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Background: Gene expression is necessary for regulation in almost all biological processes,
at the same time, it is related to the prognosis for head and neck squamous cell carcinoma
(HNSCC). The prognosis of late-staged HNSCC is important because of its guiding signifi-
cance on the therapy strategies.
Methods: In this work, we analyzed the relationship between gene expression and HN-
SCC in The Cancer Genome Atlas (TCGA) cohort, and optimized the panel with random
forest survival analysis. Subsequently, a Cox multivariate regression-based model was de-
veloped to predict the clinical outcome of HNSCC. The performance of the model was as-
sayed in the training cohort and validated in another three independent cohorts (GSE41614,
E-TABM-302, E-MTAB-1328). The underlying pathways significantly associated with the
model were identified. According to the results, patients of low-score group (median sur-
vival months: 27.4, 95% CI: 18.2–43) had a significant poor survival than those of high-score
group (median survival months: 69.4, 95% CI: 58.7–72.1, P=2.7e-5), and the observation
was repeatable in the other validation cohorts. Further analysis revealed that the model per-
formed better than the other clinical indicators and is independent of these indicators.
Results: Comparison revealed that the model performed better than existing models for
late HNSCC prognosis. Gene set enrichment analysis (GSEA) elucidated that the model
was significantly associated with various cell processes and pathways.

Background
Worldwide, head and neck squamous cell carcinoma (HNSCC) is one of the most lethal cancers. It was
estimated that 108700 new cases and 56200 new deaths were reported in China, 2015 [1]. Although the
clinical outcome of HNSCC, with survival rate less than 50% [2], is relatively poor compared with patients
in early who are more curable, a large proportion of late-staged HNSCC patients survive over 2–5 years.
Thus, it is necessary to distinguish these patients and adapt active or palliative therapy accordingly. Clin-
ically, American Joint Committee on Cancer (AJCC) TNM staging system was widely used for prognosis
for HNSCC [3], and differentiation grade is also an important pathological indicator. However, it is still
not sufficient for clinical utilization.

In the past years, efforts have been devoted to unveil the underlying biological mechanisms that mR-
NAs influence the prognosis of HNSCC. For example, REG1 was shown to be significantly associated
with survival in head and neck cancer [4]. The PD-L1 expression value was validated to have impact on
many processes [5], and ERCC2 was reported to be associated with aggressive HNSCC [6]. Expression
of C1GALT1 predicts the poor survival of head and neck cancer [7]. Recently, lncRNAs were gaining
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attention and microRNAs became hotspots as well. A large proportion of lncRNAs are expressed specifically in HN-
SCC, which show their potential to be prognostic biomarkers along with the other clinical indicators, and aberrant
lncRNA expression has been found in many different kinds of cancers, including HNSCC [8–10]. However, due to the
genetic and environmental heterogeneity of HNSCC, the prognostic value of single gene, including protein-coding
and non-protein-coding genes, is not robust across cohorts. Therefore, multiple gene expression-based prognostic
model has been emphasized upon during the past years. Mammaprint was developed using the expression of 70
genes [11], and has been reported to be an important guidance for breast cancer treatment.

In this work, we analyzed the gene expression microarray and next-generation based transcriptomic data of large
HNSCC cohorts that were previously published in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus
(GEO) and Arrayexpress, screened the prognostic mRNAs and lncRNAs, optimized the panel and developed a prog-
nostic model based on random forest survival method and Cox regression analysis. The model performance and
robustness were evaluated, and underlying potential pathways associated with the model were identified.

Materials and methods
Sample and datasets involvement
In this work, HNSC gene expression datasets, derived from public and available GEO databases (http://www.ncbi.
nih.gov/geo, accession number: GSE41613 [12]), TCGA (https://www.xena.ucsc.edu, accession: TCGA-HNSCC) and
Arrayexpress (https://www.ebi.ac.uk/arrayexpress/, accession number: E-MTAB-1328 [13], E-TABM-302 [14]), were
used. In each dataset, the samples diagnosed as late-staged HNSCC (TNM stage: IV) were selected, while samples
with the other TNM stages or with incomplete clinical information were excluded.

