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Abstract: Peripheral neurologic complications are frequent adverse events during oncologic treat-
ments and often lead to dose reduction, administration delays with time elongation of the therapeutic
plan and, not least, worsening of patients’ quality of life. Experience skills are required to recognize
symptoms and clinical evidences and the collaboration between different health professionals, in
particular oncologists and hospital pharmacists, grants a correct management of this undesirable
occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of
side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single
mechanism. This paper aims from one side at summarizing and explaining all the scattering mecha-
nisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the
other side at finding new approaches to possible treatments, in order to facilitate the collaboration
between oncologists, hematologists and hospital pharmacists.

Keywords: neurotoxicity; anti-cancer drugs; pharmacology; chemotherapy-induced peripheral
neuropathy; neurodegeneration; mechanism

1. Introduction

Peripheral Nervous System is the trait d’union between brain and spinal cord (Central
Nervous System) and the rest of the body, granting the passage and transmission of infor-
mation to transform in actions. Back to CNS, peripheral nerves send sensory information
deriving from the external world.

Peripheral neuropathy (PN) is a more or less serious damage to the peripheral nerves
(sensory, motor and autonomic nerves), affecting the Aβ (myelinated fibers involved in
touch and vibration sense), Aδ (thinly myelinated fibers involved in cold perception and
thermal pain), and C-fiber (unmyelinated fibers involved in warm temperature perception
and thermal pain) functions [1]. It is often accompanied by weakness, numbness and
pain, frequently in hands and feet, described by patients as stabbing, burning or tingling,
often spreading upward to arms and legs [2]. Other symptoms of PN are extreme sensi-
tivity to touch, pain during normal activities [3], lack of coordination and falling, muscle
weakness, paralysis if motor nerves are affected [4,5], while heat intolerance, excessive
or lack of sweating, bowel, bladder or digestive problems, changes in blood pressure [6],
dizziness or lightheadedness if autonomic nerves are bit [7]. PN can affect a single nerve
(mononeuropathy), two or more nerves in different areas (multiple mononeuropathy) or
many nerves (polyneuropathy) [8].
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Exposure to toxins is one of the principal causes of PN. In particular, for some classes
of anticancer drugs, PN represents the most frequent cause of therapy interruption, dose
reduction, delay and variation of the standard timing of administration, till leading to not
optimal clinical outcomes.

The global (acute and chronic) prevalence of Chemotherapy-Induced PN (CIPN), in
all its clinical manifestations (sensorial, motor and autonomic) is agent-dependent and,
according to 2014 data deriving from a systematic review and meta-analysis by Seretny [9],
varies from 68.1% in the first month after chemotherapy to 60% at three months and 30% at
six months and more. The highest values have been recorded for platinum-based drugs
(70–100%) [5,10], taxanes (up to 76%) [11], thalidomide and its analogues (20–60%) [12,13]
and ixabepilone (66%) [14]. More specifically, Sisignano asserted that the neuropathic pain
related to chemotherapy treatments affected up to 80% of patients [15]. These data are
expression of a huge clinical impact of CIPN on oncologic patients and have grown up in a
few years.

Sensorial and motor alterations represent the most frequent forms of CIPN symptoms
and are associated to most drugs (taxanes, platinum salts), involving both large and small
fibers, while autonomic manifestations are less frequent and are related predominantly to
vinka alkaloyds (small fibers damage) [16–18].

Platinum-based antineoplastic drugs (oxaliplatin and cisplatin), taxanes (paclitaxel, doc-
etaxel), epothilones (ixabepilone), immunomodulatory drugs (thalidomide), vinca alkaloids
(vincristine and vinblastine), proteasome inhibitors (bortezomib) and tyrosine kinase in-
hibitors (sorafenib) are, in approximately decreasing neurotoxic impact order, the classes of
antineoplastics that more frequently are associated to CIPN development [19]. Nevertheless,
also innovative therapeutic approaches, such as Chimeric Antigen Receptor-T (car-T) cell ther-
apy, in particular tisagenlecleucel used for the treatment of relapsed/refractory diffuse large
B-cell lymphoma, has demonstrated to induce a certain grading of neurological toxicity [20].

