would greatly
facilitate this practice (Gupta et al. 2020; Manceau et al. 2021)
(but see supplementary S.5, Supplementary Material online
for limitations on the use of occurrence data).

Second, although molecular epidemiological studies are
typically purely observational—that is, the sampling and
data analysis are done independently—this does not need
to be the case. Indeed, a properly designed sampling scheme
can help reduce identifiability issues. Concretely, short, high-
intensity “concentrated” or “contemporaneous” sampling
attempts (CSAs), where many individuals are randomly sam-
pled (in addition to sampling symptomatic individuals), can
yield valuable information for reconstructing the dynamics of
an epidemic and for partly resolving congruencies (details in
supplementary S.1.6 and S.1.7, Supplementary Material on-
line). The main requirements are that, first, these CSAs are
much shorter than the current expected birth and death
times (i.e., much shorter than 1=k and 1=l), second, k
does not differ substantially between the beginning and
end of the CSA, and third, the number of lineages sampled
during the CSA is much greater than the number of birth or
death events occurring in that time period. Such a sampling
strategy is not just a hypothetical possibility: during 2020,
multiple governments reportedly conducted CSAs to esti-
mate the seroprevalence of SARS-CoV-2 (Menachemi et al.
2020; Poll�an et al. 2020). If such sampling attempts are per-
formed repeatedly over time and at sufficient temporal res-
olution, and/or they are combined with other local
sequencing data, they can enable an accurate reconstruction
of k, w, and consequently l over time. For example, when we
resimulated the two hypothetical BDS scenarios used earlier
for maximum-likelihood estimation while including 3 CSAs,
the subsequently refitted models reproduced the true BDS
scenarios much more accurately (supplementary figs. S1O–U
and S2O–U, Supplementary Material online). Note that CSAs
differ from the common approach of testing individuals only
upon the appearance of symptoms, as in these cases the
number of infections detected during any given period tends
to be smaller than the number of new infections occurring
during that period. The importance of optimal sampling de-
sign to improve identifiability has previously been recognized
for coalescent models in epidemiology (Stack et al. 2010;
Parag and Pybus 2019). Notably, Stack et al. (2010) concluded
that sampling sequences at specific time points tend to im-
prove inferential power compared with less focused sampling
protocols, resembling our conclusions above for BDS models.

A third potential approach could be to only fit profiles for
k, l, and w with a strong mechanistic justification, that is
derived from models for infectious disease dynamics
(Kühnert et al. 2014; Rasmussen et al. 2014; Vaughan et al.
2019; MacPherson et al. 2021), rather than generic profiles
(e.g., skyline models). Notably, BD SIR and BD SIS models
(Kühnert et al. 2014; Leventhal et al., 2014; Vaughan et al.
2019) are increasingly used and a good start in this direction,
although for longer time periods or spatially structured epi-
demics more complex models will generally be needed.
Whether this approach is effective in avoiding the issues
stemming from congruencies in practice is unknown and
warrants future investigation. If the true epidemiological his-
tory was indeed perfectly described by a given mechanistic
model, then fitting that model to a timetree will probably
yield accurate parameter estimates, provided of course a suf-
ficiently large data set. However, nature rarely exactly follows
our mechanistic models, and this is certainly true for epidem-
ics. In this situation, as when fitting generic profiles (e.g., sky-
line models), fitting a mechanistic model will generally merely
yield a scenario close to the congruence class of the true
epidemiological history; in the case of a complex mechanistic
model exhibiting a variety of qualitatively different behaviors
(depending on parameter choice), this might yield a scenario
far from the true history itself, even for large data sets (see
conceptual fig. 2 and earlier discussion).

We stress that coalescent analysis, an alternative popular
framework for reconstructing an epidemic’s effective size (Ne)
over time based on pathogen sequences (Lambert and
Stadler 2013; Hill and Baele 2019), cannot resolve the issues
discussed here. Although Ne is in theory asymptotically iden-
tifiable provided sufficiently large trees, provided that all
assumptions of coalescent theory are satisfied and provided
that the generation time T (or serial interval, which is analo-
gous to 1=k) are independently known, the issue of identifi-
ability is essentially being replaced by strong and questionable
assumptions about the sampling and transmission process
(Boskova et al. 2014). For example, using solely phylogenetic
data coalescent theory can a priori only yield information on
the product NeT, and additional assumptions or independent
information are needed about T in order to actually obtain Ne

and Re (Hall et al. 2016). In the general situation where k (and
hence T) can vary arbitrarily through time and is unknown,
one is thus faced with similar identifiability issues as with BDS
models.