Data processing and model development
Raw data of TCGA were downloaded from UCSC Xena Browser (www.xena.ucsc.edu) and transformed to log2
(FPKM) values according to the provided method. Genes that did not detect reads in more than 70% samples were
excluded in the following steps. The raw data of GSE41613 were downloaded from GEO (www.ncbi.nih.gov/geo) and
normalized with R package ‘affy’ with rms method. The raw data of E-MTAB-1328 and E-TABM-302 were down-
loaded from Arrayexpress and processed with the same method as GSE41613. Univariate Cox regression analysis was
used to evaluate the correlation of gene expression with patients’ overall survival information in TCGA dataset. Due
to the large sample size compared with the other three, P-value <0.01 was considered to be statistically significant
and used for further analysis. Random survival forests (RSFs) variable hunting algorithm was utilized to optimize the
panel. The number of Monte Carlo iterations (nrep) was set as 100 in the RSF model, while the step size controlling
values was set as 5 in the forward process (nstep). With a multivariable Cox regression model for the selected genes,
the TCGA was used to estimate the risk score formula. The expression of these selected lncRNAs can be used to evolve
formula by weighted by their estimated regression coefficients, as the following:

Score =
n∑

i=1

bi xi

Where, bi indicates the coefficients and xi represents the relative gene expression value.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) [15] was conducted by GSEA software V2.2. As canonical representations of
biological processes, ‘c2.cp.kegg.v6.2.symbols.gmt’ gene set was used for the enrichment analysis. Through Enrich-
ment Map plug-in, we can observe the GSEA results in Cytoscape software V3.2.1. Gene sets were termed ‘enriched’
with which the false discovery rate (FDR) value was <0.05 after performing 1000 random sample permutations.

Statistical analysis
By cutting off with the median score, patients were classified into a high- or low-risk group in each set on the basis of
the risk score formula. To estimate the survival differences between the low- and high-risk groups, the Kaplan–Meier
method with a log-rank test was chosen, and P<0.05 was considered as statistically significant in this step. Through
univariate or multivariate Cox regression analysis, hazard ratios (HRs) and 95% CIs were evaluated. And the sensitiv-
ity and specificity of the prognosis of the score can be contrasted by receiver operating characteristic (ROC) curves
using R package ‘pROC’. The correlation between scores and patients with different clinical features were measured
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Table 1 Clinical information of cohorts used in this study

Variables TCGA E-MTAB-302 E-MTAB-1328 GSE41618
Median follow-up (months) 56 58 57 26

Gender Male 225 69 75 38

Female 71 5 6 18

Age 60− 145 40 43 31

60+ 151 34 38 25

Grade 4− 92 23 24 NA

4 204 51 57 NA

Table 2 Genes in the risk score

Gene symbol Ensembl IDs Description Coefficient

KLHDC7B ENSG00000130487 Kelch domain containing 7B 1.37289399

EMC4 ENSG00000128463 ER membrane protein complex subunit 4 −0.327847579

AHDC1 ENSG00000126705 AT-hook DNA binding motif containing 1 0.01524505

PNPLA4 ENSG00000006757 Patatin-like phospholipase domain containing 4 −0.646201302

PEX11A ENSG00000166821 Peroxisomal biogenesis factor 11 α 0.172110564

BRD4 ENSG00000141867 Bromodomain containing 4 0.068037273

NR1H2 ENSG00000131408 Nuclear receptor subfamily 1 group H member 2 0.731963077

XCR1 ENSG00000173578 X–C motif chemokine receptor 1 −0.226687207

NFU1 ENSG00000169599 NFU1 iron–sulfur cluster scaffold −1.01799464

ORC6 ENSG00000091651 Origin recognition complex subunit 6 −0.247036767

AP000229.1 ENSG00000273492 Novel transcript 0.468081738

FAM53B ENSG00000189319 Family with sequence similarity 53 member B 0.583104952

MIR4435-2HG ENSG00000172965 MIR4435-2 host gene 0.266319204

PLEKHG6 ENSG00000008323 Pleckstrin homology and RhoGEF domain containing G6 0.233982315

ITFG1 ENSG00000129636 Integrin α FG-GAP repeat containing 1 −0.333125317

through Student’s t test by categorizing the samples. The R V3.5.0 (www.rproject.org) program was employed to an-
alyze amount data.

