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Abstract: A variety of microrobots have commonly been used in the fields of biomedical 
engineering and underwater operations during the last few years. Thanks to their compact 
structure, low driving power, and simple control systems, microrobots can complete a 
variety of underwater tasks, even in limited spaces. To accomplish our objectives, we 
previously designed several bio-inspired underwater microrobots with compact structure, 
flexibility, and multi-functionality, using ionic polymer metal composite (IPMC) actuators. 
To implement high-position precision for IPMC legs, in the present research, we proposed 
an electromechanical model of an IPMC actuator and analysed the deformation and 
actuating force of an equivalent IPMC cantilever beam, which could be used to design 
biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip 
displacement of an IPMC actuator experimentally. The experimental deflections fit the 
theoretical values very well when the driving frequency was larger than 1 Hz. To realise 
the necessary multi-functionality for adapting to complex underwater environments, we 
introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying 
state and a standing state. The microrobot uses eleven IPMC actuators to move and two 
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shape memory alloy (SMA) actuators to change its motion attitude. In the lying state, the 
microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming 
motion, horizontal grasping motion, and floating motion. In the standing state, it 
implements inchworm-inspired crawling motion in two horizontal directions and grasping 
motion in the vertical direction. We constructed a prototype of this biomimetic microrobot 
and evaluated its walking, rotating, and floating speeds experimentally. The experimental 
results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a 
maximum rotational speed of 9°/s, and a maximum floating speed of 7.14 mm/s.  
Obstacle-avoidance and swimming experiments were also carried out to demonstrate its 
multi-functionality. 

Keywords: ionic polymer metal composite (IPMC) actuators; biomimetic underwater 
microrobot; motion attitudes; micromechanism; shape memory alloy (SMA) actuators 

 

1. Introduction 

Underwater biomimetic microrobots have been extensively employed in various biomedical and 
naval applications, such as cleaning micro-pipelines in a radioactive environment, submarine sampling 
and data collection, object recovery in restricted and dangerous spaces, video mapping, scanning blood 
vessels, and so on [1,2]. In past research, robots have typically utilised motor-actuated screw propellers 
as actuators. However, the applicability of traditional motors is limited by their large size, high noise, 
and high power consumption. Because of their electromagnetic configuration, it is difficult to 
miniaturise motors to fit a compact structure [3,4]. Hence, traditional motors are not a good choice for 
microrobot design. Because of these problems, smart materials, such as ionic polymer metal composite 
(IPMC), piezoelectric elements, pneumatic actuators, and shape memory alloy (SMA), are increasingly 
being applied in microrobotics [5,6]. In particular, SMA and IPMC require relatively low voltages for 
actuation, and are thus more suitable for compact underwater robots. 

Although many biomimetic microrobots with smart actuators have been introduced in recent years, 
developing a single microrobot with compact structure, flexibility, and multi-functions remains a 
challenge, due to conflicts between these three characteristics. For this reason, many microrobot 
designers have abandoned the notion of a compact structure in favour of biomimetic multi-jointed 
configurations to improve flexibility and obtain multi-functions. Others have sacrificed flexibility and 
multi-functions in pursuit of miniaturisation. Owing to their compact structure, soft characteristics, low 
driving power, low noise, operability in water or wet environments, and density similar to that of 
water, IPMC actuators have been widely researched as a means of actuating microrobots. Since 
microrobots must make the most of a small volume to realise a variety of functions, smart materials 
such as IPMC are frequently used as actuators.  

The actuation characteristics of IPMC, including suitable response time, high bending deformation, 
and long life, show significant potential for the propulsion of underwater microrobots. IPMC actuators 
can be used as undulatory and oscillatory fins to propel swimming microrobots backwards or  
forwards [7–10], and are widely used for this purpose when fast response is required [8–12]. Typical 
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research in this area has focused on fundamental properties and characteristics, manufacturing 
techniques, phenomenological modelling of actuation, and sensing mechanisms [13] Yun and  
Kim [14] proposed a three-fingered gripper in which each finger was an actuator, and each finger was 
actuated individually. Bonomo et al. [15] introduced a nonlinear dynamic model based on a grey box. 
Branco et al. [16] developed a continuum electromechanical model for IPMCs. Porfiri [17] studied the 
charge dynamics in ionic polymer metal composites (IPMCs) in response to a voltage difference 
applied across their electrodes. Ahn et al. [18] used quantitative feedback theory to implement position 
control of the IPMC actuator. Gong et al. [19] developed a finite element (FE) model for simulating 
the dynamic electro-mechanical response of an IPMC structure under an external voltage input. But 
although a large amount of research has been devoted to IPMC-based actuators, deformation and generated 
force are still under investigation, and a general consensus on the best actuator does not exist [15]. 

