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Abstract
Fisheries often combine high mortality with intensive size selectivity and can, thus, 
be expected to reduce body size and size variability in exploited populations. In many 
fish species, body size is a sexually selected trait and plays an important role in mate 
choice and mate competition. Large individuals are often preferred as mates due to 
the high fecundity and resources they can provide to developing offspring. Large fish 
are also successful in competition for mates. Fisheries-induced reductions in size and 
size variability can potentially disrupt mating systems and lower average reproduc-
tive success by decreasing opportunities for sexual selection. By reducing population 
sizes, fisheries can also lead to an increased level of inbreeding. Some fish species 
avoid reproducing with kin, and a high level of relatedness in a population can fur-
ther disrupt mating systems. Reduced body size and size variability can force fish 
to change their mate preferences or reduce their choosiness. If mate preference is 
genetically determined, the adaptive response to fisheries-induced changes in size 
and size variability might not occur rapidly. However, much evidence exists for plastic 
adjustments of mate choice, suggesting that fish might respond flexibly to changes 
in their social environment. Here, I first discuss how reduced average body size and 
size variability in exploited populations might affect mate choice and mate competi-
tion. I then consider the effects of sex-biased fisheries on mating systems. Finally, I 
contemplate the possible effects of inbreeding on mate choice and reproductive suc-
cess and discuss how mate choice might evolve in exploited populations. Currently, 
little is known about the mating systems of nonmodel species and about the interplay 
between size-selective fisheries and sexual selection. Future studies should focus 
on how reduced size and size variability and increased inbreeding affect fish mating 
systems, how persistent these effects are, and how this might in turn affect popula-
tion demography.
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1  | INTRODUC TION

The high mortality and size selectivity (i.e., removal of large individ-
uals) imposed by many commercial and recreational fisheries may 
negatively affect population productivity, as small fish (subjected 
to low fishing mortality) typically have low fecundity and repro-
ductive success (Barneche, Robertson, White, & Marshall,  2018; 
Shelton, Sinclair, Chouinard, Mohn, & Duplisea, 2006; Uusi-Heikkilä 
et al., 2015). An important, but often neglected, factor contributing 
to reproductive success in exploited fish populations is intersexual 
(i.e., mate choice) and intrasexual selection (i.e., competition to ac-
cess the opposite sex, hereafter referred to as “mate competition”). 
Body size plays an important role in sexual selection in numerous 
fish species, as females may prefer large males who are superior in 
male–male competition and have high resource-holding potential 
(Huntingford & Turner,  1987; Järvi,  1990; Parker,  1974; van den 
Berghe & Gross, 1989). Among some species, males exercise mate 
choice and prefer large females who produce a high number of 
large eggs (e.g., Passos, Vidal, & D’Anatro,  2019). Sexual selection 
creates important filters for reproductive success and can conse-
quently increase fitness and enhance population viability (Reynolds 
& Gross, 1992; Whitlock & Agrawal, 2009).

Although sexual selection is a powerful selective force 
(Kingsolver et al., 2001), it cannot necessarily rescue exploited pop-
ulations (i.e., decelerate fisheries-induced evolutionary changes) 
if fisheries have substantially reduced the variability in a sexually 
selected trait (e.g., body size). Most studies of fisheries-induced 
evolution have focused on responses in average trait values. The 
more subtle, yet important, within-population changes in trait vari-
ability have received little attention (Figure  1). Olsen et al. (2009) 
studied coastal Atlantic cod (Gadus morhua) populations harvested 

by both commercial and recreational fisheries. They showed that 
while the average juvenile body size did not change over time, the 
size variability decreased substantially (Olsen, Carlson, Gjøsæter, 
& Stenseth,  2009). Another example comes from an experimental 
study, where zebrafish (Danio rerio) were exposed to size-selective 
harvesting (Uusi-Heikkilä et al., 2015). Fish in a harvest treatment 
mimicking fisheries selection (i.e., large fish were removed) exhibited 
lower variability in growth and body size than did fish in an opposite 
harvest treatment (i.e., small fish were removed) despite no signifi-
cant treatment-specific differences in the average size at age (Uusi-
Heikkilä, Lindström, Parre, Arlinghaus, & Kuparinen, 2016).

Reduced trait variability can affect a population's adaptive po-
tential, stability, and resilience (Allendorf, England, Luikart, Ritchie, 
& Ryman, 2008; Dochtermann & Gienger, 2012). Yet its impact on 
mating systems in exploited fish populations has been poorly studied 
(but see Hutchings & Rowe, 2008). Many exploited populations have 
not recovered despite fishing has been stopped (Hutchings, 2000; 
Shelton et al., 2006; Worm et al., 2009). These populations likely suf-
fer from reduced average body size, low size variability, and poten-
tially disrupted mating systems, all of which contribute to population 
decline (Rowe & Hutchings, 2003). However, we know relatively little 

Box 1. Thank you Louis for believing in me.

