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Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive neurostimulation technique that

is increasingly used in the treatment of neuropsychiatric disorders and neuroscience

research. Due to the complex structure of the brain and the electrical conductivity variation

across subjects, identification of subject-specific brain regions for TMS is important to

improve the treatment efficacy and understand the mechanism of treatment response.

Numerical computations have been used to estimate the stimulated electric field (E-field) by

TMS in brain tissue. But the relative long computation time limits the application of this

approach. In this paper, we propose a deep-neural-network based approach to expedite the

estimation of whole-brain E-field by using a neural network architecture, named 3D-MSRe-

sUnet and multimodal imaging data. The 3D-MSResUnet network integrates the 3D U-net

architecture, residual modules and a mechanism to combine multi-scale feature maps. It is

trained using a large dataset with finite element method (FEM) based E-field and diffusion

magnetic resonance imaging (MRI) based anisotropic volume conductivity or anatomical

images. The performance of 3D-MSResUnet is evaluated using several evaluation metrics

and different combinations of imaging modalities and coils. The experimental results show

that the output E-field of 3D-MSResUnet provides reliable estimation of the E-field estimated

by the state-of-the-art FEM method with significant reduction in prediction time to about 0.24

second. Thus, this study demonstrates that neural networks are potentially useful tools to

accelerate the prediction of E-field for TMS targeting.

Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique

increasingly used to study human physiology, cognition, brain-behavior relations and the

pathophysiology of neurologic and psychiatric disorders [1]. In TMS, a magnetic coil with
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pulsed current is placed over the scalp to generate an electric field (E-field) in the underlying

brain tissue in order to modulate neural activity in a target brain region [2]. However, due to

the complex structure of the brain and the electrical conductivity variation across different tis-

sues, the maximal stimulation strength of E-field does not always happen at the expected loca-

tion [3] and the current pathways induced by electrical stimulation are not straightforward to

identify [4]. Thus, it is necessary to accurately estimate the distribution of electric field (E-

field) induced in the brain to improve brain targeting in TMS [5].

Several numerical approaches have been developed to estimate the E-field in TMS, includ-

ing the local sphere model [6, 7], the boundary element method (BEM) [8, 9] and the FEM

method [10–12]. In particular, the FEM method is based on a volume conductor model

(VCM) of head tissue which not only is able to characterize complex tissue structure, brain

geometry but also anisotropic tissue conductivity to potentially improve the model precision

especially in white matter regions [13, 14]. Moreover, the FEM approach is able to integrate

individual anatomical head models (volume conductor models) using several standard tool-

boxes such as SimNIBS [15], FreeSurfer [16], FSL [17], and SPM [18], to estimate the spatial

distribution of stimulated tissue taking into account the impact of individual head and brain

anatomy [19]. But this approach takes long time in two aspects: First, it needs a few hours to

build the individual head model. Second, it takes typically several minutes to estimate the E-

field, which used to construct and solve a linear system on one location and angle. Hence, it

limits its application in situations when rapid adjustments for multiple coil positions and ori-

entations are needed. To overcome the limitations, several computation algorithms [20–22]

have been developed to reduce the simulation time.

The deep-learning technique has been recently applied to predict the E-field induced by

TMS [21]. This approach is able to significantly reduce the simulation time to much shorter

than one second, a significant reduction in prediction time. However, the original framework

in [21] has several limitations which compromise the accuracy of the estimated E-field. First, it

estimates the magnitude of the E-field without any information about the underlying direc-

tions which are useful to investigate the effect of TMS on axonal fiber bundles [23]. Second,

the approach in [21] only predicts E-field with the coil placed near a small brain region around

the motor cortex with no training and testing data examined for other brain regions. Third,

the neural network takes a T1w MRI and the position the TMS coil as input to predict the E-

field and neglect the difference between coils. Thus, the trained network is only applicable to

predict E-field maps for a specific coil.

In this work, we propose a new deep-learning framework that overcomes the limitations of

previous method in [21]. First, our approach predicts the three-dimensional vector E-field

instead of its magnitude. Second, our method can be used to predict E-field with the TMS coil

placed at different positions over the whole brain. Third, our method uses the change of vector

potential, i.e., the dA/dt map, of the TMS coil as input to predict E-field. Thus, the trained

DNN can be applied to predict E-field for different types of coils. We have developed four

deep neural networks (DNNs) that use different types of imaging data to predict vector E-field.

