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a b s t r a c t 

Gridded bioclimatic variables representing yearly, seasonal, 

and monthly means and extremes in temperature and pre- 

cipitation have been widely used for ecological modeling 

purposes and in broader climate change impact and bio- 

geographical studies. As a result of their utility, numerous 

sets of bioclimatic variables have been developed on a global 

scale (e.g., WorldClim) but rarely represent the finer regional 

scale pattern of climate in Hawai’i. Recognizing the value of 

having such regionally downscaled products, we integrated 

more detailed projections from recent climate models de- 

veloped for Hawai’i with current climatological datasets to 

generate updated regionally defined bioclimatic variables. We 

derived updated bioclimatic variables from new projections 

of baseline and future monthly minimum, mean, and max- 

imum temperature (T min , T mean , T max ) and mean precipita- 

tion (P mean ) data at 250 m resolution. We used the most 

up-to-date dynamically downscaled projections based on the 

Weather Research and Forecasting (WRF) model from the In- 

ternational Pacific Research Center (IPRC) and the National 

Center for Atmospheric Research (NCAR). We summarized 

the monthly data from these two climate projections into 

a suite of 19 standard bioclimatic variables that provide 

detailed information about annual and seasonal mean cli- 

matic conditions for the Hawaiian Islands. These bioclimatic 
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variables are available for three climate scenarios: baseline 

climate (1990-2009) and future climate (2080-2099) under 

representative concentration pathway (RCP) 4.5 (IPRC projec- 

tions only) and RCP 8.5 (both IPRC and NCAR projections) cli- 

mate scenarios. The resulting dataset provides a more robust 

set of climate products that can be used for modeling pur- 

poses, impact studies, and management planning. 

Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Ecological Modelling 

Specific subject area Bioclimatic variables for local climate change impact studies in the Hawaiian 

Islands 

Type of data GeoTIFF spatial datasets 

How the data were acquired Observation-based baseline data- We used 250 m resolution 

observation-based monthly P mean from the Rainfall Atlas of Hawai’i [1] and 

monthly T min , T mean , T max from the Climate of Hawai’i [2] datasets as our 

closest estimate of baseline temperature and precipitation patterns across the 

archipelago. 

Monthly grids from IPRC HRCM Regional Projections- The IPRC Hawai’i 

Regional Climate Model (HRCM) is a WRF dynamic downscaling model 

configured for the Hawaiian Islands [3–5] . We used the most recently updated 

HRCM products for baseline and future projections. The HRCM baseline period 

is 1990-2009, with projections available at 1-km resolution for all the major 

Hawaiian Islands. Future projections are available for end-of-century 

(2080-2099) conditions under RCP 4.5 and 8.5. Temperature and precipitation 

variables were downloaded from the U.S. Geological Survey Center for 

Integrated Data Analytics catalog (USGS CIDA 

https://cida.usgs.gov/thredds/catalog.html ) online. 

Monthly grids from NCAR WRF Regional Projections- Recently developed 

fine-scale WRF regional climate simulations by NCAR provide 10-year baseline 

(2002-2012) and future scenarios (2090-2100, RCP 8.5 only) for Hawai’i [6] . 

Monthly gridded baseline and future estimates of P mean , and T min , T mean , and 

T max variables were obtained from NCAR. 

Data format Analyzed 

Description of data collection Aligning baseline periods between baseline and DD model projections- The 

differences in baseline periods between the observational data and the 

dynamical downscaling (DD) baseline projections make their integration 

impossible without standardization. For each DD baseline projection, we used 

different overlapping periods from the observational data per variable to 

standardize the baseline period. We then adjusted the HRCM and NCAR DD 

baseline projections so that their baseline periods aligned with available 

observational data. 

Future Climate Projections- We relied on the standard delta method for bias 

correction [7] to reduce the effect of baseline deviations in the spatial pattern 

of temperature and precipitation from HRCM projections. We calculated the 

percent change in precipitation and the absolute change of temperature (in 

degrees). We then applied these calculated changes to the aligned 

observational data across all months. These bias corrected calculations were 

done for the future HRCM (2080-2099) and NCAR (2090-2100) projections for 

all variables (P mean , T min , T mean , T max ). 