Conclusions
Our results highlight the limitations of epidemiological infer-
ence using phylogenetic data alone. The reported identifiabil-
ity issues are particularly serious for cases where a
reconstruction of historical dynamics is attempted based
solely on phylogenetic data and without any additional strong
constraints. In such situations, it is generally impossible to
reliably reconstruct key epidemiological variables, such as
Re, over time, no matter how large the data. We stress that
these issues are separate from the well-recognized errors due
to small data sets (Rasmussen et al. 2014), since any two
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congruent BDS scenarios remain statistically indistinguishable
even for infinitely large phylogenies and hence large phyloge-
netic data sets alone cannot possibly resolve these issues.
Instead, additional data sources beyond just phylogenies,
such as from clinical experiments or seroprevalence surveys,
are necessary for accurate reconstruction. On a more positive
note, we have fully resolved the informational connections
between major epidemiological parameters and provide tools
for determining their identifiability based on phylogenetic
data. In particular, we provide code for exploring the full
extent of congruent BDS scenarios and for assessing which
epidemiological scenarios can in principle (i.e., with a suffi-
ciently large data set) be distinguished from one another
(supplementary S.4, Supplementary Material online). Our
results can help guide proper experimental and sampling
designs optimized for epidemiological reconstruction.

Materials and Methods

Simulations for Maximum-Likelihood Inferences
To demonstrate the implications of model congruencies us-
ing simulated trees, we proceeded as follows. Timetrees were
generated under two alternative BDS scenarios using the
function generate_tree_hbds in the R package castor v1.6.7
(Louca and Doebeli 2018) (with options
“include_extant¼FALSE, include_extinct¼FALSE,
no_full_extinction¼TRUE”). In the first scenario, l and w
were assumed to be constant over time whereas Re was ex-
ponentially decreasing over time (profiles in supplementary
fig. S1A–F, Supplementary Material online) and the simula-
tion was halted after 200 days, resulting in a tree with 175,440
tips. In the second scenario, k and l were constant over time
whereas w increased continuously toward the present (pro-
files in supplementary fig. S2A–F, Supplementary Material
online) and the simulation was halted after 200 days, resulting
in a tree with 55,934 tips. To each tree, we fitted BDS models
with a priori unknown k, l, and w, each defined as a
piecewise-linear function of time with inflections at fixed
time points (chosen such that their density is approximately
proportional to the square root of the tree’s LTT). The opti-
mal number of time-grid points (i.e., the number of fitted
parameters for each of k, l, and w) was chosen by minimizing
the AIC of the fitted model (Akaike 1981). For any given grid
size, fitting was done via maximum-likelihood using the castor
function fit_hbds_model_on_grid, with options “condition
¼ ‘auto,’ max_start_attempts¼ 100, Ntrials¼ 100.”
Additional epidemiological variables of the fitted models
(such as Re and the LTT) were computed using the castor
function simulate_deterministic_hbds. To demonstrate the
effects of fixing w to its true value during fitting, we repeated
the above fitting process while fixing w to its true time profile.
To demonstrate the effects of CSAs, discussed in the main
article, we also simulated trees under BDS scenarios similar to
the above but modified to include CSAs at three discrete time
points. We then used these new trees to fit BDS models with
unknown k, l, and w, defined as piecewise-linear functions,
while also accounting for the added CSAs in the computation
of the likelihood (MacPherson et al. 2021). As before, fitting

was performed via maximum-likelihood and by choosing the
time-grid size according to the AIC. During fitting, the times
and intensities (i.e., sampling probabilities) of the CSAs were
fixed to their true values (through options “CSA_ages” and
“fixed_CSA_probs”), reflecting general-population random-
ized seroprevalence surveys in which these properties can
be independently determined. The fitted models are shown
in supplementary figures S1 and S2, Supplementary Material
online. We mention that throughout this article “age” refers
to time before present, and “present” refers to the time at
which the sampling process was halted.

Simulations for Bayesian Inference
To explore the ability of Bayesian MCMC sampling to recover
the true epidemiological history with varying levels of con-
straints, we conducted an internally blinded BEAST2 BD sky-
line inference using sampled sequences generated from
realistic HIV epidemic simulations. Specifically, group mem-
ber A simulated timetrees and nucleotide sequences under
two different BDS scenarios lasting approximately 15 years,
resulting in trees with 590 and 540 tips, respectively (supple-
mentary fig. S3, Supplementary Material online). The param-
eters k, l, w, Re, d, and S were all within reasonable ranges,
that is, with values within the priors that would typically be
specified for an HIV model, with moderate variation through
time that can be well-approximated using a skyline model
with 3–4 time intervals (supplementary figs. S5A–F and S7A–
F, Supplementary Material online). Nucleotide sequences of
length 1,000 bp were simulated along the timetree under an
independent-sites HKY substitution model (Hasegawa et al.
1985) with transition/transversion ratio 5 (Duchêne et al.
2015) and stationary base frequencies A:0.4, C:0.17, G:0.21,
T:0.22 (Posada and Crandall 2001). The root sequence was
chosen randomly according to the stationary base frequen-
cies. Nucleotides were randomly assigned to one of four strict
clock substitution rate categories, whose rates were chosen
according to a discretized gamma distribution as described by
(Yang 1994), with shape parameter a ¼ 0:5 (Leitner et al.
1997; Posada and Crandall 2001; Duchêne et al. 2015) and
mean rate 2� 10�3 yr�1.