Similar to the method in [21], the first two DNNs were trained based on T1w MRI images to

predict E-field simulated using isotropic or anisotropic tissue conductivity tensors, respec-

tively. The other two DNNs take the anisotropic tissue conductivity maps derived from diffu-

sion MRI as the input to predict the E-field maps. By comparing the prediction results of the

four DNNs, we can examine if the additional information provided by diffusion MRI can

enhance the prediction accuracy. Moreover, the proposed DNNs have a novel network archi-

tecture, named 3D-MSResUnet, which integrates the residual module and deep supervision

mechanism in a multi-scale way [24, 25] to the standard 3D-Unet architecture [26] to achieve
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better performances. The performance of the trained DNNs has been examined using different

testing datasets and different types of coils with multiple evaluation metrics.

Materials and methods

MRI data and VCM

T1w and diffusion MRI data of 65 randomly selected subjects from the 100 unrelated subjects

Human Connectome Project (HCP) database were used in this study [27]. The T1w MPRAGE

image was acquired with 0.7 mm isotropic voxels. The diffusion MRI data has 1.25 mm isotro-

pic voxels and three non-zero b-values at b = 1000, 2000, 3000 s/mm2 with 90 gradient direc-

tions at each b-shell. The HCP diffusion MRI datasets were preprocessed with corrections for

head motion and distortions and were co-registered with T1w MRI [28]. We applied the mri2-
mesh command from the SimNIBS software (version 3.0.8) [15] which integrates the FreeSur-

fer toolbox [29] to construct the volume conductor models (VCMs) for each subject using the

T1w MRI data. Then, we extracted the b = 0 and 1000 s/mm2 volumes of the diffusion MRI

data and applied to the dwi2cond command to estimate anisotropic tissue conductivity tensors.

Higher b-values were not included in the analysis to ensure that the proposed network is also

applicable to diffusion MRI acquired from clinical MRI scanners with standard protocols.

E-field simulation

We used Matlab (R2015b, Mathworks, Natic, MA) and SimNIBS (version 3.0.8) to simulate E-

field maps using the HCP dataset for training and testing the neural networks. Two sets of E-

field maps were simulated for each subject by using scalar-valued tissue conductivity and

anisotropic conductivity tensors, respectively. The scalar-valued tissue conductivity for white

matter, gray matter, CSF, bone and scalp were set as 0.126, 0.275, 0.1654, 0.01 and 0.465 S/m,

respectively, which were the default values in SimNIBS. Moreover, the distance from the coil

to the scalp was 4 mm which was also the default value. For anisotropic conductivity tensor

based simulations, we followed the recommendation of [30] to use volume normalized con-

ductivity tensors to model the anisotropic conductivity in brain tissue with the eigenvectors

consistent with those of the diffusion tensor models and with the geometric mean of the eigen-

values identical to the standard isotropic conductivity [31]. In order to generate E-field maps

with different coil centers and orientations, we sampled the position of the coil from the posi-

tions of the EEG 10–10 system and with the coil handle directed to 78 different directions with

approximately 4.6o angular resolutions. Thus, 52 coil center positions and 78 directions at

each position were selected to simulate E-field maps, which provided a total number of 4056

(52x78) samples for each subject for either scalar-valued conductivity or anisotropic conduc-

tivity based E-field simulations.

Training and prediction strategies

The results in [21] have shown that a neural network trained by data from 20 subjects can

accurately predict E-field simulated using T1w MRI. Accordingly, we selected 20 subjects from

the HCP dataset in an initial experiment to train the neural networks. We used two sets of

input images to train the neural networks. The first set of training data included the T1w MRI

and the temporal change of vector potential map, i.e., the dA/dt map, of the magnetic coil,

which provides a 4-dimensional input to the DNNs. This set of input data was applied to train

two DNNs to predict E-field distributions simulated based on isotropic and anisotropic con-

ductivity maps, respectively, with trained DNNs being denoted by T1-iso20 and T1-aniso20.

The second set of training data included the principal eigenvector from the conductivity tensor
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and the dA/dt map of the coil, which provided a 6-dimensional input to the DNN, with the

trained DNN being denoted by C-20. This set of data was used to predict anisotropic conduc-

tivity tensor-based E-field maps to investigate the additional advantage of using high-dimen-

sion data provided by diffusion MRI.

Different from the method in [21], the proposed DNNs not only predict vector E-field

maps but also predict it in the whole brain as opposed to scalar E-field maps in a small region.

In particular, the dimension of the output data of the proposed DNNs is 180x220x120x3,

whereas dimension of the output of the method in [21] is 72x144x24x1. To examine if addi-

tional training data was needed to improve the prediction accuracy of the large dimensional

output data, we added 40 more subjects to continue the training of the C-20 models, with the

result being denoted by C-60. Thus, the total number of training datasets for C-60 was equal to

243,360 (4056x60), whereas the number of datasets used for T1-iso20, T1-aniso20 and C-20

was equal to 81,120 (4056x20).