After finishing my MSc thesis in a smallish Finnish 
University, I was confident that I immediately get a perma-
nent position in a nonprofit governmental institute where 
I could start working as a fish/conservation biologist. That 
time my, like many other fish biologists’, dream was to work 
in the field with iconic species, such as Atlantic salmon 
or brown trout. However, I ended up working with rain-
bow trout. To be more specific, with dead rainbow trout. 
After one year in a fish factory, I applied a traineeship in 
the field of Arctic Research. I ended up in Louis’ labora-
tory in Québec City. My job was to help PhD students and 
postdocs in the laboratory and I quickly realized that I had 
found my calling. During the weekends, I studied popula-
tion genetics and tried to understand the fundamentals 
behind extracting DNA from salmon adipose fins, picking 
out whitefish eggs, and taking care of stickleback families. 
The year I spent in Louis’ laboratory changed my world. No 
longer desired I to carry out other peoples’ plans, I wanted 
to create ideas myself. I fell in love with science and devel-
oped a burning desire to start a career. All thanks to Louis! 
When I finally got a PhD student position back in Europe, 
I had to say goodbye to Louis, the wonderful working en-
vironment and to the brilliant people. I am ever so grateful 
to Louis that he open-mindedly gave me an opportunity 
to work in his laboratory and kicked off my career. I found 
something that I was truly passionate about—and I still am. 
Thank you Louis and Happy Birthday!

F I G U R E  1   Hypothetical body size distributions of an unfished 
population (dotted line), an exploited population where the average 
body size has decreased (orange), and an exploited population 
where the average body size and size variability have decreased 
(light orange)
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about the mating systems of many commercially important fish spe-
cies, which hinders our understanding of the processes enhancing 
population growth and their potential to recover (Amundsen, 2003; 
Rowe & Hutchings, 2003).

Although fisheries-induced changes in phenotypic variabil-
ity have been less studied, changes in genetic variability have re-
ceived considerable attention (e.g., Cuveliers, Volckaert, Rijnsdorp, 
Larmuseau, & Maes,  2011; Pinsky & Palumbi,  2014; Ruzzante, 
Taggart, Doyle, & Cook,  2001; Therkildsen, Nielsen, Swain, & 
Pedersen, 2010). Fisheries have been shown to decrease effective 
population sizes (Hauser, Adcock, Smith, Barnal-Ramirez, & Carvalho, 
2002) and increase inbreeding in exploited populations (Buchholz-
Sørensen & Vella, 2016; Hoarau et al., 2005; O’Leary et al., 2013). 
An increased level of relatedness in a population can further disrupt 
mating systems through inbreeding avoidance (i.e., behavioral avoid-
ance of mating with kin; Gerlach & Lysiak, 2006; Mehlis, Bakker, & 
Frommen, 2008). Inbreeding can lead to inbreeding depression (i.e., 
reduced fitness of closely related parents’ offspring; Frommen, Luz, 
Mazzi, & Bakker,  2008; Thrower & Hard,  2009), which can lower 
population growth and viability (O’Grady et al., 2006; Reed, Lowe, 
Briscoe, & Frankham, 2003). Yet there have been few studies quanti-
fying the magnitude of inbreeding in exploited fish populations, and 
our understanding of the strength and demographic consequences 
of inbreeding avoidance and depression in the wild is still limited 
(Kardos, Taylor, Ellegren, Luikart, & Allendorf, 2016).

While life-history responses have been documented in 
many exploited fish populations (e.g., Rijnsdorp,  1993; Sharpe & 
Hendry,  2009; Swain, Sinclair, & Hanson,  2007), little is currently 
known about the evolution of mate choice systems in response 
to fisheries. If mate preferences are genetically based (Bakker & 
Pomiankowski,  1995; Chenoweth & Blows,  2006), the choosing 
sex might not be able to switch its preference rapidly when envi-
ronmental and social conditions change. However, forming mate 
preferences is a complex process involving not only genetic factors 
but also nongenetic ones. Increasing evidence suggests that mate 
preference can be condition-dependent and that the social envi-
ronment is an important factor in forming mate preferences (e.g., 
Ah-King & Gowaty,  2016; Lehtonen, Wong, & Lindström, 2010; 
Meuthen, Baldauf, Bakker, & Thünken, 2019). Accordingly, fish might 
be able to switch their mate preferences flexibly if the costs of find-
ing a formerly preferred mate become too high. Costly mate choice 
might lead the choosing sex to switch their preferences or at least 
to become less discriminative (e.g., Sørdalen et al., 2018). However, 
we know little of the mechanisms or rate of these processes or how 
the fisheries-induced life-history changes interact with mate choice 
behavior.

If size-selective fisheries reduce average body size and size vari-
ability in a population (Nusslé et al., 2017), this could have an impact 
on those mating systems where size is a sexually selected trait. Many 
fish species base their mate choice on body size, but other traits, 
such as breeding coloration (Bakker & Mundviler, 1994), age (Brooks 
& Kemp,  2001), or sound production (Nordeide & Kjellsby,  1999), 
can also be sexually selected. Here, I focus on body size because 

fisheries are often selective for size. First, I consider how size-se-
lective fisheries could modify sexual selection in a way that might 
affect individual reproductive success and eventually population 
growth. I then touch upon fishing-induced changes in sex ratio and 
their effects on mate choice and mate competition. I move on to dis-
cuss what effects increased levels of inbreeding could have on mate 
choice and individual reproductive success. Finally, I contemplate 
the potential of plastic adjustments or evolutionary changes in the 
mating systems of size-selectively exploited populations.