Because the precise position of a fish-like robot cannot be ensured, and its mobility in restricted 
spaces and capacity for performing some simple underwater tasks are dubious, many researchers have 
chosen to develop walking robots instead. However, there are still definite areas of inadequacy. Up to 
now, a single underwater microrobot has only been able to realise a single function of an underwater 
mission. A ciliary based 8-legged microrobot, for example, implemented only a single walking motion 
by using IPMC actuators [20]. We need to develop robots that address the shortcoming of unrealised 
multi-functionality. 

We have previously developed several underwater legged microrobots with efficient locomotion 
capabilities and multi-functionality, employing IPMC-based biomimetic actuators to implement 
walking, rotating, floating, and swimming motions [21–25]. However, the position precision of the 
IPMC-actuated legs and fins is not high enough for the performance of some simple tasks, such as 
detecting an object, grasping and carrying objects to a desired position, or avoiding an obstacle. To 
implement high-position precision in underwater microrobots, we propose an electromechanical model 
of an IPMC actuator and analyse the deformation and actuating force of an equivalent IPMC cantilever 
beam, which could be used to design legs, fingers, or fins for a microrobot. The model is composed of 
both the electrical and the electromechanical stages, which is simple and accurate to characterize the 
IPMC actuator. The model parameters can be scaled on the basis of actuator geometry, which is very 
valuable to investigate the effects of changes in the geometry of the IPMC actuator. This model is 
accurate enough to estimate relevant deflections of the IPMC actuator when the driving frequency was 
larger than 1 Hz. For the legs or fins of microrobots are usually driven with a low frequency, the 
proposed model is capable of describing their electromechanical behaviours, though he displacement 
variation with respect to voltage is greatly reduced at a high frequency. 

To realise the necessary multi-functionality for adapting to different environments, a hybrid 
underwater microrobot with two motion attitudes is introduced in this paper. The microrobot uses 
eleven IPMC actuators to implement three-dimensional underwater motions, and two SMA actuators 
for attitude change. The robot can change between two attitudes: A lying attitude and a standing 
attitude. It uses the standing attitude to cross a high, narrow gap, and changes to the lying attitude 
while walking through a low, wide tunnel. We have constructed a prototype microrobot and carried out 
a series of experiments to evaluate its performance. 

The remainder of this paper is divided into five parts. First, we describe the electromechanical 
model for an IPMC actuator, including the electrical part, theoretical deflection characteristics, and 
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theoretical force characteristics. Second, we experimentally measure the deflection of a sample IPMC 
actuator to evaluate the proposed theoretical model, and also measure the deflection of an SMA 
sample. Third, based on several types of biomimetic locomotion, we introduce the new hybrid 
microrobot design, including the structural design and motion mechanisms in the two attitudes. Fourth, 
we discuss the construction of a prototype of this hybrid microrobot, together with a series of 
experiments to evaluate its walking, rotating, floating, and swimming speeds. Attitude change and 
obstacle-avoidance experiments are also included. Finally, we present our conclusions. 

2. IPMC Actuators 

2.1. Electromechanical Model of an IPMC Actuator 

An IPMC actuator can be represented by an equivalent cantilever beam. Figure 1 shows the 
mechanical configuration of the actuator and the relevant parameters. Here, Lc denotes the length of 
the clamped part of the actuator, Lf is the total free length, and wc and hc denote the cross-sectional 
width and height, respectively. The pinned end is used to apply electrical voltages across the thickness. 

According to mechanical analysis, the bending deformation of an IPMC actuator results from 
redistribution of the internal water molecules. Under the influence of an applied stimulus, the water 
molecules in the actuator are redistributed in the following two stages [19]:  

(1) When an electrical stimulus is applied across the thickness, each hydrated sodium ion moves in 
combination with four hydrated water molecules to the cathode side. Bending deformation is 
generated by the swelling of Nafion 117 near the cathode side, and contraction near the anode side. 

(2) After a short time, self-diffusion causes free water molecules to flow gradually to the anode 
side, reducing the concentration of water molecules at the cathode and indicating the 
deformation recovery potential of the actuator. 

Figure 1. Mechanical configuration of the actuator and relevant parameters. 

 

Accordingly, the model of an IPMC actuator is divided into two stages. The external stimulus to the 
model is the applied voltage Vi(t), while the first-stage output is an estimate of the absorbed current Ii(t). As 
has been widely reported in the literature, the current produces a mechanical reaction because of the 
charge/water redistribution [15]. The second stage is intended to estimate either the available force F(t) 
or the tip displacement δ(t) in the absence of an external force. 
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2.2. Electrical Part 

Since an IPMC actuator is driven by electrical voltage, it exhibits some electrical characteristics. 
Thus, we can model the actuator with an equivalent resistance–capacitance (RC) circuit that converts 
the applied voltage stimulus into an inner current. This RC model is used for determining the electric 
charge produced by an input voltage. The inner current is in fact a redistribution of the inner ions, and 
generates an electrical field across the thickness of the actuator. The equivalent RC circuit model with 
lumped parameters provides some advantages, since it allows a graphical representation of the 
governing equations for an IPMC leg or finger in an actual application. The electrical elements used in 
the RC circuit can be evaluated on the basis of physical considerations that enable them to be scaled 
according to the actuator geometry [15,26–30]. 