Different risk factors must be considered to forecast or prevent the neuropathic side
effects associated to the chosen anticancer therapy: smoking, advanced age, increased
body mass index, uncontrolled diabetes, alcohol abuse vitamin B deficiencies, pre-existing
infections (Lyme disease, shingles, Epstein-Barr virus, hepatitis B/C, HIV), autoimmune
diseases, (rheumatoid arthritis, lupus), kidney, liver or thyroid disorders, family history
of neuropathy [8,9,21–23]. Cold allodynia and cold hyperalgesia during chemotherapy
has also been identified as a risk factor for persistent CIPN symptoms [9]. Also single
nucleotide polymorphisms (SNPs) [8], evidenced during genome-wide association studies
(GWAS) have demonstrated to bring a higher risk of CIPN, in particular referring to
voltage-gated sodium channels, Schwann cell function–related proteins, receptors for cell
surface collagen, receptors involved in neuronal apoptosis, neuronal crest cell development
and even an enzyme involved in pyruvate metabolism [9].

Severity of CIPN symptoms varies also as a function of the drug administered and its
schedule of treatment and cumulative dose [19], i.e., platinum salts, specifically oxaliplatin,
induce immediate acute severe sensory disturbances, while the most frequent taxane-
induced neurotoxicity (paclitaxel more than docetaxel) generates longlasting but less
severe symptoms [24,25]. No standard management of symptoms is recognized at the
moment, though a single pharmacological treatment has been postulated for all CIPN, by
oxaliplatin, cisplatin, vincristine and paclitaxel, because of similar overlapping mechanisms
of mitotoxicity [26,27], involving the inhibition of TRPV1 [28] or NMDAR [29] activation
with additional anti-inflammatory properties, perhaps by inhibiting p38-MAPK [30].

This review aims at summarizing and explaining all the scattering mechanisms of
CIPN onset through a detailed literature revision. The knowledge of toxicity profiles and
the pathogenetic mechanisms of CIPN onset of old and new drugs in a multidisciplinary
dialogue represents a due for all professionals during patients’ care path. Experience skills
are required to recognize symptoms and clinical evidences and the collaboration between
different health professionals, in particular oncologists and hospital pharmacists, grants
a correct management of this undesirable occurrence. This research has been the starting
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point for deepening our knowledge on the topic as professionals within a cancer institute
and beginning a constant collaboration for the success of the therapies.

2. Materials and Methods

A systematic literature research about chemotherapy-induced peripheral neuropathy
has been collected with special referring to the reviews on this topic. The keywords used
during research were peripheral neuropathy, neurotoxicity, mechanism of neuropathy onset,
neuropathic pain associated to taxanes, platinum salts, vinca alkaloyds, bortezomib and
TKIs. During the data collecting, Thalidomide’s and Ephotilones’data have been found
interesting and also inserted in the manuscript, to shed light on all possible mechanisms of
CIPN onset.

3. Results

Our research has covered a period of about ten years, since 2010 and all the publica-
tions have been chosen in order to gain completeness of information on mechanisms of
onset, clinical data (prevalence, data emerging from clinical trials), possible prevention or
treatment with or without therapeutic agents, genetic studies about the possible risk factors
predisposing to CIPN. The information about thalidomide in monotherapy are older than
the others, involving papers published before 2010, nevertheless more recent reports have
been inserted about the combination therapy of thalidomide and bortezomib in multiple
myeloma. Within our hospital and our daily activity, this research has brought us to give
to oncologists and hematologists a sort of booklet to help them to prescribe the right drug,
timing of administration and dosage, based on the patient’s pre-existing comorbidities.
On the other hand, hospital pharmacists could enrich their counseling towards patients
reporting neuropathic symptoms, suggesting possible alternative remedies or sharing with
the physician a possible chrono-modulation of the drug administration.