Results
Characteristics of datasets involved
In the present study, four independent sets of HNSCC subjects were involved. There were 296 HNSCC patients in
the TCGA set, who had a mean follow-up time of 56 months. Data were as follows: 225 males (76.0%) and 71 females
(24.0%); 145 (49.0%) patients were less than 60 years old and 151 (51.0%) patients over 60 years old; 92 (31.1%)
patients were diagnosed as grade less than 4 and 204 (68.9%) were grade 4. All patients were diagnosed as TNM stage
IV. In the E-TABM-302 set, the median follow-up period was 58 months. There were 58 male patients (93.2%), 40
(54.1%) less than 60 years old, and 51 patients diagnosed as grade 4. In the other two cohorts, E-MTAB-1328 and
GSE41618, the median follow-up period were 57 and 26 months, respectively. The detailed information of samples
involved is shown in Table 1.

Identification of prognostic lncRNAs and model development
The 296 HNSC patients in TCGA cohort were used for prognostic genes identification. The overall survival,
tumor-free survival (TFS) and log2 transformed gene expression were correlated by using Cox univariate regression,
and genes with P-value <0.01 in both TFS and OS analyses were retained. In this step, 78 genes significantly
associated with overall survival and TFS were identified. However, the combination of these 78 genes were
complex for clinical utilization, and thus it is necessary to optimize the panel where random forest variable
hunting was implemented. In this step, 15 genes were selected, as shown in Table 2. The model was developed
with Cox multivariate regression by correlating these 15 genes and overall survival information. The score is
calculated as the following: score = (1.37289399*KLHDC7B) + (−0.327847579*EMC4) + (0.01524505*AHDC1)
+ (−0.646201302*PNPLA4) + (0.172110564*PEX11A) + (0.068037273*BRD4) + (0.731963077*NR1H2) +
(−0.226687207*XCR1) + (−1.01799464*NFU1) + (−0.247036767*ORC6) + (0.468081738*AP000229.1) +

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

https://www.rproject.org


Bioscience Reports (2020) 40 BSR20200442
https://doi.org/10.1042/BSR20200442

Figure 1. The model performance in training set

The survival rate high-risk score is significantly lower in both overall survival (A) and TFS (B) pattern. High-risk group has a high

death rate, low tumor suppressor gene and high expression of oncogenes (C). The survival ROC revealed that the risk score is a

valuable marker of prognosis (D).

(0.583104952*FAM53B) + (0.266319204*MIR4435-2HG) + (0.233982315*PLEKHG6) + (−0.333125317*ITFG1),
where the gene symbols represent the expression values of corresponding genes. The positive coefficients suggest
that these genes were oncogenes while the negative coefficients indicate that these genes were tumor suppressor
genes.

Model performance evaluation
Patients were divided into a high-score group (score > −0.43, n=148) and a low-risk group (score ≤ 0.43, n=148) by
taking the median risk score (−0.43) as the cut-off point. HNSCC patients with high-scores (median overall survival
period: 27.4 months) had a significantly (P<0.001) shorter survival rate than these with lower scores (median overall
survival: 69.4 months) (Figure 1A). The TFS pattern was also similar (P<0.01). As expected, the tumor suppressor
genes were lowly expressed while the oncogenes were highly expressed in the high-score group, compared with the
low-score group (Figure 1B). The prognostic value of the model was evaluated using the 2-year survival ROC curve
(survival ROC), and the area under curve (AUC) was quantified and compared with clinical indicators (Figure 1C).
The results reflected that the AUC of the score, grade, gender, primary tumor diameter was 0.642, 0.513, 0.553 and
0.624, respectively. Collectively, these results indicated that the model was a valuable prognostic biomarker.
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Figure 2. Performance validation of the model

The high expression of oncogene, low expression of tumor suppressor gene and early incidence was reproducible in GSE41614

(A), E-TABM-302 (B), E-MTAB-1328 (C) datasets.