2  | THE EFFEC T OF SIZE-SELEC TIVE 
FISHERIES ON SE XUAL SELEC TION

2.1 | Intersexual selection: mate choice

In many fish species, large body size is an adaptation favored by 
sexual selection. Large individuals may be preferred by the oppo-
site sex because they can provide high-quality resources, such as 
nests or territories, genetic advantages to improve offspring qual-
ity (“good genes”) or simply have higher fertility (Table 1). Our un-
derstanding of fish mate choice is mostly based on model species, 
and the mating systems of many commercially valuable fish species 
(e.g., flatfishes) are poorly known (Amundsen, 2003; Auld, Noakes, 
& Banks,  2019), perhaps excluding the Atlantic cod. In cod, large 
males possess more sperm, fertilize more eggs, are more dominant, 
and court females more vigorously (i.e., circle around females) than 
small males (Hutchings, Bishop, & McGregor-Shaw, 1999; Trippel & 
Morgan, 1994). Females likely assess male quality during the circling 
bouts, and the frequency of male circling behavior has been sug-
gested to play an important role in female mate choice (Hutchings 
et  al.,  1999). The removal of large, dominant males by fishing can 
potentially extend the spawning intervals between egg batches 
through constant re-establishment of male dominance ranks 
(Hutchings et al., 1999). Prolonged spawning can lead to reduced re-
productive success because eggs unduly retained in the ovary after 
ovulation can become unviable or have low egg fertilization prob-
ability (Kjesbu, 1989; Kjørsvik & Lønning, 1983; Kjørsvik, Mangor-
Jensen, & Holmefjord, 1990). Furthermore, reduced size variability 
may translate directly to low variability in courting behavior and this 
can complicate female assessment of males (Luttbeg, 2002; Mazalov, 
Perrin, & Dombrovsky, 1996).

In zebrafish, females prefer large males for potentially two rea-
sons: Large males are better able to acquire and defend territories 
than small males are (Spence & Smith,  2005), and because of the 
genetic contribution to the developing offspring (Uusi-Heikkilä, 
Kuparinen, Wolter, Meinelt, & Arlinghaus, 2012). Independently of 
female body size, the eggs fertilized by large zebrafish males had 
higher hatching probability and larvae hatching from those eggs were 
larger than were the ones fertilized by small males (Uusi-Heikkilä, 
Kuparinen, et al., 2012). When same-sized zebrafish females were 
coupled with either a large or a small male, females spawned more 
frequently with large males (Uusi-Heikkilä, Böckenhoff, Wolter, 
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& Arlinghaus,  2012). Females also differentially allocated their re-
productive resources toward larger males by producing larger egg 
batches for them (Uusi-Heikkilä, Böckenhoff, et al., 2012). This pat-
tern was independent of the past social environment females had 
experienced.

In addition to zebrafish, differential allocation has also been 
demonstrated in swordtail fish (Xiphophorus multilineatus; Rios-
Cardenas, Brewer, & Morris, 2013), Banggai cardinal fish (Pterapogon 
kauderni; Kolm,  2001; Kolm & Olsson,  2003), and in sand goby 
(Pomatoschistus minutus; Lehtonen & Lindström, 2007). When chi-
nook salmon (Oncorhynchus tshawytscha) females were paired with 
a small male, they delayed spawning allowing larger males the op-
portunity to displace the small courting male (Berejikian, Tezak, & 
LaRae,  2000). Similar behavior was reported in chum salmon (O. 
keta; Schroder, 1981). Manipulation of the spawning duration can be 
a common female response to variation in male size and could rep-
resent a form of differential allocation (e.g., Kolm & Olsson, 2003; 
Makiguchi et al., 2016). Altogether, these examples illustrate that at 
least in some species male body size can indirectly increase repro-
ductive success. Differential allocation can be facilitated through an 
extended pair bond or by the ability of females to adjust their egg 
investment after the onset of egg maturation (Kolm & Olsson, 2003). 
In teleost fishes, the period when proteins are packed into the oo-
cytes can be rather short (Koya, Itazu, & Inoue,  1998). Therefore, 

females are potentially able to control egg investment after matura-
tion in response to the attractiveness of their current mate.

2.2 | Intrasexual selection: mate competition

In addition to mate choice, sexual selection is mediated by mate 
competition, where body size also plays an important role. In com-
petitive male–male interactions, large males frequently have an ad-
vantage over small suitors (Andersson, 1994; but see Qvarnström & 
Forsgren, 1998). In cod, large males are more dominant and obtain 
access to females more frequently than small males do (Hutchings 
et  al.,  1999). Male cod and haddock (Melanogrammus aeglefinus) 
are known to attract females by producing a “drumming” sound 
(Hawkins,  1986; Hutchings et  al.,  1999), which is also a feature in 
male–male aggression (Hawkins,  1986). The volume of drumming 
muscles increases with body size (Hutchings et al., 1999) and males 
with larger drumming muscles have higher fertilization potential 
(Engen & Folstad, 1999). Anadromous Atlantic salmon (Salmo salar) 
males typically form dominance hierarchies in which one or a few 
individuals control access to females (Fleming,  1996). They invest 
heavily in resources for searching and fighting for mates and court-
ing them. The largest and more dominant males are predicted to 
have the highest reproductive success (Fleming, 1996; Järvi, 1990).