Figure 2 shows the equivalent lumped RC circuit adopted for the IPMC electrical model. In this 
circuit, Re denotes the electrode resistance, R1 denotes the equivalent bulk resistance of the Nafion 117, 
and R2C2 reflects the capacitive nature of the IPMC. According to Kirchhoff’s voltage law, we can have: 
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where Vi(t) denotes the external stimulus, Ii(t) denotes the absorbed total current, I1(t) denotes the 
current across R1, and I2(t) denotes the current across R2C2. It is assumed that there is no initial current 
flow. We then apply the Laplace transformation to Equation (1), and obtain: 
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Figure 2. The equivalent electrical circuit for an IPMC actuator. 
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2.3. Theoretical Deflection Characteristics 

The current absorbed by an IPMC actuator induces a mechanical reaction via the redistribution of 
the inner charges/water molecules, resulting in a mechanical bending of the actuator. The dynamic 
bending displacement δ(t) of an IPMC beam is determined by the concentration of water molecules 
W(t), as follows:  

)(4)()( tQktWkt ivv ==δ  (6)

where kv is the deformation coefficient of the IPMC and Qi(t) denotes the total electric charge. In the 
saturated state, each sodium ion combines with four water molecules to form a hydrated sodium cation. 
Hence, W(t) can be expressed as 4Qi(t). Also, we assume that there is no initial current flow or 
deformation. We then apply the Laplace transformation to Equation (6), and obtain: 
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Substituting Qi(s) from Equation (5), we have: 
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We now scale the elements in the IPMC equivalent circuit according to the following geometrical 
dimensions: Lf = 17 mm, Lc = 3 mm, wc = 4 mm, and hc = 0.22 mm. Since the two electrodes have the 
same thickness and area, they both have the same resistance, denoted by Re. By modelling each 
electrode as a single layer with the same thickness, we can assume that its resistance is proportional to 
the free length of the actuator and inversely related to its width. Re can then be determined using the 
following equation [15]: 

c

fs
e w

LR
R =  (9)

where Rs is the induced resistance, which can be estimated via adequate measuring surveys and data 
processing. Nation® Na+ was used in our research. The geometrical dimensions of the IPMC actuator 
are listed above. Therefore, Rs is approximately equal to 1.075 Ω [15], and the calculated value of Re is 
4.6 Ω. From Equation (9), we can see that the ratio Re/Rs depends only on the geometrical dimensions 
of the sample.  

R1 is the equivalent bulk resistance of Nafion® under DC conditions. It can be computed from the 
following equation [15]:  
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where ρ1 denotes the Nafion® DC resistivity, and hc, Lf, Lc, and wc are the geometrical dimensions 
shown in Figure 1. R1 can also be obtained from experimental data. For the same IPMC sample,  
R1 = 182.1 kΩ. 

R2 denotes the equivalent bulk resistance of Nafion® against the charges involved in fast 
phenomena. It can be modelled as a function of both the Nafion® resistivity ρ2 and the geometrical 
dimensions of the sample, as follows [15]:  
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R2 can also be obtained from experimental data. For the same IPMC sample, R2 = 0.6523 kΩ. 
The capacitor C2 in the same branch is scaled according to the following Equation:  
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The value of the permittivity ε2 can be determined from the experimental data [15]. For the same 
IPMC sample, C2 = 0.04518 F/s.  

The deformation coefficient kv is assigned a test value approximately equal to 0.06875 for the IPMC 
sample. We assume an external stimulus Vi(t) = 4(t), so that Vi(s) = 4/s. Applying the inverse Laplace 
transformation to Equation (8), we obtain the following equation:  
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where a = 0.0334598685 and a0 = 0.000121113. The tip deflection of the IPMC sample with respect to 
time is shown in Figure 3. 

Figure 3. Theoretical deflection of IPMC with time (step stimulus). 