Table 3 Cox multivariate regression of risk score and other clinical information

HR 95% CI P

Grade 1.04 0.681–1.59 0.84508

Gender 0.93 0.60–1.45 0.7644

Tumor size 1.39 1.13–1.71 0.00137

Risk score 0.62 0.49–0.79 0.00017

Robustness of the model
Since the model was developed on TCGA dataset, the high performance of the model may result from over fitness
instead of its own characteristic. Thus, using exactly the same coefficients of the genes in the panel and the normalized
genes’ expression values, the scores of samples in another three independent cohorts, E-TABM-302, E-MTAB-1328
and GSE41613, were calculated. The median score of each dataset was used to divide each cohort into high-score
and low-score groups. As expected, the gene expression pattern of these 15 genes were similar to TCGA cohort and
the high-score group had significantly worse survival than those in low-score group (P=0.015, 0.0012 and 0.027 for
E-TABM-302, E-MTAB-1328 and GSE41613, separately, Figure 2). These results indicated that the model had great
robustness for predicting the clinical outcome of late-staged HNSCC patients.

Correlation between the model and clinicopathological features of
HNSCC
Patients can be equally grouped into two groups according to the clinical indicators (Grade 4 and 4−, female and
male, primary tumor size >1 and <1 cm). And the differences of the scores were compared in the TCGA set. The
results showed that the model was independent from these clinical indicators, as shown in Figure 3. Cox multivariate
regression was implemented on TCGA cohort to evaluate the importance of the model, grade, gender and primary
tumor size, and it was proved that primary tumor size and risk score were significantly associated with overall survival,
while gender and grade were not (Table 3). Collectively, these results indicated that the model was independent from
clinicopathological indicators and was important for late-staged HNSCC prognosis.
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Figure 3. The prognostic value of risk score and clinical indicators

The risk score has an unbiased prognostic value in Grade III and Grade (IV) patients (A), and independent from grade, gender and

primary tumor size (B).

Comparison of the model and other models
The performance of the model was compared with other models developed for HNSCC prognosis. Using the expres-
sion value of four genes, Rickman et al. developed a risk score model to predict the metastatic model [14]. Using seven
lncRNAs and mRNAs, Zhang et al. developed a model for HNSCC prognosis [16]. Since both studies evaluated the
performance with E-TABM-302 cohort, same as this work, the performance results were comparable. As expected,
model in this work performed better than the other two models, the P-value is <0.01, <0.05 and >0.05, respectively
(Figure 4A–C). The result indicated that our model was better for late-staged HNSCC prognosis.

Discussion
Proteins were translated from mRNAs, and thus the abundance of mRNAs would have a huge impact on the protein
functions, including carcinogenesis and cancer development, which had been validated by numerous reports. On
the other hand, a lot of the genomic repertoire of non-protein-coding transcripts had been recognized as stochastic
transcriptional product for a long time, including lncRNAs. And lncRNAs are remarkable for crucial function in
cancer development and progression according to past reports. However, the prognostic value of lncRNAs for diseases
has rarely been involved. The existing microarray gene expression data should be extracted from the GEO database.
Additionally, we achieved lncRNA profiling to potential prognostic lncRNAs for HNSC. Then we analyzed the data
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Figure 4. Comparison of the model with the other models

The performance of the model was compared using E-TABM-302. The reference model is not statistically significant (A), our work

(B), outperformed another model (C).

of the lncRNA expression profiles. Recently, lncRNA combined mRNA model was emphasized for cancer biomarker
development. However, such models’ applicability for late-staged HNSCC was still limited. The present study is the
first to develop an lncRNA-mRNA model for late-staged HNSCC.

There were two lncRNAs in the model, ENSG00000273492 (also known as AP000229.1) and ENSG00000172965
(also known as MIR4435-2HG). Despite that there are currently no reports on the former lncRNA, prognostic value
of MIR4435-2HG has been emphasized in other cancers, including hepatocellular carcinoma [17], colorectal can-
cer [18], lung cancer [19], gastric cancer [20] and glioblastoma [21]. The targets of MIR4435-2HG are known as
miRNA-487a and β-catenin signaling, and thus this lncRNA can promote the proliferation of cells, while the exact
mechanism is still unclear. KLHDC7B was shown to influence the breast cancer proliferation [22], BRD4 was re-
ported to influence the immune cell infiltration in breast cancer [23] and promote the cMYC downstream genes’
transcription [24]. Similarly, the prognostic function of XCR1 was displayed in non-small cell lung cancer [25], hep-
atocellular carcinoma [26], and other cancers [27]. While reports regarding EMC4, AHDC1, PNPLA4 and PEX11A
on the prognosis of HNSCC are limited, they suggested that the genes in the model were biologically functional.
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