TA B L E  1   Examples of species and potential benefits a large-sized mate could provide to the choosing sex compared to a small-sized mate

Benefit for the choosing sex Choosing sex Species Reference

Larger (heavier) nest
Better nest concealment
Higher paternal quality
Higher territory quality

Female Three-spine stickleback Candolin and Salesto (2006) ; 
Kraak, Bakker, and Mundwiler (1999) ; 
Rowland (1989)

Higher probability to obtain a nest Female Sand goby Magnhagen and Kvarnemo (1989)

Higher offspring quality Female Guppy Reynolds and Gross (1992)

Higher sperm number Female Guppy
Mosquitofish
Cod

Pitcher and Evans (2004) ; 
O’Dea, Jennions, and Head (2014); 
Trippel and Morgan (1994)

Less harassment from other males
Better distraction of predators

Female Brachyrhapsis rhabdophora Basolo (2004)

More intensive parental care Female Smallmouth bass Sutter et al. (2012) ; 
Wiegmann and Baylis (1995)

Lower rate of egg cannibalism Female Brook charr
Sculpin
Red-lipped blenny

Blanchfield and Ridgway (1999) ; 
Downhower and Brown (1980) ; 
Cóte and Hunte (1989)

Higher probability to provide a shelter 
for molting and mating

Female American lobster Karnofsky and Price (1989)

Higher fecundity
Heavier eggs

Male Three-spine stickleback
Pacific blue-eye
Pipefish

Candolin and Salesto (2006); 
Kraak and Bakker (1998) ; 
Wong and Jennions (2003); 
Rosenqvist (1990)

Better access to nesting habitats
Better quality nests (deeper redds)
More intensive nest defense

Male Pacific salmon Fleming and Gross (1994);
Steen and Quinn (1999); 
Van den Berghe and Gross (1984)
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When male size and size variability are reduced, females will 
encounter the large, preferred mating partners less frequently. This 
can lead to increased costs of mate choice, as females must allocate 
more time and energy to find a suitable mate (Crowley et al., 1991; 
Real, 1990) and might become exposed to predation (Forsgren, 1992; 
Godin & Briggs,  1996). Consequently, females may become less 
choosy. For example, female two-spotted goby (Gobiusculus fla-
vescens) have been shown to prefer large males early in the breeding 
season but reduce their choosiness as the breeding season pro-
gresses (Borg, Forsgren, & Amundsen, 2006). This could be due to 
the high costs associated with mate searching as male availability 
decreases toward the end of the breeding season. The two-spot-
ted goby has adapted to natural temporal variation in sex ratio and, 
therefore, it is reasonable to expect its mate choice to be variable 
(Borg et al., 2006). Fishing can change the social environment rapidly 
and unpredictably. This change results in novel conditions that the 
species has not encountered during its evolutionary past (see also 
Sih, Ferrari, & Harris, 2011; Tuomainen & Candolin, 2011), thereby 
compromising the adaptive value of body size in attracting and se-
lecting mates. Consequently, individuals might not be able to alter 
their choosiness as flexibly and rapidly as can those species adapted 
to seasonal variation in mate availability.

If males are both small and in poor condition, females might not 
allocate time to inspect these mates closely (Candolin,  2019). In 
Atlantic cod, females typically initiate and terminate the male court-
ing behavior (Hutchings et al., 1999). Large males have been shown 
to circle around females more frequently than small males do, poten-
tially allowing better evaluation by females (Wright & Rowe, 2018). 
Although not shown by Hutchings et al. (1999), females potentially 
might terminate the courting behavior of small males sooner than 
that of large males because they choose not to allocate more time 
inspecting small males. In Eastern Baltic Sea cod, male body size 
and condition have decreased substantially during the last few de-
cades of intensive fishing and unfavorable environmental conditions 
(Casini et al., 2016; Eero et al., 2015). It is not known whether the 
decline in male size and condition has affected female mate choice 
or male courting behavior in this particular stock. Despite heavy re-
ductions in fishing pressure, the Eastern Baltic Sea cod stock has not 
recovered (ICES, 2019). Certain exploited populations have failed 
to recover because of the phenomenon known as the Allee effect: 
Decrease in population size appears to have been associated with 
a decline in per capita population growth rate (Hutchings,  2014; 
Hutchings & Kuparinen,  2014). One underlying mechanism of the 
Allee effect could be disrupted mating systems (Dennis, 1989) due 
to, for example, reduced body size and condition of the courting 
sex. Allee effect in small populations can limit their growth, slow 
their recovery, and increase the uncertainty of their recovery time 
(Kuparinen, Keith, & Hutchings, 2014).

In an unexploited population characterized by a breadth of phe-
notypic variability, there are typically asymmetries between compet-
ing individuals (contestants). These important asymmetries include, 
for example, fighting ability and body size. Body size is one of the 
most important factors in determining contest outcome in many 

fish species (Huntingford & Turner, 1987). In cichlids, the eventual 
winners and losers of fights can be predicted by the size or weight 
of the contestants (Huntingford, Taylor, Sneddon, & Neat,  2001). 
Differences of as little as 2% in weight can be enough to predict the 
winners (Barlow, Rogers, & Fraley, 1986; but see Neat, Huntingford, 
& Beveridge, 1998). Opponents and bystanders can assess each oth-
er's size and strength and use that information in decision-making 
(Peake & McGregor, 2004). For example, tail beating can provide in-
formation of the contestant's body size to the opponent as well as to 
bystanders (Hurd, 1997).