 

2.4. Theoretical Force Characteristics 

Figure 4 shows the electromechanical behaviour of a cantilevered IPMC actuator under an electric 
field, modelled as a supported cantilever beam under a uniformly distributed bending moment [31]. 
Utilising the tip deflection equation: 
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under a distributed bending moment, we obtain the equivalent resultant moment at the tip point, given by: 
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substituting Ml(t) from Equation (15), we have: 
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Applying the Laplace transformation to Equation (16), we obtain:  
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According to Equation (17), the resultant bending moment and equivalent force at the tip point can 
be calculated from the following equations: 
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We assume an external stimulus Vi(t) = 1(t), so that Vi(s) = 1/s. The measured value of the elastic 
modulus E of the IPMC under hydrated conditions is about 83 MPa [32]. For the IPMC cross-sectional 
dimensions of 0.22 × 4 mm, the moment of inertia I of the IPMC is I = wchc

3/12 = 3.574×10−15 m4. 
Applying the inverse Laplace transformation to Equation (19), we have:  
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Figure 4. Deflection and distributed bending moment. 
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3. Performance Evaluation 

3.1. IPMC Actuators 

To evaluate the proposed electromechanical model, we measured the displacement of a single 
IPMC actuator in a water tank under different applied signals. Figure 5 shows the displacement-
measuring system. The actuator was driven by a personal computer (PC) equipped with an analogue-
to-digital (AD) converter card, and the deflection of the IPMC was measured by a laser displacement 
sensor. The laser sensor was used to translate the displacement into a voltage, and the voltages were 
then recorded and translated to the PC via an oscilloscope. Since the output voltage of the laser sensor 
is proportional to the distance, we obtained the tip displacement of the IPMC actuator by calculating 
the change in the voltage. With its capacity for converting a distance signal into a voltage signal, the 
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laser sensor was able to measure the distance at every instant. The IPMC actuator sample was 20 mm 
long, 4 mm wide, and 0.22 mm thick. 

Figure 5. Deflection measurement system for the IPMC actuator. 

 

Figure 6 shows the experimental tip displacements with a step stimulus of 4 V. The theoretical 
values are included in the figure for comparison. There was good agreement in the first half of the 
process (0–0.3 s), whereas some errors appeared in the second half (0.3 s onwards). Since IPMC 
actuators are mainly used as artificial muscles to propel microrobots backwards and forwards, the 
errors in the second half of the bending process can be ignored when the frequency of the driving 
voltage is higher than 1 Hz. We measured the deflection of the same IPMC sample with a square 
stimulus of 4 V, which was used to oscillate the legs in the following section. Figure 7 shows the 
experimental deflection of the sample with respect to time for a frequency of 0.5 Hz. 

Figure 6. Relationship between the theoretical and experimental values (step stimulus). 
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Figure 7. Experimental deflection of IPMC with time (square stimulus). 
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The experimental tip displacements of the IPMC sample were measured for different voltages and 

frequencies. Figure 8 indicates that the displacement was inversely proportional to the frequency of the 
input signal, and proportional to the input voltage at a low frequency. However, the displacement 
variation with respect to voltage was greatly reduced at a high frequency. 

 
Figure 8. Tip displacements of the IPMC actuator. 
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3.2. SMA Actuators 

 
We also evaluated the deformation performance of the SMA actuators. We used the same AD board 

and laser sensor to measure the extended length of the SMA under different input voltages. We 
measured the deformation of the SMA via the same method used to obtain the tip displacement of the 
IPMC actuator [33]. Figure 9 shows the deformation-measuring system for the SMA sample. A direct 
current (DC) power supply provided step input signals to the SMA actuator. The payload weight was 
30 g and the testing time was 10 s. The experimental results are shown in Figure 10 (3 V), Figure 11  
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(5 V), and Figure 12 (7 V). The results indicate that increasing the driving voltage decreased the 
response time of the SMA actuator. The maximum deformation was almost the same for each of the 
driving voltages.  

Figure 9. The deformation measuring system. 

 

Figure 10. Deformation of the SMA actuator (30 g, 3 V). 
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Figure 11. Deformation of the SMA actuator (30 g, 5 V). 
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Figure 12. Deformation of the SMA actuator (30 g, 7 V). 
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4. Biomimetic Locomotion and the Proposed Microrobot 

4.1. Biomimetic Locomotion 

Bio-inspired robots borrow their senses and structure from animals, such as insects, fish, and birds. 
A stick-insect-inspired biomimetic leg prototype using two IPMC actuators was introduced in [21]. 
The actuator in the vertical direction is called the driver, while the actuator in the horizontal direction 
is called the supporter. The driver and supporter are driven by two square wave channels, each with the 
same frequency. The phase of the supporter lags 90 degrees behind that of the driver [21,34]. 

An inchworm moves by drawing its hind end forward while holding on with its front legs, and then 
advancing its front end while holding on with its prolegs [23,25]. An inchworm-inspired biomimetic 
locomotion prototype with two IPMC actuators was introduced to implement fast creeping. The design 
was based on a one degree-of-freedom (1-DOF) leg. The structure of the 1-DOF walking mechanism is 
described in [25]. 

Fish are divided into two categories, based on swimming mode. If a fish generates thrust by 
bending its body and/or caudal fin, the resulting motion is categorised as body and/or caudal fin (BCF) 
locomotion. If a fish generates thrust by bending its median and/or paired fin, the resulting motion is 
categorised as median and/or paired fin (MPF) locomotion [35]. 