Data source location Main Hawaiian Islands, state of Hawai’i, USA. 

Data accessibility The datasets generated during and/or analysed during the current study are 

available in the USGS repository, https://doi.org/10.5066/P9MF7SG . 

Repository name: USGS ScienceBase Catalog 

Data identification number: 

Direct URL to data: https://doi.org/10.5066/P9MF7SG 

http://creativecommons.org/licenses/by/4.0/
https://cida.usgs.gov/thredds/catalog.html
https://doi.org/10.5066/P9MF7SG
https://doi.org/10.5066/P9MF7SG
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Value of the Data 

• To account for the inherent uncertainty of future climate shifts, multiple climate projections

are needed for reliable climate change impact studies. In Hawai’i, obtaining such reliable cli-

mate data products has been a challenge due to the wide range of climate gradients, com-

plex topography, and the necessary fine spatial scale required to reliably represent the island

archipelago. 

• In recognizing the utility and value of having regionally downscaled products, we integrated

detailed projections from recent climate models developed for Hawai’i with current climato-

logical datasets to generate regionally defined bioclimatic variables available at 250 m res-

olution for baseline climate (1990-2009) and future climate (2080-2099) under RCP 4.5 and

RCP 8.5 climate scenarios. 

• The provided bioclimatic variables describe temperature and rainfall variability, as well as

potential changing interactions between the two. Using the multiple future scenarios, we can

estimate the changes of the individual bioclimatic variables when compared to the baseline

scenario to determine the direction and amount of change. 

• Because annual rainfall in most areas in Hawai’i is characterized by two 6-month seasons, we

also provide mean seasonal variables for all scenarios based on the dry (May-October) and

wet (November-April) seasonality of Hawaiian climate. 

• Differences in future projections in this dataset partially illustrate the variability of possible

scenarios that could be realized in the future. These new climatic datasets can be used, along

with other available climate projections, to better represent the future uncertainty in climate-

related studies in Hawai’i. 

• These bioclimatic variables can be key when explaining the current distribution and predict-

ing future variation in species richness under a changing climate [8–12] and are also relevant

to a wider range of studies as they can be used to better understand trends in human health,

agriculture, and more [13–16] . 

1. Data Description 

General circulation models (GCMs) offer a sophisticated representation of the general cli-

mate system and inform future projections at the global scale. However, GCMs are typically at

such a coarse resolution that the models do not reproduce the fine-scale spatial patterns of cli-

mate in Hawai’i [17] . This leaves land and natural resource managers with limited resources to

inform adaptive management processes and future conservation plans. As a result, GCM projec-

tions have been downscaled to better represent climate at more refined spatial scales relevant

to management and decision making [18] . 

Globally, bioclimatic variables are widely used in species distribution modeling and in

broader climate change impact studies and biogeographical studies. A literature search for ‘bio-

climatic variables’ & ‘distribution models’ alone yields > 3,500 publications. These are datasets

so commonly used in climate impact studies that now multiple research groups provide sim-

ilar global bioclimatic variable datasets such as WorldClim 2, CHELSA, MERRAclim, ecoClimate

and others [19–22] . However, these global datasets poorly represent the Hawaiian regional cli-

mate and fine scale patterns such as orographically determined rainfall and the tradewind in-

version [23] . Recognizing the value of regionally downscaled climate projections in replicating

such regional climatic patterns, past effort s generated a regionally derived bioclimatic dataset

for Hawai’i in 2015 [24] , with the resulting variables being widely used in Hawai’i for climate

impact studies and other biogeographical studies [25–27] . As useful as those regional bioclimatic

datasets have been, their future projections are based on a single outdated SRES emission sce-

nario (A1B) and on older CMIP3 global circulation models. 

Bioclimatic variables are biologically meaningful indicators that describe how climate affects

ecosystems and services. They are derived from monthly temperature and rainfall values that
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Table 1 

List of Bioclimatic Variables. 