If size-selective fisheries reduce size variability in a population, 
important asymmetries that fish use in decision-making in compet-
itive situations cease to exist. Consequently, contests can become 
prolonged and intense (Barrette & Vandal,  1990; Jonart, Hill, & 
Badyaev, 2007; Parker & Rubenstein, 1981) because males cannot 
distinguish the competitive quality of the conspecific and poten-
tially adopt an alternative behavioral strategy (“flight or fight”). 
This can further disrupt female mate choice, as females cannot 
easily detect a male's perceived quality (Luttbeg,  2002; Mazalov 
et al., 1996). The disruption of mate competition, and consequently, 
mate choice might have various consequences for reproduction. 
Females might skip spawning entirely (Trippel & Harvey,  1990) 
or spawning intervals between egg batches can be prolonged 
(Hutchings, Bishop, & McGregor-Shaw, 1999), potentially causing 
low fertilization success due to over-ripening of gametes (Kjørsvik 
et  al.,  1990). Alternatively, it can lead to differential allocation, 
where females produce lower quality embryos to nonpreferred 
males (Kolm, 2001; Kolm & Olsson, 2003). Ultimately, this can af-
fect population growth rate negatively and hinder population re-
covery after fishing has ceased.

2.3 | Fisheries-induced changes in sex ratio

Fisheries can bias population sex ratio if one sex is harvested more 
intensively (Fenberg & Roy, 2008; Ginsberg & Milner-Gulland, 1994; 
McCleave & Jellyman, 2004). The sockeye salmon (O. nerka) fisheries 
in Bristol Bay, Alaska, have disproportionally exploited more males 
than females (Kendall, Hard, & Quinn, 2009; Kendall & Quinn, 2009, 
2012). Males are more vulnerable to gillnetting because of their 
larger size, greater body depth, and bigger jaws and teeth (Kendall 
& Quinn,  2012). The higher proportion of females compared to 
males altered male–male interaction and behavior: Sockeye salmon 
males became less competitive and more mobile in the presence of 
excess females (Mathisen, 1962). A female-biased sex ratio is pre-
dicted to relax selection on males and provide opportunities to those 
males that might otherwise be dominated by large males in compe-
tition and not favored by females (Foote, 1989; Quinn, Hendry, & 
Buck,  2001; Rowe & Hutchings,  2003). In sand gobies, a female-
biased sex ratio allowed even small males to build nests and spawn 
(Kvarnemo, Forsgren, & Magnhagen, 1995). Thus, a skewed sex ratio 
can alter reproductive behavior, including nest building, courtship, 
aggression, and individual reproductive success.
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Fisheries that selectively remove larger males from a population 
favor small males. Those are able to escape fisheries and experience 
reduced mate competition with larger males on the breeding ground. 
Size at maturation is heritable in salmonids (e.g., Barson et al., 2015), 
so as the reproductive success of smaller males increases, the size 
of individuals in future generations may decrease. In female-biased 
populations with a high proportion of young males, females might 
hesitate to breed with nonpreferred males (Berejikian et al., 2000; 
de Gaudemar, Bonzom, & Beall, 2000). This can lead to differential 
reproductive allocation or extend the spawning period (as described 
in previous chapters). Despite the skewed sex ratio, Bristol Bay sock-
eye have thrived and no clear changes in population productivity 
have been detected (Hilborn, Quinn, Schindler, & Rogers,  2003). 
Indeed, it has been predicted that if females in general are less heav-
ily exploited, the impact on population growth and sustainability 
might be small (Ginsberg & Milner-Gulland,  1994; Hays, Mazaris, 
Schofield, & Laloë, 2017). However, in a broadcast spawning spe-
cies, such as Atlantic cod, a female-biased sex ratio can lead to a 
low egg fertilization rate and high variance in fertilization success 
(Rowe, Hutchings, Bekkevold, & Rakitin, 2004). A large number of 
males circling the focal female were suggested to ensure high sperm 
concentration and fertilization success (see also Shapiro, Marconato, 
& Yoshikawa, 1994). Thus, it is difficult to generalize or predict the 
outcome of changed sex ratio without a proper understanding of the 
mating system in question.