In summary, four DNNs were trained to predict E-field maps based on isotropic or aniso-

tropic tensor based tissue conductivity. The T1-iso20 model were trained using 20 subjects to

predict isotropic conductivity based E-field maps by using T1w MRI and the dA/dt vector field

of the TMS coil. The T1-aniso20 model were trained using the same set of input data to predict

anisotropic conductivity based E-field maps. The C-20 model was also trained using 20 sub-

jects to predict anisotropic conductivity based E-field maps by using anisotropic conductivity

tensors and the dA/dt map. The C-60 model was further trained based on the C-20 model by

using additional 40 training subjects.

Network architecture

The standard network architecture that has been widely used for image-based learning, includ-

ing [21], is a structure called U-net which consists of a sequence of encoder and decoder mod-

ules. In [32], a variant of U-net with the residual module was introduced to solve the

exploding or vanishing gradients problem and improve the training efficiency [33]. It was

shown that the residual module combined with standard U-net has better performance than

the standard U-net in [32, 34]. In addition, [35, 36] proposed a different variant of U-net to

pass the features extracted from early stages to later stages of decoders to improve the network

prediction performance using multi-scale features.

In this work, we introduce a new network architecture, which is named 3D-MSResUnet, by

combining the residual modules introduced in [33] and the approach from [35] to integrate

multi-scale features based on U-net architecture. 3D-MSResUnet is a fully convolutional net-

work whose architecture is illustrated in Fig 1. The dark arrows represent the short skip con-

nection of residual modules, and the light arrows mean the short skip connection that pass the

feature maps of decoders to the encoders. All cuboids with various colors represent the feature

maps extracted from the 3D-MSResUnet. Note that the gray cuboids indicate multi-scale fea-

ture maps from the decoders.

Learning strategy

Our networks were trained by minimizing the mean squared error loss between the predicted

E-field and the reference data provided by SimNIBS (version 3.0.8) [15]. The network can be

considered as a nonlinear regression model, which was trained to fit the E-field distribution

calculated by FEM approach.

We first initialized the network weights using the method proposed in [37]. We then used

the RAdam (Rectified Adam) [38] optimizer for network training with modulate parameters

β1 = 0.9, β2 = 0.999 and the initial learning rate lr = 0.002. Step learning rate strategy was
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employed with the initial lr decayed by gamma = 0.5 after every 5 epochs. The total parameters

were iteratively updated using backpropagation for a mini-batch size 4. The parameters were

iteratively updated for 25 epochs, where each epoch had 2x105 iterations. The network had 31

convolutional layers totally as illustrated in Fig 1. Four 3D-MSResUnet models, i.e., T1-iso20,

T1-aniso20, C-20 and C-60, were trained with the same architecture. The T1-iso20 and T1-
aniso20 models were trained by using the T1w MRI and the dA/dt maps as input, with training

data sampled from 20 subjects, to predict E-field maps simulated using isotropic scalar-valued

tissue conductivity and anisotropic conductivity tensors, respectively. The size of the com-

bined input data was 180x220x120x4. The C-20 and C-60 models were trained using the prin-

cipal eigenvector scaled by the corresponding eigenvalues of the conductivity tensor and the

dA/dt maps as input, with the training datasets sampled from 20 and 60 subjects, respectively,

based on anisotropic conductivity tensors. The size of input data for both C-20 and C-60 was

180x220x120x6. The training of C-60 was initialized by the parameters of the C-20 model but

with additional 40 independent subjects added to the training with 4x105 additional iterations

for each of the 25 epochs.

Testing methods

We conducted the following experiments to examine the performance of the DNN models

and their dependence on the type of TMS coils, imaging protocols and the coil positions.

HCP testing subjects. We applied the four trained DNNs to predict E-field maps for 5

independent subjects from the HCP database that were not used in training. Each subject had

4,056 simulated E-field volumes with isotropic and anisotropic tissue conductivity, respec-

tively, using three different coils. The difference between the predicted and simulated E-field

maps were compared to examine the performance of the DNNs.

On the dependence of coils. We note that a major difference between the proposed

approach and the method in [21] is the inclusion of the dA/dt map as a input to the DNN.