4.2. Structure of the Microrobot  

Based on the above types of biomimetic locomotion, we propose a hybrid underwater microrobot, 
consisting of a plastic body, eleven IPMC actuators, two SMA actuators, a passive tail fin, and two 
plastic sheets. With the SMA actuators affixed to the plastic sheets, the microrobot can change its 
attitude between the lying state and the standing state, as illustrated in Figure 13. The body of the 
microrobot is 35 mm long and 20 mm wide, as determined by the motion functions and balance of the 
overall body. It is 3 mm high in the lying state and 21 mm high in the standing state. The eleven 
actuators are all 17 mm long, 3 mm wide, and 0.2 mm thick. 

The microrobot uses eleven 1-DOF IPMC actuators to realise walking, rotating, grasping, 
swimming, and floating motions [33]. Figure 14 shows the leg sequence of these actuators. In the lying 
attitude, actuators I and J are used as fingers, and are designed for grasping. Actuators B, C, F, and G are 

(m
m

) 
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called supporters, while actuators A, D, E, and H are called drivers. By changing the bending directions of 
the four drivers, the robot can walk forward or backward, and rotate clockwise or counter-clockwise. 
In the standing attitude, actuators B, C, F, and G are used as fingers for grasping. Legs A and E are 
used as leading legs, while legs D and H are used as following legs to implement walking and rotating 
motions. In both attitudes, actuator K is used to actuate the passive tail fin for swimming. 

Figure 13. Proposed hybrid microrobot. 

(a) Lying attitude (b) Standing attitude 

Figure 14. Leg sequence and dimensions of the proposed microrobot. 

 

4.3. Force Analysis of the Attitude Change 

The SMA actuators are used to change the attitude of the proposed microrobot. It was necessary to 
calculate the force required for standing motion before attaching the SMA actuators to the robot body. 
We then constructed a physical mechanism to transform horizontal forces into vertical forces that 
could be measured with a spring dynamometer. Figure 15 shows a diagram of the force transition 
mechanism. We first inserted two fishing lines through the points A–D and B–C, respectively, and 
then connected the four ends of the two lines at the point O. The vertical force F was measured via a 
spring dynamometer at point O. The force Fn required to pull the plastic sheet from the horizontal to 
the vertical direction is given by: 
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32FFn =  (21)

where F3 denotes the tensile force in either of the lines (AD or BC). According to Figure 15, the tensile 
forces F3 and F1 and the resultant force F2 can be obtained from the following equations:  

3 1 sinF F θ= −  (22)

1

2
1 cos2 θ

FF =  (23)

2 2 cos
FF

α
= −  (24)

where F denotes the measured vertical force. 
Utilising Equations (21), (22), (23), and (24), Fn is given by: 

11

1

coscos2
sin

αθ
θFFn =  (25)

We used this formula to calculate the force Fn required for our proposed structure. 

Figure 15. The scheme of tensile force measurement for the attitude change. 

 

4.4. Mechanism of the Walking/Rotating Motion in the Lying Attitude  

In the lying attitude, the proposed microrobot can implement stick-insect-inspired walking motions 
using supporters B, C, F, and G and drivers A, D, E, and H. The drivers provide the propulsion for the 
motion, and the supporters are employed to raise the drivers off the ground and reduce the resistance. 
The drivers and supporters are controlled by two square wave channels, each with the same frequency. 
The phase of the four supporters lags 90 degrees behind that of drivers. Figure 16 shows a single step 
cycle of the forward motion. Each cycle is divided into four periods as follows [21]: 

(1) The four supporters lift the body to raise the drivers off the ground. 
(2) As the supporters lift the body, the drivers bend forward. 
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(3) The four supporters bend upward, causing the four drivers to contact the ground. 
(4) The four drivers bend backward to push the body forward. 

The walking speed is determined by the displacements of the four drivers and the frequency of the 
control signal. Since the drivers are distributed symmetrically on both sides of the body, and have the 
same size and deflection characteristics, they bear equivalent loads and drag forces. Therefore, all four 
drivers provide the same tip displacement for a given applied input voltage. Assuming that the robot is 
moved by a fixed driving voltage and current, the tip displacement of the actuator in one direction is d/2, 
and the distance the robot advances is d, as shown in (Figure 16 (c) and (d)). The walking speed can then 
be obtained from: 

fddfdv ×Δ−=×= )( 0  (26)

where v denotes the average walking speed, d0 denotes the tip displacement of a driver without a 
payload, Δd is the reduction in the actual displacement of a driver due to friction, and f is the frequency 
of the input signal. 

Figure 16. One step cycle of moving forward motion in lying structure (The marks ● 
indicate which actuator contacts the ground). 

 
(a) (b) (c) (d) 

By changing the bending directions of the four drivers, forward and backward walking motions and 
clockwise and counter-clockwise rotations can be implemented. Figure 17 shows a single step cycle of 
the rotational motion, which can also be divided into four periods. When the four supporters lift the 
body, the two left drivers bend forward and the two right drivers bend backward. When the four 
supporters bend upward, the four drivers contact the ground and bend in the reverse direction. 