Unlike in Bristol Bay sockeye, some fisheries target large fe-
males and create male-biased sex ratio. For example, spiny dog-
fish (Squalus acanthias) landings on the east coast of the United 
States consist mostly of females (Haugen, Curtis, Fernandes, 
Sosebee, & Rago,  2017; NEFSC, 2006). Similarly, the southern 
flounder (Paralichthys lethostigma) fishery along the south Atlantic 
coast of the United States is heavily dependent on large females 
(Fitzhugh, Crowder, & Monaghan, 1996). These particular studies 
did not describe the effect of a male-biased sex ratio on female 
mate choice but demonstrated how a reduction in the proportion 
of females might translate into a reduction in recruitment to the 
fishery (Honeycutt et al., 2019). A male-biased environment may 
not change female interactions toward males but it might change 
male–male interactions (Kvarnemo et al., 1995). In a male-biased 
sand goby population, nest-building males were larger compared to 
those not building a nest, likely because intense male–male com-
petition made small males refrain from building nests (Kvarnemo 
et al., 1995). Although most of the females likely had the oppor-
tunity to reproduce because the male-biased sex ratio supported 
the reproductive success of females, the generally low number 
of females could have reflected negatively on population growth 
(as suggested in the southern flounder example, see Honeycutt 
et al., 2019). Skewed sex ratios can affect breeding dynamics and 
sexual selection, with the potential for both ecological and evo-
lutionary consequences. Therefore, understanding the effects of 
size-selective fishing on sex ratios may help to explain changes in 
the structure and sustainability of exploited fish populations. It is 

important to assess the size dimorphism in exploited populations 
and consider whether it could interact with selective fishing and 
result in skewed sex ratios.

2.4 | The effect of inbreeding on mating systems

Fisheries-induced genetic bottlenecks were initially thought to be 
rare because many marine fish species have large population sizes 
and are connected by larval and adult-mediated dispersal (Hauser, 
Adcock, Smith, Barnal-Ramirez, & Carvalho, 2002; Kenchington & 
Heino,  2002). Indeed, some studies have shown no effect of har-
vesting on genetic variability as population sizes declined (Cuveliers 
et  al.,  2011; Jakobsdóttir et  al.,  2011; Poulsen, Nielsen, Schierup, 
Loeschcke, & Grønkjær, 2006; Ruzzante et  al.,  2001; Therkildsen 
et  al.,  2010). However, others have demonstrated fisheries-in-
duced decay in genetic diversity or increased inbreeding (Hoarau 
et al., 2005; Hutchinson, van Oosterhout, Rogers, & Carvalho, 2003; 
Pinsky & Palumbi,  2014; Smith, Francis, & McVeagh,  1991). For 
example, North Sea plaice (Pleuronectes platessa), winter flounder 
(Pseudopleuronectes americanus) in New York estuaries, and en-
dangered dusky grouper (Epinephelus marginatus) in the central 
Mediterranean have been heavily exploited and consequently ex-
perienced moderate to severe inbreeding (Buchholz-Sørensen & 
Vella,  2016; Hoarau et al., 2005; O’Leary et  al.,  2013). Inbreeding 
can affect population productivity and viability through inbreeding 
depression (i.e., reduced survival and fertility of offspring of related 
parents), which animals can avoid through behavioral adaptations, 
such as inbreeding avoidance.

To avoid breeding with close relatives, individuals first need to 
recognize kin and then reject them as mates. Three-spine stickle-
back (Gasterosteus aculeatus) females can recognize their relatives 
using olfactory cues and adjust their behavior accordingly (Mehlis 
et al., 2008). Time spent near a male is a good indicator of a mating 
preference in this species (Milinksi et al., 2005), and it was shown 
that females spent a significant proportion of their time near a non-
related male compared to a related male (Mehlis et al., 2008). In this 
study, inbreeding itself did not affect female preference behavior as 
both inbred and outbred females spent more time near nonrelated 
males. However, some studies have shown that inbred individuals 
can lose their ability to recognize kin (Frommen, Mehlis, Brendler, & 
Bakker, 2007; Reid, Arcese, & Keller, 2006).

In zebrafish, kin recognition is based on phenotype matching and 
the preference for kin changes with maturity (Gerlach & Lysiak, 2006; 
Tang-Martinez,  2001). Juveniles prefer kin because shoaling with 
relatives early in life may increase inclusive fitness (e.g., Krause & 
Ruxton,  2002) but mature females prefer unrelated males indicat-
ing inbreeding avoidance (Gerlach & Lysiak, 2006). Females can also 
avoid inbreeding through postcopulatory mechanisms. Least killifish 
(Heterandria formosa) females have been shown to express post-
copulatory inbreeding avoidance and reduce the amount of sibling 
sperm in their reproductive system compared to nonsibling males 



     |  1493UUSI-HEIKKILÄ

(Ala-Honkola, Tuominen, & Lindström, 2010; but see Gasparini, 
Congiu, & Pilastro, 2015). In this species, females invest substantially 
more in each offspring after fertilization than males do and there-
fore females were expected to avoid inbreeding more, although the 
authors could not rule out the possibility that males invested less 
sperm in sibling females (Ala-Honkola et al., 2010). Intensive size-se-
lective fisheries not only reduce the amount of preferred mates by 
removing large individuals from the population but also may con-
currently increase the proportion of nonpreferred mates (i.e., close 
relatives; Buchholz-Sørensen & Vella,  2016; Hoarau et al., 2005; 
O’Leary et al., 2013). This can lead, at least among some species, to 
individuals rejecting mating partners who are related to circumvent 
the potential costs of inbreeding.