4. Discussion

The study has been conceived as a summit of the knowledge about CIPN induced by
the most common neurotoxic anticancer drugs, in order to give them a more right clinical
collocation in therapeutic schedules of oncologic patients, which often are affected by
different comorbidities susceptible to alter or modify clinical outcomes in terms of toxicity,
delay or suspension of their treatments. With respect to already published papers on this
topic, our study combines more aspects of this important problematic for the patients
and the physicians facing neuropathic symptoms: mechanisms of onset, risk factors,
pharmacologic or not pharmacologic treatments, studies upon genetic patterns, possible
variation in dose and timing of administration. This is a review of literature, but it has given
us the possibility to start collecting a growing casuistry, among all patients in our cancer
institute. In the following part of the discussion, we report the principal pharmacological
and toxicological characteristics of PN-induced anticancer drugs, summarized in Table 1.
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Table 1. Principal anticancer drugs inducing PN with their pathologic and pharmacologic characteristics.

Class of Drugs Mechanism of Action Application in Oncology Mechanism CIPN Onset Prevalence of CIPN Risk Factors References

Taxanes (paclitaxel
docetaxel)

Antimitotic effect due to
tubulin binding

(microtubule stabilizer)

breast, ovarian, uterus,
gastric cancers, NSCLC,

sarcomas,

Microtubule impairment,
loss of axon transport

function, neuroimmunity,
inflammation

(NO,IL-1,TNFa,COX2), ROS
production, ion channel

remodeling, Ca++ signaling,
mitochondrial dysfunction

chronic sensorial

Genetic predisposition,
advanced age, smoke,

pre-existing neuropathy
diabete, autoimmunity

[16,22,24,25,31–59]

Platinum salts (oxaliplatin
and cisplatin)

Antimitotic effect due to
alkylation of DNA N7

Guanine

colon, pancreas, gastric,
pulmonary, ovarian,

neuroimmunity,
inflammation (NO, IL-1,

TNFa, COX2), ROS
production, ion channel

remodeling, Ca++ signaling,
mitochondrial dysfunction,
protease activation, altered

brain endothelial cells

Acute/chronic motor,
sensorial

Genetic alterations on
GSTP1, GSTM1,

glutathione-S- transferase,
Na+voltage channels,

pre-existing neuropathy

[41,43,51,58,60–99]

Bortezomib Proteasome 26S inhibitor multiple myeloma,
lymphomas

Increased sphingolipid
metabolism in astrocytes,

inflammation (TNFa, IL-1),
mitochondrial damage, ROS

production, alteration in
Ca++ signaling

Chronic sensorial

SPT, PKNOX1 and CBS
gene alterations, low levels
of vitamin D, inhibition of

NFkB

[41,100–116]

Thalidomide Immunomodulator effect multiple myeloma, ROS production Acute/chronic; motor
and autonomic

Advanced age, pre-existing
neuropathy, ADME gene
group alteration, SNPs

[100,104,114–121]

Epothilones
(ixabepilone)

Antimitotic effect due to
tubulin binding

(microtubule stabilizer)
breast cancer See Taxanes Acute sensorial See Taxanes [14,122,123]

Vinca Alkaloyds
(vincristine, vinorelbine,

vinblastine)

Antimitotic effect due to
tubulin binding (preventing

microtubule
polymerization)

lymphomas, breast cancer

Microtubule impairment,
loss of axon transport

function, altered
ion channels,

neuroinflammation

Acute sensorial motor and
autonomic

ERG2 gene mutation,
polymorphism in CEP72

gene, diabete, smoke,
decreased serum level of

folic acid and vitamin B12,
pre-existing neuropathy,
low creatinne clearance

[41,42,111,124–130]