When the rotational direction of drivers E and H is opposite to that of drivers A and D, the 
microrobot can implement clockwise rotation or counter-clockwise rotation. The robot rotates through 
the angle θ in a single step cycle, as shown in (Figure 18(a)). Here, θ is given by: 

R
L=θ  (27)

where L denotes the length of the rotational arc and R denotes the radius of rotation with centre-point 
O. From (Figure 18(b)), we have: 

cos
2
dr rα = −  (28)

l rα= ×  (29)
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2
2 2
d dh r= ⋅ −  (30)

where r is the bending radius of the IPMC actuator, α denotes the central angle of the IPMC bending 
arc, l denotes the length of the IPMC actuator, and h denotes the semifocal chord length of the IPMC 
bending arc. The radius R can be calculated using the equation: 

2 2( 10) (17.5 )
2
dR h= + + −  (31)

when d is very small, we can approximate the arc length L by d, the linear distance between the initial 
and final robot position. According to Equations (27) and (31), the theoretical rotational speed can then 
be calculated from:  

2 2

2*
( 10) (17.5 )

2

df f
dh

ω θ= =
+ + −

 
(32)

Figure 17. One step cycle of rotating motion in lying structure (The marks ● indicate 
which actuator contacts the ground). 

 
(a) (b) (c) (d) 

Figure 18. (a) The rotating angle in one step cycle. (b) The calculation of the value of h. 
(Only drivers are drawn). 

 

4.5. Mechanism of the Walking/Rotating Motion in the Standing Attitude  

In the standing attitude, the microrobot can implement inchworm-inspired crawling motions in two 
directions (longitudinal and transverse) using the eight legs A to H. Unlike the motions in the lying 
attitude, legs A and E are used as leading legs, while legs D and H are used as following legs. This 
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allows the robot to implement walking motion in the longitudinal direction. When the robot walks 
forward, the phase of the leading leg lags 90° behind that of the following leg, as shown in Figure 19 [36]. 
In this attitude, the robot can fold all legs below its body to get across high narrow gaps. The crawling 
speed in the standing attitude is determined by the same parameters as in the lying attitude. 

Figure 19. One step cycle of crawling motion in standing attitude [36]. 

 

Based on this walking mechanism, when one side of the microrobot moves forward and the other 
side moves backward, or remains stationary, the robot can rotate in either the clockwise or  
counter-clockwise direction. The rotational speed of the robot is determined by the rotational angle in a 
single step and the frequency [36]. 

4.6. Mechanism of the Grasping Motion  

In the lying attitude, the microrobot can grasp small objects and carry them to a specified location 
using fingers I and J. First, the microrobot moves close to the object using legs A–H. Second, fingers I 
and J bend toward each other to grasp the object. Then the microrobot carries the object to the desired 
destination. In the standing attitude, the microrobot can also grasp small objects using the leg pairs 
B−F and C−G for this purpose, while legs A, D, E, and H provide the crawling and rotational motions.  

4.7. Mechanism of the Floating Motion  

When the frequency of the driving voltage is decreased to 0.3 Hz, the water around the IPMC 
actuators is electrolysed. Air bubbles are generated and become attached to the leg surfaces, and the 
buoyancy of the microrobot is increased. In the lying attitude, four drivers and four supporters are used 
to electrolyse the water and implement floating motion. In the standing attitude, leg pairs A−E and 
D−H are used to implement floating motion. The tail fin can also be used to provide buoyancy, and to 
adjust the balance of the overall body while floating.  
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4.8. Mechanism of the Swimming Motion  

In a similar manner to the BCF and MPF locomotion of fish, robots can be classified into body 
and/or caudal actuator (BCA) types, and median and/or paired actuator (MPA) types [35]. The 
proposed microrobot utilises the BCA mode, which generates thrust by bending the caudal fin K, as 
shown in Figure 14. The bending of the caudal fin provides oscillatory motion, and is triggered by a 
single IPMC actuator. A passive fin is attached to the free end of this actuator to increase the thrust. 

5. Prototype Microrobot and Experiments  

5.1. Prototype Microrobot 

Based on the proposed structure, a prototype hybrid underwater microrobot with two motion 
attitudes was constructed, as shown in Figure 20. The body was composed of two layers, to which 
eleven IPMC actuators were attached with wooden clips. Two IPMC fingers and a tail fin were 
attached to the first layer, while eight IPMC legs were attached to the second layer. Two SMA 
actuators were affixed to two sheets attached to the second layer. The prototype microrobot employed 
eight legs to walk, rotate, and float in two attitudes. Two fingers were utilised to implement grasping, 
and the tail fin was used for swimming. The control signals of the IPMC actuators were all square 
waves, in order to drive the actuators more efficiently [36]. In addition, two SMA actuators were 
employed to pull the two sheets and fold the eight legs below the body, to implement the attitude 
change. The prototype driving system consisted of an AVR atmega16 and twelve Omron G6K-2P 
electric relays that were used as circuit changers to vary the input voltages. The microrobot received its 
control signals through enamel-covered wires with a diameter of 0.03 mm. The wires were soft enough 
for their resistance to be ignored [21].  