In an exploited population where the rate of relatedness is high, 
inbreeding avoidance can inflict costs in terms of lost breeding op-
portunities (Shikano, Chiyokubo, & Taniguchi, 2001). In that case, it 
might be a better strategy to breed with a relative than not breed at 
all. This could further accelerate inbreeding and affect population 
productivity due to inbreeding depression. In guppies, inbreeding 
has been shown to lead to a significant decline in male sperm number 
(Zajitschek & Brooks, 2010) reducing fertility. In steelhead (O. my-
kiss), inbreeding caused significant decreases in body length, weight, 
juvenile survival, and delayed spawning (Naish, Seamons, Dauer, 
Hauser, & Quinn,  2013; Thrower & Hard,  2009). Similarly, in chi-
nook salmon, inbreeding delayed spawn timing (Waters et al., 2020), 
which has been suggested to reduce reproductive success in this 
species (Anderson, Faulds, Atlas, & Quinn, 2013; Sard et al., 2015). 
Although inbreeding can have negative fitness consequences, it 
does not always lead to predictable outcomes (Boakes, Wang, & 
Amos, 2007; Waters et al., 2020) and the relationship between the 
degree of inbreeding and fitness is often unknown (Lacy, Alaks, & 
Walsh, 1996; O’Grady et al., 2006). Challenges in estimating the ef-
fects of inbreeding lie in obtaining precise estimates of individual 
inbreeding coefficients (Waters et al., 2020) and fully understand-
ing the phenotypic and demographic effects of inbreeding (Kardos 
et al., 2016).

It has been suggested that species with communal mating, such 
as Atlantic cod and haddock, might not be able to discriminate and 
avoid related individuals (Trippel et al., 2009). Spawning experiments 
with haddock suggest that mating among siblings may be common 
in this species, at least in captivity, challenging the idea that kinship 
plays a role in mate selection (Trippel et al., 2009). Haddock, unlike 
salmon, stickleback, or zebrafish, disperse their embryos in ocean 
currents, providing little scope for kin recognition development. 
However, familiarity is not always required for kin recognition be-
cause some fish species are able to recognize unfamiliar kin through 
self-reflectance (Hauber & Sherman,  2001; Thünken, Bakker, & 
Baldauf, 2014). In small populations, the probability of encountering 
kin and inbreeding may increase even in species with high embryo 
dispersal. Spawning with kin and inbreeding depression (Gjerde, 
Gunnes, & Gjedrem, 1983; Kincaid, 1976) have been suggested to be 
potential mechanisms of the Allee effect.

2.5 | Fisheries-induced evolution of mate 
choice systems

Life-history and behavioral changes have been demonstrated 
among several size-selectively harvested fish populations (e.g., 
Olsen et  al.,  2004; Swain et  al.,  2007; Uusi-Heikkilä et  al.,  2015), 
but it is unknown how adaptive their mate choice behavior is. This 
depends on the heritability of mate preference or mate choice and 
the rate at which size variability is being eroded by fishing. It has 
been suggested that there is an appreciable level of heritable varia-
tion in female mate choice behavior within populations (e.g., Bakker 
& Pomiankowski,  1995). Female guppies, for example, are known 
to prefer ornamented males and a component of female choosi-
ness (female responsiveness) was shown to be heritable (Brooks & 
Endler, 2001). Male guppies prefer large females, and individual male 
mating effort and mating preference were significantly repeatable 
(although not unanimous; Godin & Auld,  2013). In a recent study, 
Svensson and colleagues (2017) demonstrated that female prefer-
ence for male breeding coloration in a sympatric cichlid species pair 
is influenced by relatively few major genes or genomic regions. They 
also showed that the female preference did not change after a suc-
cessful mating with a nonpreferred species (Svensson et al., 2017). 
A prerequisite for mating preference to evolve in an exploited fish 
population is within-population variability in preference (Jennions & 
Petrie, 1997; Widemo & Sæther, 1999). Intensive, size-selective fish-
eries likely reduce phenotypic and genetic variability but it can only 
be speculated to what extent it might reduce variability related to 
traits relevant to the mate choice process (e.g., preference, respon-
siveness, discrimination).

If fish were not able to adjust their mate choice, their original 
mate preference would become maladaptive (as originally preferred 
mates are rare). However, it has been shown that mate choice is plas-
tic and context dependent (Cotton, Small, & Pomiankowski, 2006; 
Hunt, Brooks, & Jennions, 2005; Qvarnström, 2001). Females have 
been shown to adjust their sampling effort based on conspecific fac-
tors. For example, the lower the male density, the less discriminating 
the females are (Borg et al., 2006; Kokko & Rankin, 2006; Lindström 
& Lehtonen,  2013). Female European lobsters typically prefer to 
mate with large males with relatively large claws but when large 
males were harvested, females mated with smaller males (Sørdalen 
et al., 2018; see also Gosselin, Sainte-Marie, & Bernatchez, 2003).