TKIs (Sorafenib)
Kinase inhibitor

(proliferation and
angiogenesis inhibition)

liver and kidney cancers VEGFR inhibition,
expression of Bcl2 Acute n.a. [131–133]
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4.1. Taxanes

Chemotherapy based on taxane drugs (paclitaxel, docetaxel, cabazitaxel) is largely
prescribed, often with curative intent, in breast, ovarian, lung and prostate cancer [31].
Taxane neuropathy affects 80% to 97% of patients and among then, 27% complaints neuro-
pathic pain [32,33]. A retrospective study [134] indicates that about 10% of patients under
taxane treatment, undergo a dose reduction or delays in administration timing because of
TIPN (taxane-induced peripheral neuropathy) symptoms. Other studies have estimated
that 25% to 60% of all patients will experience lasting neuropathic symptoms months to
years after the completion of chemotherapy [34,35] associated with anxiety, sleep disorders
and depression [135].

Taxanes’ pharmacodynamics involves microtubule-stabilizing mechanisms, prevent
thanks to their high affinity with the interior portion of the b-tubulin subunit that block
mitosis and tumour cell proliferation. Different timing and schedules of treatment are
known and are applicable to different patient’s performance status and hematologic pattern,
besides referring to neoadjuvant/adjuvant strategy or metastatic disease. Paclitaxel is
more neurotoxic than docetaxel and its newer formulation, albumin-bound paclitaxel
(Nab-paclitaxel), cannot succed in reducing CIPN incidence though it has reduced overall
toxicity [36]. TIPN is usually a sensory dominant neuropathy, mostly affecting small
diameter fibers, while motor and autonomic involvement is less frequent [37,38].

Tingling, itching, burning, spontaneous pain, heightened sensitivity to touch (positive
sensory symptoms) or loss of touch and pain and loss of hot/cold sensations (negative
sensory symptoms) can be both experienced in the extremities (hands and feet) and gener-
ally worsen with increasing dose and treatment duration [32].In some patients, symptoms
continue up to 1–3 years after therapy and sometimes are lifelong lasting [39].

The negative sensory profile is subsequent to the loss of intraepidermal nerve fiber
density and demyelination [40–42,136], besides a degeneration of distal nerve segments
(Wallerian degeneration) and an axonal membrane remodelling [137]. Animal models
consented to prove this effect, evidencing a decreased number of intraepidermal fibers in
rodents and impaired corneal innervation in rats [43,138].

The positive sensory profile is associated to an increased number of ion channels, altered
or impaired Ca2+ signalling, neuroinflammation and activation of adjacent silent nociceptors.

Within TIPN positive sensory symptom profile, neuropathic pain includes sensations
of stabbing, burning, shooting, tingling, allodynia and hyperalgesia which are maintained
by peripheral and central sensitization [26,139]. As taxanes are not able to cross the blood-
brain barrier, in the first phases of pain, peripheral nociceptive inputs involve spinal
cord and central nervous system; when taxanes start mitochondrial damage, abnormal
spontaneous discharge of Aδ and C-fibers with mechano and thermal hypersensitivity
via TRPA1 (mechano and cold sensitivity) and TRPV1 (heat hyperalgesia) receptors at the
distal terminal sensory ending takes place [37], leading to a constant dorsal horn excitability
(glia cell activation, microglia and astrocytes) [44], which seem to be central in maintaining
neuropathic pain, increasing proinflammatory cytokines and brain-derived neurotrophic
factor (BDNF) [45]. All these events result in cortical changes and central sensitization [140].
The inhibition of macrophages and microglia prevents the development of mechanical
hyperalgesia and epidermal nerve fiber loss [44,46].

TIPN has surely different onset causes, whose role is differently weighted in different
patients and clinical conditions. Microtubule impairment, neuroimmune and inflammatory
changes, ion channel remodelling, impaired mitochondrial function and genetic predispo-
sition are most of the likely involved mechanisms, also studied through animal and human
research models.