Thus, the DNN model can produce different E-field maps for different coils at the same posi-

tions. In our experiment, the DNNs were trained based on simulated E-field using a Magstim-

70mm-Figure8 [39] TMS coil. To examine the performance for other coils, we applied the C-

60 model to predict E-field maps for the MagVenture-MC-B70 coil, which has a similar Fig-

ure-of-Eight shape as the trained coil and the Magstim-70mm-Circular coil [40].

On the dependence of imaging protocols. To examine the dependence of the prediction

results on imaging protocols, we applied the trained DNNs to predict E-field maps simulated

Fig 1. Illustration of the architect of 3D-MSResUnet. The last few cuboids shown in dark gray colors represent the

mechanism for integrating multi-scale features maps from decoders.

https://doi.org/10.1371/journal.pone.0254588.g001
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using the Ernie dataset provided by SimNIBS. This dataset was acquired using a standard clini-

cal scanner with 2 mm resolution dMRI data which had much lower resolution compared to

the 1.25 mm isotropic voxels in HCP datasets. We simulated E-field maps using both isotropic

and anisotropic conductivity maps with three types of coils and compared the results with the

predicted data.

On the dependence of coil positions

To examine if the trained DNNs were able to predict E-field maps with the coil placed at differ-

ent positions that were not included in the training dataset, we simulated the E-field maps

with coil positions sampled at different vertices of the brain surface model at the rostral middle

frontal lobe from FreeSurfer [29]. This region contained about 31795 vertices (total) in the 5

testing subjects. E-field maps with anisotropic conductivity were simulated using 3 uniformly

sampled orientations at each position, providing a total of 95385 volumes to evaluate the per-

formance of trained neural networks at positions that are different from EEG nodes. The simu-

lation results were compared with the predicted values by the C-60 model.

Evaluation metrics

We have evaluated the performance of the neural networks using the following metrics.

Target overlapping coefficient (TOC). One main application of E-field simulation is to

define the best coil position on the scalp to optimally stimulate a given cortical target with

TMS. To evaluate the performance of the predicted E-field for brain targeting, we used two

approaches to define the brain target in the volume space and the surface space, respectively. In

the volume space, we defined the target region as the set of voxels within brain tissue whose

magnitude were higher than 95% of all other brain voxels, i.e., the top 5% voxels. To define the

target region in brain surface, we first mapped the magnitude of E-field to the brain surface

using the mri_vol2surf command from FreeSurfer. Then we defined the target region at the set

of vertices whose magnitude were higher than 95% of all vertices. To compare the target

regions of the predicted E-field and the reference, we computed their Dice similarity coeffi-

cient (DSC) [41], which was named as target overlapping coefficient (TOC). We note that

TOC takes value between 0 and 1. Higher TOC implies better similarity between the E-field

distributions.

TOC ¼
2TP

2TPþ FPþ FN
ð1Þ

where the TP, FP and FN mean true positive, false positive and false negative between the pre-

diction E-Field and the reference E-Field.

E-field peak distance (EPD). To further evaluate the performance of the predicted E-field

maps, we computed the distance between peaks of the predicted and reference E-field magni-

tude. Similar to TOC, we computed the E-field peak distance (EPD) in both the volume and

the surface space, respectively, using the following definition

EPD ¼ kPeakðEPÞ � PeakðERÞk; ð2Þ

where EP and ER denote the predicted and reference E-field and Peak() obtains the coordinate

of the voxel at the gray matter region or the vertex at brain surface with the maximum magni-

tude. To reduce the influence of outliers on EPD in the volume space, we took the average

value of the E-field magnitude in 3x3x3 neighboring voxels within the gray matter region as

magnitude of a voxel to determine the location of the peak value of E-field maps for Magstim-

70mm-Fig8 and MagVenture-MC-B70 coils. For the less focal E-field distributions
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corresponding to the Magstim-70mm-circular coil, the location of the target was determined

as the average position of the top 200 voxels with the highest E-field magnitude in the gray-

matter region.

E-field similarity. We also computed the correlation coefficient between the magnitude

of the predicted and reference E-field maps to evaluate their similarities. The E-field similarity

score was computed for whole-brain E-field magnitude using the following definition

Correlation ¼
CovðkEPk; kERkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkEPkÞVarðkERkÞ

p ; ð3Þ

where kEPk and kERk denote the magnitude of the predicted and the reference E-field,

respectively.

Mean absolute error (MAE) and mean relative error (MRE). The mean absolute error

(MAE) was defined as the absolute value of the difference between the predicted E-field mag-

nitude and the reference. The mean relative error (MRE) was defined as the ratio between

MAE and the reference E-field magnitude within the corresponding target region. Here, MRE

was only computed within the target region to avoid singularity when computing the ratio.