Figure 20. The prototype microrobot (in air). 

(a) The lying attitude (b) The standing attitude 

5.2. Walking, Rotating, and Grasping Experiments in the Lying Attitude on an Underwater Flat 

The walking experiments were conducted on a flat underwater surface. In these experiments, we 
varied the applied signals, and calculated the walking speed by recording the time required to cover a 
distance of 50 mm. The experiment was repeated five times for each set of control signals to obtain an 
average speed. 

Tail fin 

Fingers 

Supporters 

Drivers 
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At a fixed current of 0.7 A, we carried out two groups of experiments with different applied 
voltages and frequencies. Figure 21 shows the experimental results for voltages of 4 V and 6 V, which 
indicated that the walking speed was proportional to the input voltage, and that the walking motion 
was highly efficient in the control frequency range from 2–6 Hz. 

Figure 21. Experimental walking speeds with different frequencies. 

 

At a fixed frequency of 1 Hz, we also carried out three groups of experiments with applied voltages 
3 V, 5 V, and 8 V. We obtained an average speed for every set of signals, varying the current as shown 
in Figure 22. From the results, the walking speed was proportional to the applied current and input 
voltage. The microrobot required only low current and voltage for walking motion in the lying attitude. 

Figure 22. Experimental walking speeds with different currents. 

 

In the rotating experiments, we varied the control frequency from 0.5–11 Hz at a fixed voltage of 6 V 
and a fixed current of 1 A, and calculated the average rotational speeds. Figure 23 shows the 
experimental results, which indicated that the microrobot had a higher rotational speed in the 
frequency range from 0.5–4 Hz, and a maximum rotational speed of 9°/s. When the control frequency 
was lower than 3 Hz, the rotational speed was proportional to the frequency, since the oscillatory 
amplitude was relatively large. However, when the control frequency was higher than 3 Hz, the 
rotational speed was inversely proportional to the frequency, since the rotational angle in a single step 
cycle became small, and the decreased displacement became a primary factor affecting the rotational speed.  
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Figure 23. Experimental rotating speeds. 

 

In the lying attitude, the microrobot was able to use its two fingers to implement grasping motion. A 
hybrid walking, rotating, and grasping motion is shown in Figure 24. First, the robot walked forward. 
Second, it rotated clockwise and opened its two fingers. Then it closed its fingers and rotated  
counter-clockwise. Finally, it walked backward. 

Figure 24. Walking, rotating, and grasping motions. 

(a) Walking forward (b) Right turning 

(c) Two fingers open (d) Grasping motion 

40 mm 
Fingers 

Tail fin 

Fingers Fingers 
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Figure 24. Cont. 

(e) Left turning (f) Walking backward 

5.3. Floating Experiments without Payloads 

Legs A to H were used to electrolyse the water and implement floating motion. In the floating 
experiments, we varied the frequencies of the driving voltages and calculated the floating speed by 
recording the time required to float through a vertical distance of 100 mm. Figure 25 shows a video 
sequence of the floating motion.  

Figure 25. Floating experiment. 

 
(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4 (e) Phase 5 

Figure 26. Experimental floating speeds. 
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At a fixed voltage of 6 V, we varied the control frequencies from 0.05–0.5 Hz. The experiment was 
repeated five times for each set of control signals to obtain an average speed. Figure 26 shows the 
experimental floating speeds for different frequencies. From the results, the average floating speed was 
inversely proportional to the control frequency, and the maximum speed was achieved with a 
frequency of 0.05 Hz. 

5.4. Standing Experiments 

In the standing experiments, we used the two SMA actuators to make the microrobot stand up, both 
in air and on the underwater flat. Figure 27 shows video sequences of the standing motion on the 
underwater flat, from the front and left-side perspectives. We carried out the experiments with a 
control voltage of 8 V and a maximum current of 1 A. An initially deformed SMA actuator can recover 
its predetermined low-temperature shape during heating, demonstrating the shape memory effect [37]. 
Therefore, thermal insulation is important for SMA actuators, especially in water. Accordingly, we 
sealed the two SMA actuators with elastic adhesive tape to achieve a better heating effect when they 
were triggered to shrink. 

Figure 27. Standing experiments on the underwater flat. 