The simulated sequence alignments and their sampling
dates were provided to a second team (“B”) as input data
for reconstructing the epidemiological dynamics over time
using serial skyline (i.e., piecewise constant) BDS models in
BEAST2 v2.6.2 with BEAGLE v4.1 (Ayres et al. 2012; Stadler et
al. 2013; Bouckaert et al. 2019). As mentioned earlier, team B
did not have knowledge of the true epidemiological param-
eters and was initially only provided with the following infor-
mation: the nucleotide substitution model used (HKY with
independent sites), the fact that there were four rate catego-
ries according to a discretized gamma distribution, the fact
that four time intervals would be sufficient for reasonably
approximating the two epidemic histories, the fact that all
parameters were chosen within ranges typical for HIV-1, and
the present-day sampling proportion. Team B confirmed that
there was adequate temporal signal in the sequence data by
evaluating the distribution of pairwise patristic distances and
divergence over time on a preliminary approximate
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maximum-likelihood tree made in FastTree2 (Price et al.
2010) and rooted using residual mean square fitting in
Tempest v1.5.3 (Rambaut et al. 2016). Based on the distribu-
tion of sampling and branching dates (supplementary figs.
S3C–F and S4, Supplementary Material online), and to ensure
similar amounts of data in each interval, the rate shifts in
these models were specified to occur at 2, 4, and 8 years
before the present. Skyline models were parameterized in
terms of Re, removal rate d, and sampling proportion S,
each of which could vary independently in each time interval.
In all cases, the present-day sampling proportion was fixed to
its true value, to account for known correlations between
skyline model parameters (Stadler et al. 2013). Runs were
set up on two independent MCMC chains for 100–200 mil-
lion states, sampled every 10,000 states (overview of priors in
supplementary table S1, Supplementary Material online). For
each run, log files from both chains were combined using
LogCombiner (Bouckaert et al. 2019) after confirming con-
vergence in Tracer and removing 10% burn-in. We refer to
these two runs as U1 and U2 (“unconstrained” 1 and 2). For
each model drawn from the posterior distribution, we calcu-
lated the deterministic LTT, the deterministic branching den-
sity, and deterministic sampling density using the castor
function simulate_deterministic_hbds. Equal-tailed credible
intervals of various model parameters were calculated for
the posterior distribution of scenarios using the quantile func-
tion in R. To investigate how the parameter estimates would
improve if one were to provide sufficient constraints to col-
lapse the congruence class, we repeated the BEAST2 runs
while fixing the removal rate over the entire time period to
its true profile (approximated by a piecewise constant curve
for compatibility with the skyline model) and while fixing the
present-day sampling proportion to its true value (as before);
we refer to these new runs as F1 and F2, respectively (“fixed” 1
and 2). Lastly, for the second scenario where the removal rate
was nearly constant over time, we investigated how this in-
formation might improve parameter estimates, by constrain-
ing the removal rate to be constant across all time intervals
(with unknown value); we refer to this run as C2
(“constrained” 2). Posterior distributions of epidemiological
parameters from runs U1, F1, U2, F2, and C2 are shown in
supplementary figures S5–S9, Supplementary Material online,
respectively. The corresponding posterior distributions of mo-
lecular evolution parameters are shown in supplementary
figures S10–S14, Supplementary Material online. MCMC
traces of runs U1 and U2 are shown in supplementary figures
S15 and S16, Supplementary Material online, respectively. The
above analyses were also repeated for sequences simulated
under a strict molecular clock model with a single discretized
rate category from the gamma distribution, yielding similar
results.