MAE ¼
1

K
PK

1
jkEPk � kERkj; ð4Þ

MRE ¼
1

K
PK

1

jkEPk � kERkj

kERk

� �

; ð5Þ

where K denotes the number of vertices on brain surfaces.

Normalized root-mean-square error (NRMSE): To compare the vector E-field in volume

space, we computed the NRMSE measure [42] using the method below

NRMSE ¼
1

N
PN

1

kEP � ERk

kERk

� �

; ð6Þ

where N denotes the number of voxels. We computed the NRMSE measure using the whole-

brain E-field as well as the target region that contained the 5% voxels around the peak of the

reference E-field.

Mean directional error (MDE). The direction of E-field vectors was shown to be impor-

tant to understand the stimulation of white matter in TMS [43]. To this end, we evaluated the

angular accuracy of the predicted E-field maps by computing the mean directional error

(MDE) between predicted and reference E-field vectors within the reference target region

based on the following definition

MDE ¼
1

N
PN

1
acos

EP:ER

kEPkkERk

� �

: ð7Þ

Similar to the NRMSE measure, we computed MDE for whole-brain E-field as well as the

E-field around the target region.

Results

On network training

The neural networks were trained with PyTorch [44] on a Linux workstation equipped with

two NVIDIA TITAN RTX GPUs with 48 GB graphics RAM in total. The training time for the

T1-iso20, T1-aniso20 and C-20 models were about 14 days each. The training of the C-60
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model took 28 days. Once the neural networks were trained, they were able to predict an E-

field volume in 0.24 s.

Fig 2 shows the mean square error after each epoch in the training stage of the four models.

The C-20 model with anisotropic conductivity tensors in the input had a significantly lower

mean square error than the T1-aniso20 model to predict the same set of E-field maps. The C-
60 model was initialized by the final result of the C-20 model, which provided a relatively

lower mean square error at the beginning of the training. But final mean square errors of the

C-20 and C-60 models were similar and were lower than the final mean square errors of the

T1-iso20 and the T1-aniso20 models.

Surface-space evaluations

Table 1 shows the evaluation metrics that compare the predicted and the reference E-field

maps on brain surfaces. Overall, the T1-iso20 and T1-aniso20 models had similar perfor-

mances in predicting E-field maps with isotropic and anisotropic conductivity, respectively.

The C-20 model overperformed the T1-iso20 model with higher TOC and correlation mea-

sures and lower EPD, MAE and MRE measures, indicating that conductivity maps provide

better performance than T1w MRI to predict E-field maps. The C-60 model had similar

Fig 2. The training loss for the four DNNs in each iteration.

https://doi.org/10.1371/journal.pone.0254588.g002

Table 1. Target overlapping coefficient (TOC), E-field peak distance (EPD) error [mm], correlation, mean absolute error (MAE) [V/m] and mean relative error

(MRE) and mean directional error (MDE) between the VCM and DNNs on gray matter region of the whole brain for T1-iso20, T1-aniso20, C-20 and C-60 and the

rostral middle frontal area for C-60 on brain surfaces.

Mean (SD) EEG positions Non-EEG positions

T1-iso20 T1-aniso20 C-20 C-60 C-60
TOC 0.894(0.045) 0.906(0.024) 0.946(0.012) 0.956(0.009) 0.962(0.007)

EPD (mm) 3.9591(6.68) 3.736(6.055) 1.638(3.951) 1.394(3.663) 1.300(3.167)

Correlation 0.983(0.038) 0.986(0.008) 0.995(0.004) 0.997(0.004) 0.997(0.0015)

MAE 0.018(0.006) 0.017(0.005) 0.010(0.002) 0.008(0.001) 0.008(0.001)

MRE 0.154(0.059) 0.152(0.062) 0.089(0.014) 0.077(0.013) 0.077(0.009)

https://doi.org/10.1371/journal.pone.0254588.t001
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performance as the C-20 indicating that using datasets from 20 subjects can provide reliable

training results which is consistent to conclusions in [21]. The performance of the C-60 model

at non-EEG positions that were no included in the training dataset was similar to the perfor-

mance at EEG positions. In particular, the EPD was about 1.3 mm indicating that C-60 pro-

vided high accuracy for localizing TMS targets on brain surfaces.

Fig 3 illustrates three samples of the predicted E-field magnitude by the C-60 model (left

column), the corresponding ground truth (middle column) and their differences (right col-

umn). The coil center of the three E-field maps were at the Fpz, C5 and P5 EEG positions.