 

 

5.5. Obstacle-Avoidance Experiment 

To implement closed-loop control, we installed one short-range proximity sensor on the microrobot 
to detect an object or avoid an obstacle while walking or swimming. The proximity sensor used in the 
present research was 8 mm long and 5 mm wide, with a weight of 0.5 g. The distance measurement 
range was 0 to 60 mm, and the output voltage ranged from 150 mV to the power voltage [36]. The 
sensor signals were transmitted to a micro-AD board, which converted the voltages to digital values 
and sent them to the AVR. By utilising the proximity sensor, the microrobot was able to detect an 
obstacle in front of it without any physical contact, and avoided it automatically. In the previous 
experiments, the microrobot avoided an obstacle by changing its walking direction. However, due to 
the low rotating efficiency of this unit while in a standing attitude, a long time was required to avoid a 
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very wide obstacle via rotation. Therefore, the hybrid robot avoided the obstacle by floating instead. 
Figure 28 shows the object-avoidance experiment in the standing attitude. First, the microrobot walked 
toward the obstacle using legs A, D, E, and H driven by an input voltage of 6 V at a frequency of 1 Hz. 
When the distance between the microrobot and the obstacle decreased to about 10 mm, the proximity 
sensor detected the obstacle. The microrobot then stopped and floated upward.  

Figure 28. Obstacle avoidance experiment. 

 

5.6. Swimming Experiments in the Standing Attitude 

The swimming experiments were carried out in the same water tank. To increase the oscillatory 
thrust, the swimming motion was evaluated in the standing attitude. Water resistance increases in 
proportion to the cross-sectional area of the robot body, reducing the oscillatory amplitude of the body. 
On the other hand, increasing the oscillatory amplitude can reduce the effect of water resistance and 
increase the swimming speed. The IPMC actuator was actuated by a square wave signal with a 
frequency of 0.5 Hz and an input voltage of 6 V. The swimming motion for one oscillatory cycle is 
shown in Figure 29. 

Figure 29. Swimming experiment. 

(a) Initial position (red line) (b) Left bending 

Obstacle 

40 mm 
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Figure 29. Cont. 

(c) Right Bending (d) Final Position (blue line) 

6. Results and Discussion 

Generally speaking, compact structure, multi-functionality, flexibility, and precise positioning are 
considered incompatible characteristics in underwater microrobots [38,39]. We have already designed 
several bio-inspired underwater robots with compact structures using IPMC and SMA actuators. These 
robots employ biomimetic locomotion to implement walking/rotating, surfacing/diving, grasping, and 
swimming motions. However, each of the units implements only some of these motions. To design a 
robot with multi-functionality, we need to integrate the above motions in a single robot. There are 
three types of underwater walking/rotating motions: inchworm-inspired, stick-insect-inspired, and 
lobster-inspired. Since the position precision of IPMC legs has not been high, in the present research, 
we proposed an electromechanical model of an IPMC leg for position control. Also, a novel hybrid 
structure with two motion attitudes was developed to adapt to different environments. Floating can be 
achieved via the electrolysis characteristics of IPMC, or via jellyfish-inspired or fish-bladder-inspired 
designs. Since the floating speeds are adjustable in all three of these methods, the first is the best 
choice to realise a compact structure. Swimming can be achieved via fish-inspired, snake-inspired, 
butterfly-inspired or manta-ray-inspired designs. However, due to mechanism limitations, only a 
caudal actuator was suitable for our hybrid design. Accordingly, we used a single IPMC actuator to 
drive a passive fin in an oscillatory motion. Human-inspired, inchworm-inspired, and lobster-inspired 
finger locomotion have been proposed for grasping. Our new design not only inherited lobster-inspired 
finger locomotion, but also implemented inchworm-inspired grasping motion by changing its attitude 
from lying to standing.  

7. Conclusions 

In this paper, we proposed an electromechanical model for an IPMC actuator to improve the 
position precision of an IPMC leg, and we introduced a hybrid biomimetic microrobot with two 
motion attitudes to implement microrobot multi-functionality and flexibility for adaptation to complex 
underwater environments. In the lying attitude, the new robot implemented stick-insect-inspired 
walking/rotating motions using eight IPMC legs. These legs were also used to electrolyse the water for 
floating. Two lobster-inspired IPMC fingers were used to grasp small objects. According to the results 

ds 
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of the walking experiments, the robot reached a maximum walking speed of 3.6 mm/s at a control 
frequency of 2.5 Hz and a fixed current of 0.7 A. The results of the floating experiments indicated that 
the robot could achieve a maximum floating speed at a control frequency of 0.05 Hz and a control 
voltage of 6 V. Driven by two SMA actuators, the robot could change its attitude from lying to 
standing on an underwater flat. In the standing attitude, the microrobot could implement inchworm-
inspired walking/rotating using the four outside IPMC legs. The four inside legs were utilised as 
fingers to grasp large objects. While suspended in the water, the IPMC caudal fin actuated a passive fin 
to implement oscillatory motion, which provided propulsion for swimming. When equipped with a 
proximity sensor, the robot could detect and avoid obstacles automatically, either by rotating or by floating.  
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