Model Adequacy Tests
To verify that each maximum-likelihood-fitted model was
adequate for explaining the timetree, that is, that parameter
estimates were not due to bad model fits, we used parametric
bootstrapping to compare various properties of the tree to
those expected under the fitted model (Brown and Thomson

2018; Schwery 2019), as follows. For any given tree and fitted
model, we simulated 1,000 random trees using the model
from the root to the present-day using the function gener-
ate_tree_hbd_reverse in the R package castor (Louca 2020).
We then compared the distribution of tip ages generated by
the fitted model to the original tree using a Kolmogorov–
Smirnov test. Specifically, for every simulated tree, we calcu-
lated the empirical cumulative distribution function (CDF) of
the tip ages (denoted F, and evaluated at the original tree’s tip
ages via linear interpolation), and then calculated the average
of those CDFs, hence obtaining an estimate for the CDF of tip
ages generated by the model (denoted �F). The Kolmogorov–
Smirnov (KS) distance between a tree’s CDF F and �F , denoted
DðF;�FÞ, is the maximum distance between F and �F at any age.
The statistical significance (P) of the original tree’s KS distance
DðFo;�FÞ was calculated as the fraction of simulated trees for
which DðF;�FÞ was larger than DðFo;�FÞ. Hence, a small P
means that the original tree’s distribution of node ages differs
substantially from that expected under the fitted model. A
similar approach was followed for comparing the model’s and
tree’s distribution of node ages or edge lengths. To perform
analogous model adequacy tests for our Bayesian analysis, we
compared the true timetree (generated during the simulation
of the hypothetical epidemic) to the scenarios drawn from
the posterior distribution. The methodology was nearly iden-
tical to that described above for the maximum-likelihood fits,
with the only substantial difference being that each random
tree was generated by a scenario randomly chosen from the
posterior distribution. The above statistical tests are conve-
niently implemented in the castor function model_adequa-
cy_hbds (Louca and Doebeli 2018).

Empirical HIV Analysis
For the empirical HIV analysis, we used publicly available HIV-
1 sequences from Northern Alberta, Canada, collected be-
tween 2007 and 2013 and previously described by
Vrancken et al. (2017). Of the 1,055 partial pol sequences
(consisting of full protease and the first 240 or 400 codons
of reverse transcriptase) available on GenBank, the analysis
was restricted to 809 subtype B sequences, as determined
by Vrancken et al. based on a maximum-likelihood phylogeny
of Alberta sequences alongside Los Alamos HIV database
sequences (http://hiv.lanl.gov), confirmed using Comet
(Struck et al. 2014). Four sequences were removed because
they were duplicates and one sequence was removed because
it had >0.05 ambiguous nucleotides, leaving 804 sequences.
Sequences were aligned using mafft v7.402 (Katoh et al. 2005)
and known drug resistance mutation sites relative to HXB2
reference were removed (Shafer 2006). Similarly to Vrancken
et al., we identified a weak temporal signal within an approx-
imate maximum-likelihood tree of all subtype B sequences
inferred using FastTree v2.1.11 (Price et al. 2010) and rooted
by residual mean squared (rms) regression fit in Tempest
(Rambaut et al. 2016). The subtype B phylogeny consisted
of two deeply split clades herein denoted B.1 (n¼ 624) and
B.2 (n¼ 185). After splitting B.1 and B.2 at their MRCA into
two trees, re-rooting using rms, and retaining only sequences
with residuals <0.02 substitutions/site (B.1, n¼ 563; B.2,
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n¼ 164), this yielded an increase in the correlation coefficient
of the molecular clock rate fit from 0.21 to 0.33 and 0.34,
respectively. Here, we focused our analyses on the larger B.1
clade (n¼ 563).

The B.1 alignment was used to jointly infer a time-
calibrated phylogeny and fit a BD skyline serial model in
BEAST2 (Stadler et al. 2013; Bouckaert et al. 2019). Model
selection consisted of comparing strict and relaxed uncorre-
lated log normal (UCLN) clocks with free and fixed mean
clock rates, as well as multiple rate intervals for Re, S, and d
using nested sampling (Russel et al. 2019). For all the models
compared, site model averaging was conducted using
bModelTest (Bouckaert and Drummond 2017); additional
priors are summarized in S2. UCLN models with free mean
clock rates were more well-supported than their fixed mean
clock rate or strict clock model equivalents; and models with
rate shifts occurring in 1998 and 2010 had higher likelihoods
than their equivalents with equally spaced intervals from or-
igin to the most recent sample. For every model, two parallel
MCMC chains of 500 million steps were combined after con-
firming each run converged, as assessed by effective sample
sizes greater than 200 following 10% burn-in. The probability
densities of BDS model parameters, based on samples drawn
by BEAST from the posterior distribution, are shown in sup-
plementary figure S22, Supplementary Material online. The
posterior distributions of molecular evolution parameters are
shown in supplementary figure S23, Supplementary Material
online. MCMC trace plots are shown in supplementary figure
S24, Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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