Though the MRE was about 7.7% over the entire brain surface, the relative error in some

regions was 10% or higher. More detailed comparisons for the E-field maps at non-EEG posi-

tions is shown in S4 Fig in S1 File. Moreover, the topographic maps for the evaluation metrics

at EEG positions in surface space can be found in S5 Fig in S1 File. A detailed illustration of

the evaluation metrics at non-EEG positions at the rostral middle frontal lobe is shown in S5

Fig. Moreover, a video that shows the E-field maps at different non-EEG positions is also pro-

vide in the S1 File.

Volume-space evaluations

Table 2 shows the average target overlapping coefficient (TOC), E-field peak distance (EPD),

the correlation measure, the normalized root-mean-square error (NRMSE) and the mean

directional error (MDE) of the E-field vectors. The NRMSE and the MDE measures were eval-

uated for both whole-brain E-field maps and target regions. The second to the fifth columns

show the average values of these metrics from all 20280 testing volumes from 5 HCP subjects

with coil placed at the same set of positions at in the training data. The last column shows the

performance of the C-60 model with the coil placed at a different set of positions.

Fig 3. The magnitude [V/m] of E-field from VCM (the first column) and C-60 (the middle column), and the

absolute difference between VCM and C-60 (the last column) with the Magstim-70mm-Fig8 placed at three

positions of one testing subject.

https://doi.org/10.1371/journal.pone.0254588.g003
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The T1-iso20 and T1-aniso20 models had similar performances for most evaluation met-

rics. The C-20 model had better performance than the T1-aniso20 model with increased TOC

and correlation and reduced NRMSE and MDE. The NRMSE and MDE for C-20 were both

lower than T1-aniso20 at target regions than the average results. The C-60 model had slightly

improved performance than C-20 model. The EPD measures for all coils were higher than the

surface-based results shown in Table 1. Thus, mapping the predicted E-field from the three-

dimensional space to brain surfaces can improve the precision of target localization. The

NRMSE and MDE both had relative lower values at target regions compared to the average

results over the whole brain. The MDE for C-20 at target regions was about 4.841 degree

which was lower than the 6.605-degree error for the T1-aniso20 model, indicating that the

anisotropic conductivity tensor provided by diffusion MRI was helpful to improve the angular

precision.

The last column of the Table 2 shows that the C-60 model had similar performance at coil

positions that were not included in the training dataset. Thus, the trained networks can poten-

tially be applied to predict E-field with arbitrary coil positions and orientations.

Table 3 shows the evaluation metrics of the C-60 model for predicting the E-field with three

types of coils for the HCP data and Ernie dataset. All evaluation metrics for the Magstim-

70mm-Fig8 and MagVenture-MC-B70 coils had similar values for both the HCP and Ernie

datasets, but the NRMSE and MDE for the Magstim-70mm-Fig8 coil were relative lower.

Moreover, the HCP datasets had lower EPD, NRMSE and MDE than the Ernie dataset, indi-

cating the dependence of the DNN on imaging protocols and resolutions. The last column

shows the results for the Magstim-70mm-Circular coil. The corresponding EPD was much

higher than the result for the other two coils which may be related to the less focal distribution

of the E-field.

Fig 4 illustrates the simulated and the predicted E-field maps by the C-60 model for the

three types of TMS coils placed at the same position of a testing subject of the HCP dataset.

The E-field maps corresponding to the Magstim-70mm-Fig8 and MagVenture-MC-B70 coils

have similar distributions around the target regions because the two coils have similar struc-

ture and size. But the MagVenture-MC-B70 coil had higher prediction error especially in

brain areas outside of the peak regions. Though the Magstim-70mm-Circular coil has a differ-

ent structure as the Magstim-70mm-Fig8 coil used in DNN training, the C-60 model can still

predict similar E-field distributions as the simulated data. But the prediction error is higher

than the other two coils.

Table 2. Performance of the models using independent HCP datasets.