Heterospecific factors can as well be important in shaping mate 
choice behavior. Sand goby females prefer large and brightly col-
ored males (Forsgren, 1992). However, when predation risk by cod 
increased, females became less choosy and spent as much time 
close to small and dull males as they did to large and colorful ones 
(Forsgren, 1992). Changes in abiotic conditions can also affect mat-
ing systems. For example, water turbidity and eutrophication can in-
terfere with mate choice and relax sexual selection. In Lake Victoria, 
female cichlids of a sympatric species pair preferred conspecific 
males to heterospecific ones in clear water but mated indiscrimi-
nately when water turbidity increased and the color differences of 
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males were masked (Seehausen, van Alphen, & Witte, 1997). Finally, 
there might be intrinsic factors, such as age, determining mating deci-
sions. Size-selective fisheries truncate population age structure (e.g., 
Barnett, Branch, Ranasinghe, & Essington,  2017; Berkeley, Hixon, 
Larson, & Love,  2004; Ottersen,  2008); therefore, exploited pop-
ulations consist mostly of young fish. It has been shown that young 
females can be less flexible in their mate preferences than older 
females are (Tinghitella, Weigel, Head, & Boughman, 2013). In this 
study, lower flexibility among young individuals was likely caused 
by less experience with the social mating environment compared to 
old females. When the social environment is changing rapidly and 
unpredictably, the lack of flexibility might become disadvantageous. 
Life-history theory predicts that young individuals can afford to be 
choosy, but as individuals approach the end of their reproductive 
lives, they should become less choosy because fewer opportunities 
for mating remain (Real, 1990; see also Kodrick-Brown & Nicoletto, 
2001). Fisheries might not allow for a long reproductive life; thus, it 
is possible that age is no longer an important determinant of mating 
decisions, as all individuals need to achieve some reproductive suc-
cess before being captured.

When size-selective fisheries reduce body size variability rapidly 
and unexpectedly, an individual's ability to discriminate among mates 
can be suddenly hampered (e.g., Francis & Barber, 2013). Size may 
become an unreliable indicator of male quality or difficult to evalu-
ate; thus, females may benefit from shifting their attention to other 
cues (e.g., behavior, courtship display) that are easier to evaluate (de 
Jong, Amorim, Fonseca, & Heubel,  2018; Sbragaglia et al., 2019). 
However, other potential traits under sexual selection might cor-
relate with body size, and variability in these traits may be reduced 
together with size variability. For example, several behavioral traits 
indicating good mate quality and used by females as cues for mate 
choice, such as aggression or nest guarding behavior, correlate with 
body size (Table 1). When variability in these traits is reduced, they 
may become equally difficult to evaluate. Shifting cues can increase 
the costs of mate evaluation in terms of time, energy, and predation 
risk, or result in more maladaptive choices (Candolin, 2019). An alter-
native to shifting cues is to take in new cues. However, perceptual 
restrictions may prevent the adoption of new cues (e.g., Seehausen 
et al., 2008) and their evolution may be too slow to rescue mating 
systems in a rapidly changing environment (Horth, 2007).

3  | CONCLUSIONS

Reduced size variability can be expected to disrupt mate choice and 
mate competition in systems where body size is a sexually selected 
trait. Given that size-selective harvesting reduces size variability in 
exploited populations (Hutchings & Baum, 2005; Nusslé et al., 2017), 
fisheries-induced changes in phenotypic variability should be rou-
tinely highlighted together with changes in mean trait values. When 
the frequency of large females and males is reduced by fishing, find-
ing an optimal (large) mating partner may become costly. Breeding 

with a suboptimal (small and/or related) mate can lead to reduced 
offspring fitness or the choosing sex to allocate lower quality re-
productive resources to their mate. A strong mate preference can 
decrease the probability of finding a suitable mating partner, thus 
decreasing reproductive success and even leading to an Allee ef-
fect (Kokko & Rankin, 2006; Møller & Legendre, 2001). Therefore, it 
would be important to increase our understanding of the potentially 
complex mating systems of commercially important fish species and 
aim to integrate that knowledge in fisheries management.

Small exploited populations may foster inbreeding via mating 
among relatives (Keller & Waller,  2002). As research methods im-
prove and interest intensifies, studies focusing on inbreeding, its 
effects on mate choice behavior (inbreeding avoidance) and repro-
ductive success (inbreeding depression) should become more com-
monplace in commercially important populations. Recent genomic 
advances enable measuring of inbreeding with great precision, and 
this could fundamentally alter our understanding of inbreeding in 
wild populations. Inbreeding can have long-term effects on popula-
tion productivity, viability, and ability to evolve in response to sto-
chastic environmental events (Charlesworth & Charlesworth, 1987; 
Hedrick & Kalinowski,  2000; Keller & Waller,  2002). Therefore, 
fisheries-induced changes in population size, genetic variability, and 
levels of inbreeding should be associated with demographic data, in-
cluding population growth.

Fisheries present a relatively novel contemporary selection 
force that changes the environment rapidly by removing individ-
uals that would otherwise likely be favored by natural and sexual 
selection. However, studies combining the often opposing ef-
fects of fisheries and sexual selection are rare (but see Hutchings 
& Rowe,  2008; Sbragaglia et al., 2019; Sørdalen et  al.,  2018). 
Reduced size variability can complicate mate discrimination and 
decision-making in competitive interactions weakening the po-
tential for sexual selection (Hutchings & Rowe,  2008; Urbach & 
Cotton,  2008). Therefore, sexual selection cannot always be ex-
pected to buffer the effects of fisheries selection or rescue ex-
ploited populations. Disrupted mating systems due to the loss of 
variability can ultimately lower population productivity and resil-
ience (Lipcius & Stockhausen, 2002; Rowe & Hutchings, 2003) and 
change population dynamics by affecting species interactions and 
community structure (Candolin, 2019).
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