Referring to taxane anticancer mechanisms of action, healthy peripheral nerves un-
dergo a similar attack which compromises the dynamic stability of microtubules, a funda-
mental property for the anterograde transport of nutrients, neurotransmitters and mitochon-
dria from nervous soma to axon extremities and for retrograde transport of used/empty
synaptic vesicles and proteins from axons to soma. TIPN is associated to the loss of micro-
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tubule dynamic stability which leads to a loss of transport functions and translates into
altered growth cone and filipodia at the sensory endings.

These alterations bring to changes in the morphology and physiology of the peripheral
nerves which result in a symmetrical development in a stocking/glove distribution [9].
Longer nerves seem to be more vulnerable to impaired transport, in fact, distal axonopathy
and coasting phenomenon are more frequent. The term coasting describes progressive
worsening of TIPN symptoms, related to the time for anterograde transport to move the
drug from the dorsal root ganglion (DRG) to the distal axon [32].

Gornstein and Swartz [16,24] suggest that transport block may not be the primary
cause of paclitaxel-induced PN, based on the evidence that drug inclusion both in the
middle and the distal axon in adult mouse DRG neurons scattered a higher sensitivity for
the distal portion, while for the middle one no difference was evidenced with respect to
control. The results of this study suggest that paclitaxel disrupts growth cone dynamics
in filipodial extension of pioneer microtubules in the sensory nerve, leading to their
stabilization and impairment at the distal axon. In normal conditions, pioneer microtubules
are always in a high metabolic state, granting retraction and advancement of the nerve as
the epithelium regenerates [27].

Other studies have suggested that primary mechanisms of TIPN are due to a second
low-affinity binding site of taxanes at the end of the microtubules, whose activation scatters
the release of mediators of inflammation (IL, NO, and COX-2) [47]. In particular, paclitaxel
increases the production/release of pro-inflammatory cytokines (TNF alfa and IL-1 beta)
and decreases anti-inflammatory cytokines (IL-4 and IL-10) [141,142]. As a consequence,
immune cells activation and neuroinflammation take place [8].

This process includes mitotoxicity, in particular referring to the presence of swollen
and vacuolated mitochondria in Aδ and C fibers which stimulates Ca2+ release, opening
mitochondrial permeability transition pore (mPTP) and leading to mitochondria depolar-
ization [48,143] and neuronal excitability [144]. This damage of axon functions induces
a reactive oxidative stress, ion channel changes (TRPV1 via PKC or MAPK), release of
inflammatory cytokines and activation of caspase 3/7 [18,19,43].

Damaged mitochondria start an oxidative stress with the production of reactive oxy-
gen species (ROS), both in sensory neurons and the spinal cord [49,50,141,142], which
activate apoptotic processes and promote the disruption of cell structure (and consequently
demyelination), by a self-amplifying mechanism with further mitochondrial damage. Dif-
ferent studies demonstrated paclitaxel-induced swelling, vacuolation and loss of structure
of mitochondria [37,51,52].

As for ion channel alterations, different models have evidenced a decreased expression of
K+ channels which causes the spontaneous activity of nociceptors and the activation of cation
channels TRPV1 and TRPA1, mediators of pain signalling, in DRG neurons [52–54]. To support
these observations, antagonists of TRPA1 have demonstrated to reduce inflammation, cold
allodynia and hyperalgesia [55,56,145].