EEG positions Non-EEG positions

T1-iso20 T1-aniso20 C-20 C-60 C-60
TOC 0.874(0.033) 0.878(0.027) 0.905(0.014) 0.914(0.012) 0.931(0.008)

EPD (mm) 8.225(8.539) 8.709(8.789) 5.588(7.112) 4.977(6.546) 3.842(5.671)

Correlation 0.978(0.026) 0.977(0.008) 0.984(0.003) 0.986(0.003) 0.989(0.001)

NRMSE 0.264(0.0744) 0.277(0.083) 0.205(0.019) 0.187(0.017) 0.217(0.019)

NRMSE (target) 0.154(0.033) 0.153(0.031) 0.107(0.010) 0.097(0.009) 0.104(0.007)

MDE 13.455(3.338) 13.770(4.039) 9.969(1.133) 9.117(0.977) 10.814(0.930)

MDE (target) 6.688(2.545) 6.605(1.299) 4.841(0.426) 4.474(0.368) 4.957(0.412)

The evaluation metrics include the target overlapping coefficient (TOC), the E-field peak distance (EPD) error, the Correlation, the Normalized root-mean-square error

(NRMSE) and the Mean directional error (MDE) between the VCM and DNNs on gray matter region of the whole brain for T1-iso20, T1-aniso20, C-20 and C-60 and

the rostral middle frontal area for C-60 in the volume space.

https://doi.org/10.1371/journal.pone.0254588.t002
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Topographical illustrations

Fig 5 shows the topographic maps of the evaluation metrics associated with different coil posi-

tions. At each EEG position, the metric was the average value from 390 samples (5 subject and

78 directions). These topographic maps illustrate the dependence of the performance of net-

work models on coil positions. In particular, the target overlapping coefficient (TOC) was

symmetrical between left and right head. The larger E-field peak distance (EPD) and MAE

appeared in the front of head. The correlation was more or less uniform in all brain regions

except for the midline. It can be seen that the performance calculated by different metric on

Fig 4. The magnitude [V/m] of E-field from VCM (the first column) and C-60 (the middle column), and the

absolute difference between VCM and C-60 (the last column) for three types of TMS coils placed at the same

position of a testing subject of the HCP dataset.

https://doi.org/10.1371/journal.pone.0254588.g004

Table 3. Performance of the C-60 model using different coils for the HCP and Ernie dataset.

Magstim-70mm-Fig8 MagVentur-MC-B70 Magstim-70mm-Circ
TOC HCP 0.914(0.012) 0.909(0.012) 0.890(0.012)

Ernie 0.905(0.011) 0.895(0.015) 0.8858(0.014)

EPD (mm) HCP 4.977 (6.546) 4.789(6.636) 6.257(6.174)

Ernie 7.591(8.588) 7.236(8.951) 18.451(12.620)

Correlation HCP 0.986(0.003) 0.986(0.003) 0.985(0.003)

Ernie 0.982(0.004) 0.981(0.004) 0.9806(0.005)

NRMSE HCP 0.187(0.017) 0.312(0.045) 0.244(0.056)

Ernie 0.3375(0.117) 0.511(0.194) 0.1123(0.3503)

NRMSE (target) HCP 0.097(0.009) 0.116(0.012) 0.105(0.016)

Ernie 0.121(0.016) 0.156(0.018) 0.1418(0.019)

MDE HCP 9.117(0.977) 11.534 (1.966) 12.432(3.357)

Ernie 15.985(4.415) 18.382 (9.776) 18.3903(5.973)

MDE (target) HCP 4.474(0.368) 4.965(0.494) 4.407(0.592)

Ernie 5.474(0.889) 5.935(1.096) 5.2675(1.0954)

The evaluation metrics include the Target overlapping coefficient (TOC), the E-field peak distance (EPD) error, the Correlation, the Normalized root-mean-square

error (NRMSE) and the Mean directional error (MDE) in the volume space.

https://doi.org/10.1371/journal.pone.0254588.t003
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EEG positions. We noted that it has nearly symmetry between left head and right head, espe-

cially for TOC and MAE. Moreover, the performance is different on different EEG positions.

Discussion and conclusions

In this work, we have introduced a deep-learning based framework for E-field prediction for

TMS applications. We examined its performance using different types of training data, coils

and imaging protocols. Our method has several major differences compared to the DNN

method in [21]. First, our method uses the dA/dt map of the magnetic coil to predict vector E-

field. Thus, the trained DNN model can be applied to predict E-field maps for different TMS

coils. Second, we proposed a novel architecture of neural networks, i.e., 3D-MSResUnet, to

improve the prediction accuracy by combination of residual module and multi-scale feature

maps into 3D-U-net architecture. Third, our method used anisotropic conductivity maps to

improve the prediction accuracy of E-field maps. Several key results and limitations are sum-

marized below:

Conductivity map vs T1w MRI

The experimental results showed that the T1-aniso20 model can use T1w MRI to predict E-

field maps based on anisotropic conductivity with similar performance as the T1-iso20 model

for predicting E-field based on isotropic models. While using T1w MRI to predict E-field based

on anisotropic models is an advantage compared to physics-based FEM method, the predic-

tion accuracy is worse than the results of C-20 that uses anisotropic conductivity tensors for E-

field prediction. On the other hand, the dependence the C-20 and C-60 models on diffusion

tensors limits their applications in situations when diffusion MRI is not available.