Bioclimatic variable Description 

1 Annual mean temperature 

2 Mean diurnal range (Mean of monthly max temperature - min temperature) 

3 Isothermality (Mean diurnal range/ temperature annual range) 

4 Temperature seasonality (Standard deviation of monthly mean temperature) 

5 Max temperature of warmest month 

6 Min temperature of coldest month 

7 Temperature annual range 

(Max temperature of warmest month - min temperature of coldest month) 

8 Mean temperature of wettest quarter 

9 Mean temperature of driest quarter 

10 Mean temperature of warmest quarter 

11 Mean temperature of coldest quarter 

12 Annual precipitation 

13 Precipitation of wettest month 

14 Precipitation of driest month 

15 Precipitation seasonality (Coefficient of variation for monthly precipitation) 

16 Precipitation of wettest quarter 

17 Precipitation of driest quarter 

18 Precipitation of warmest quarter 

19 Precipitation of coldest quarter 
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hen represent annual and seasonal climatic trends. Recognizing the value of regionally down-

caled climate projections in replicating regional climatic patterns found in Hawai’i, we inte-

rated updated fine scale IPRC HRCM [5] and new NCAR [6] projections with observation-based

recipitation and temperature datasets to project updated regionally defined bioclimatic vari-

bles for Hawai’i. We generated a revised set of bioclimatic variables at 250 m resolution for a

aseline climate and future climate scenarios under RCP 4.5 and RCP 8.5 scenarios. 

This bioclimatic data series provides continuous rasters for 19 predictor variables ( Table 1 ,

ttps://doi.org/10.50 6 6/P9MF7SG ) that highlight climatic conditions for the State of Hawai’i un-

er both baseline and end-of-century (RCP 4.5 and RCP 8.5) scenarios. These bioclimatic vari-

bles provide detailed information about annual conditions (annual mean temperature, annual

recipitation, annual range in temperature and precipitation), as well as seasonal mean climate

onditions (temperature of the coldest and warmest months, precipitation of the wettest and

riest quarters). Each of these bioclimatic variables are available for one baseline scenario and

hree projected future scenarios. The baseline scenario provides an estimate of current (1983-

012) climatic conditions for each bioclimatic indicator. Future IPRC (2080-2099) and NCAR

2090-2100) projections are available for one RCP 4.5 scenario (IPRC projection) and two RCP

.5 scenarios (IPRC and NCAR projections). From these multiple future scenarios, we can esti-

ate the changes of the individual bioclimatic variables compared to the baseline scenario to

etermine the direction and amount of change. Having these multiple projections offers more

ariability in the potential climatic changes that may be realized in the future across all the

awaiian Islands. 

These bioclimatic variables describe changes in temperature and rainfall variability, as well as

otential changing interactions between the two. For instance, Precipitation Seasonality (BIO 15)

hows the projected shifts in rainfall variability ( Fig. 1 ). Other bioclimatic indices describe inter-

ctions between rainfall and temperature, such as Precipitation of the Warmest Quarter ( Fig. 2 ).

his index estimates precipitation that falls during the warmest three months of a year, which

an be useful to characterize critical drought stress periods and seasonal distributions of species.

Aside from the typical bioclimatic variables, we also calculated mean seasonal variables for

ll scenarios based on the dry (May-October) and wet (November-April) seasonality of Hawaiian

limate ( Fig. 3 ). Because annual rainfall in most areas in Hawai’i is characterized by these two

-month seasons, potential shifts of these seasonal phases are important to consider. 

https://doi.org/10.5066/P9MF7SG
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Fig. 1. Example Bioclimatic Variable. The a) baseline and the projections by b) NCAR (RCP 8.5) and c-d) IPRC (RCP 4.5 

and RCP 8.5, respectively) for Precipitation Seasonality (as %) (BIO 15). 

Fig. 2. Example Bioclimatic Variable. The a) baseline and the projections by b) NCAR (RCP 8.5) and c-d) IPRC (RCP 4.5 

and RCP 8.5, respectively) for Precipitation of the Warmest Quarter in mm (BIO 18). 



6 L. Berio Fortini, L.R. Kaiser and L. Xue et al. / Data in Brief 45 (2022) 108572 

Fig. 3. Percent Change in Dry and Wet Season Precipitation. The a,e) baseline mean precipitation in mm and percent (%) 

change for b,f) NCAR RCP 8.5, c,g) IPRC RCP 4.5, and d,h) IPRC RCP 8.5 projections for dry and wet seasons, respectively. 
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2. Experimental Design, Materials and Methods 

Gridded monthly mean precipitation (P mean ) and monthly min (T min ), mean (T mean ), max

(T max ) temperature data are required for calculation of standard bioclimatic indicators. We used

observation-based data for the baseline bioclimatic variables and two dynamical downscaling

(DD) projections for two future scenarios. We describe how these datasets for current baseline

and projected future climate were processed and calculated below. 

Observation-based baseline data- We used 250 m resolution observation-based monthly 

P mean from the Rainfall Atlas of Hawai’i [1] and monthly T min , T mean , T max from the Climate

of Hawai’i [2] datasets as our closest estimate of baseline temperature and precipitation pat-

terns across the archipelago. These two datasets have differing historical periods, with the

observation-based mean annual precipitation data representing a historical period from 1978–

2007 and annual temperature data representing a historical period from 1957-1980. These pre-

cipitation and temperature datasets are considered the best available representation of the cur-

rent baseline climate across the islands and thus are widely used in Hawai’i. 

Regional downscaling projections- Currently in Hawai’i, there are few effort s to regionally

downscale global models. Elison Timm et al. [28 , 29] generated statistical downscaling (SD) cli-

mate projections of precipitation and temperature for Hawai’i by developing a statistical rela-

tionship between regional-scale spatial patterns of atmospheric circulation, moisture transport,

and stability and point-scale observations. Efforts from the International Pacific Research Cen-

ter (IPRC) [3 , 4] and the National Center for Atmospheric Research (NCAR) [6] have both used

DD approaches to generate a higher resolution regional climate model that use pseudo global

warming (PGW) [30 , 31] to determine regional model parameters, such as lateral and boundary

conditions. Both DD products are derived using the Weather Research and Forecasting (WRF)

model for historical and future scenarios [32] . The IPRC configured a nested version of the WRF

model with both high resolution and improved physics for the Hawaiian region, known as the

Hawai’i Regional Climate Model (HRCM). Updates and improvements to the configured HRCM

include additional details like the specification of surface properties such as albedo, land cover

type, and soil type for the Hawaiian Islands. These updated HRCM projections from the IPRC

are available for regional climate projections (RCP) 4.5 and 8.5 emission scenarios [33] . The new

NCAR projections, based on two 10-year periods, implement change to historical (2002-2012)

conditions based on climate change signals from GCM averages under future (2090-2100) RCP

8.5 emissions. These simulations from NCAR have been validated and have well documented

results that ensure the reliability and integrity of the data [6]. 

Processing of monthly grids from IPRC HRCM Regional Projections- The HRCM is a WRF

dynamic downscaling model configured for the Hawaiian Islands [3–5] . In general, the dynam-

ical downscaling approach of the HRCM realistically simulates the magnitude and geographical

distribution of mean precipitation in Hawai’i and thus is commonly used for local climate im-

pact studies [34–36] . We used the most recently updated HRCM products for baseline and future

projections. The HRCM baseline period is 1990-2009 and the updated projections are available

at 1-km resolution for all the major Hawaiian Islands. Future projections are available for end-

of-century (2080-2099) conditions under RCP 4.5 and 8.5. 

Temperature and precipitation variables were downloaded from the U.S. Geological Survey

Center for Integrated Data Analytics catalog (USGS CIDA https://cida.usgs.gov/thredds/catalog.

html ) online. Hourly gridded data was collected for baseline (present) and future (RCP 4.5 and

8.5) scenarios. Temperature values were aggregated by monthly minimums and maximums (T min 

and T max ). For HRCM projections, mean temperature (T mean ) values were then calculated from

the average of the minimum and maximum values. We used the 95th percentile of values to

account for outliers and avoid unrealistic T min and T max values. Mean precipitation (P mean ) val-

ues were derived from two rainfall variables. The hourly count of rainfall tipping buckets was

multiplied by 100 and then added to the total accumulation precipitation at the grid scale and

again aggregated to a monthly temporal scale. 