On the dependence on positions, coils and imaging protocols

The experimental results showed that the trained DNN can predict E-field maps for coil posi-

tions that were not included in the training dataset. The whole-brain feasibility of the trained

Fig 5. The distribution of TOC, EPD, Correlation and MAE [mV/m] on EEG position with C-60 model on the

surface space.

https://doi.org/10.1371/journal.pone.0254588.g005
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networks was attributes to the extensive training of using 243,360 data volumes which con-

tained information about heterogeneity in brain anatomy and differences in coil positions and

orientations. Moreover, the results have also shown that the performance of DNN models

depend on both the shape of coils and imaging protocols. Low-resolution MRI images can

reduce the targeting accuracy for the DNN models. The results for the MagVenture-MC-B70

and Magstim-70mm-Fig8 coils were similar since both coils have similar shapes. But the per-

formance significantly degraded for the Magstim-70mm-circular coil. Thus, further training

and different training strategies are needed to improve the performance for different coils and

imaging protocols.

On localization accuracy

Several evaluation metrics were applied to examine the prediction accuracy of the DNN mod-

els. The experimental results showed that the target overlap ratio of the C-60 model on brain

surfaces was 95.6% and the E-field peak distance was 1.3 mm and the correlation coefficient

was about 0.997. The distance error increased in the volume space to about 11.3 mm. The

T1-iso20 and T1-aniso20 models had reduced targeting accuracy with the E-field peak distance

on brain surfaces being 3.959 mm 3.736 mm, respectively, and 8.225 mm, 12.601 mm in vol-

ume spaces. The angular error of the C-20 and C-60 models in target regions were about 4.841

and 4.474 degrees which were lower compared to the 6.688 degree for T1-iso20 and 6.605

degrees for T1-aniso20. But the angular errors were much higher than the fast quadrature

method [22]. Thus, a different training strategy may be needed to improve the angular preci-

sion of the DNN models, which will be explored in our future work.

On prediction speed

The prediction of a whole-brain E-field volume using the trained neural networks took about

0.24 s. In practice, additional time is needed to apply rigid transformation to the dA/dt map

according to the coil position which is expected to take much shorter computation time. More-

over, the prediction speed is still slower than the fast quadrature method [22] and the DNN

based method [21] though the predicted E-field by these methods is only in a smaller region of

the brain. More recently, a fast computational algorithm was introduced in [45] to estimate E-

field in a selected ROI so that the E-fields generated by coils placed at 5900 different scalp posi-

tions and 360 orientation per position can be computed under 15 minutes. In [46], a rapid

algorithm was introduced to compute E-field in ~100 ms on a cortical surface mesh with 120k

facets and with about 5 hours of preparation time. Compared to these methods, the merits of

our DNN-based method lie in the simplification in data preprocessing since it does not need

mesh models and the acceleration in whole-brain E-field volume prediction. But significant

improvements are needed to accelerate the prediction of E-field in target ROI to optimize coil

positions and to achieve real-time prediction on brain surfaces. For this purpose, we will

improve the architecture and training approach of the DNN in our future work to directly pre-

dict E-field in a selected ROI or on brain surfaces. We expect that reduced data dimension and

simplified network architecture can significantly reduce the prediction time.

Finally, we note that the DNN methods have several limitations. First, the neural networks

were trained to predict E-field simulated with fixed values for tissue conductivity, i.e., specific

values of conductivity for different tissue types, a specific coil and specific imaging protocols,

which are limitations compared to physics-based FEM algorithms. Second, the trained DNN

models not only depend on the type of coils, imaging protocols but also the data processing

methods. In particular, tissue segmentations in this study were obtained based on T1w MRI,

but more accurate results can be obtained by using both T1w and T2w MRI. Thus, further
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development and training of the DNN models are needed to integrate different tissue segmen-

tation approaches for more accurate prediction results. Third, the DNN models were only

trained based on data from health subjects whereas physics-based FEM algorithms have more

broad applications for patients with tumors or lesions. Thus, the goal of the DNN-based

method is not to replace FEM approaches. But the DNN-based methods can potentially be use-

ful to accelerate the prediction of E-field in situations when their performances are validated.

It is also a potentially useful tool to use only anatomical images, e.g., T1w MRI, to predict E-

field based on anisotropic conductivity tensors when diffusion MRI is not available in clinical

settings, though further improvements in prediction accuracy are needed.
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