https://cida.usgs.gov/thredds/catalog.html
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Processing of monthly grids from NCAR WRF Regional Projections- A new set of fine-scale

limate models for Hawai’i recently developed and released by NCAR uses two 10-year WRF re-

ional climate simulations for baseline and future scenarios [6] . The baseline simulation is based

n the ERA-Interim global reanalysis data and observed sea surface temperature from October

002 to September 2012. This 10-year historical period was selected to represent the hydrologic

easonality of Hawaii and the availability of ultra-high resolution climate data used in this model

etup. The future projection uses the PGW method to implement change based on GCM averages

rom 2090 to 2100. This dataset has a major advantage of providing validated hourly rainfall val-

es for the entire state. Baseline and future (RCP 8.5 only) projections for P mean , and T min , T mean ,

nd T max variables were provided by NCAR [6]. These data were provided at a monthly gridded

cale for the main Hawaiian Islands. 

Aligning baseline periods between baseline and DD model projections- The differences

n baseline periods between the observational data and the DD baseline projections make their

ntegration impossible without standardization. Hence, we adjusted the HRCM and NCAR DD

aseline projections so that their baseline periods aligned with the commonly used observa-

ional data. 

To align the DD precipitation baseline projections, we used monthly gridded precipitation

atasets available from 1920-2012 [37] . From these monthly datasets, we created monthly pre-

ipitation grids matching the differing baseline periods for the Rainfall Atlas observational

ataset (1978-2007), the HRCM monthly precipitation dataset (1990-2009), and the NCAR pro-

ections (2002-2012). We then calculated the percent precipitation difference between the origi-

al observational baseline period (1978-2007) and the two DD baseline periods (1990-2009 and

002-2012): 

H RCM P 1978 −2007 = H RCM P 1990 −2009 ×
(

1 + 

Monthly Obs P 1978 −2007 − Monthly Obs P 1990 −2009 

Monthly Obs P 1990 −2009 

)

To standardize the DD precipitation baseline projections, we used absolute difference instead

f percent difference. However, because we did not have equivalent monthly temperature grids,

e used statewide yearly temperature records [38 , 39] to calculate the absolute temperature de-

iation between the original observational period (1957-2010) and the HRCM and NCAR baseline

eriods (1990-2009 and 2002-2012, respectively). Ultimately, we applied this absolute change as

 correction for the observational temperature dataset used in the analysis: 

N CAR T 1957 −2010 = N CAR T 1957 −1980 + ( Yearly Obs T 1957 −2010 − Yearly Obs T 1957 −2010 ) 

Future Climate Projections- We relied on the standard delta method for bias correction

7] to reduce the effect of baseline deviations in the spatial pattern of temperature and pre-

ipitation from HRCM projections. We calculated the percent change in precipitation and the

bsolute change of temperature (in degrees). We then applied these calculated changes to the

ligned observational data across all months. These bias corrected calculations were completed

or the future HRCM (2080-2099) and NCAR (2090-2100) projections for all variables (P mean ,

 min , T mean , T max ): 

Bias correct ed HRC M P 2080 −2099 = Obs P 1978 −2007 ×
(

1 + 

HRC M P 2080 −2099 − HRC M P 1978 −2007 

HRC M P 1978 −2007 

)

Bias correct ed HRC M T 2080 −2099 = Obs T 1957 −2010 + ( HRC M T 2080 −2099 − HRC M T 1957 −2010 ) 

Bioclimatic and seasonal variable calculations- Once precipitation and temperature rasters

ere calculated for each of the baseline and future scenarios considered, we calculated the 19

ioclimatic variables using the methods available in the ‘dismo’ R package [40] also used to cal-

ulate commonly used WorldClim bioclimatic variables [19] . Table 1 describes each variable and

alculation. These methods are based on a dynamic temporal definition of bioclimatic variables

here, for instance, BIO14 (the precipitation of driest month) may refer to a different month

or baseline conditions as compared to a future projected scenario if rainfall seasonality is pro-

ected to change). Past research shows no clear advantage/disadvantage of using dynamic versus
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static reference months and quarters for bioclimatic variable calculations [41] . We also calcu-

lated mean seasonal T min , T max , T mean and P mean variables for all scenarios considered (RCP 4.5

and RCP 8.5) based on fixed dry (May-October) and wet (November-April) Hawaiian seasons. 
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