In summary, TIPN is mediated by different drug-related effects:

• mitochondrial dysfunction
• axon degeneration
• altered Calcium homeostasis
• changes in peripheral nerve excitability
• immune processes and neuroinflammation

Nerve conduction studies, which measure amplitude and velocity of large myelinated
fibers, are not sufficient to monitor changes in sensory neuropathies [23,146], in fact, the
early stages of the axonopathy and the worsening clinical conditions over time can be better
highlighted through a skin biopsy, quantification of intraepidermal nerve fiber density
(IENFD) and quantitative sensory testing (QST). In particular, presence of symptoms with
abnormal QST and a normal nerve conduction study are generally sufficient to recognize
the diagnosis of small-fiber neuropathy [23]. 215]Antioxidants, vitamins A, B, and E, herbal
medicines such as Goshajinkigan, acetyl-l-carnitine, Ca2+-Mg2+ infusions, acupuncture,
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have been tested for the treatment of TIPN [15,147], but they failed to produce either
neuroprotection or alleviation of symptoms [57,148]. Krukowski [148] showed that IL-10
can attenuate paclitaxel-induced CIPN. Practice guidelines from the American Society
for Clinical Oncology in 2014 and a consensus statement from the Canadian Pain Society
have suggested moderate treatment support with duloxetine, a serotonin-norepinephrine
reuptake inhibitor [149–151] in association to physical therapy programs and psychological
treatment [152], while no kind of prevention is recognized.

Topical drugs have been also tested to treat TIPN sensory symptoms, with contrastant
results from clinical trials:

(a) topical ketamine and amitriptyline demonstrated no improvement in pain scores [153];
(b) topical combination of ketamine, amitriptyline and baclofen demonstrated improved

tingling sensory subscales, but no improvement in numbness, thermal pain or func-
tional abilities [154];

(c) topical menthol has been suggested but requires further study [155].

The reason why no ancillary treatment is still recognized lies on the general consid-
eration that targeting the pathway to prevent or minimize TIPN can also affect taxane
drug efficacy.

A possible neuroprotective role of physical exercise in TIPN has been reported. A risk
analysis reported by Mustafa [156] in breast cancer patients has revealed a 12% lower risk
of peripheral neuropathy for women who regularly made physical exercising of at least
30 min. Identifying specific protocols of physical exercise intensity, frequency, duration
and type is one of the best routes for prevention and treatment of TIPN and neuropathic
pain, above all for patients’ compliance.

4.2. Platinum Salts

Cisplatin, carboplatin and oxaliplatin are among the most prescribed chemotherapic
drugs for the treatment both of solid and hematologic tumors; in particular, cisplatin
and carboplatin are used for small-cell/no-small cell lung, testicular, ovarian, uterine
and bladder cancers, but also in refractory lymphoma in DHAP schedule, while oxali-
platin in digestive tract tumors, such as colorectal, oesophagal, stomach, liver, pancreatic
cancers and in refractory lymphoma in DHAOX schedule. Cisplatin-induced peripheral
neuropathy (CisIPN) is time-, dose and patient-dependent with symptoms appearing
after the first dose or after 12 cycles of therapy [60,157], independently from pretreat-
ment, age, sex, tumor type and cotreatment with other chemotherapeutics [61,157]. It is
generally recognized that more severe forms of CisIPN appear after cumulative doses
above 350 mg/m2 with the most frequency in 92% of patients at a cumulative dose of
500–600 mg/m2 [62]; a form of chronic CisIPN has been also observed in 5–20% of pa-
tients at 12 months after therapy [63,157]. Carboplatin develops a less severe neuropathy
observed in 13–42% of the treated patients [158], while oxaliplatin induces an acute and
transient OIPN (oxaliplatin-induced peripheral neuropathy) in 65–98% of patients in the
following hours after each infusion at a dose range from 85 to 130 mg/m2 and lasting
up to 5–7 days, with a longer persistence of symptoms in patients receiving 12 cycles of
chemotherapy [64,65]. Acute OIPN presents with cold-related paresthesias of the extrem-
ities (hands and feet), pharyngolaryngeal dysesthesias, jaw spasms, fasciculations and
muscle cramps [159]. Cold-induced neuropathy represents the most important difference
between oxaliplatin and cisplatin-induced neuropathy [66] and its severity in the first
phases of exposition has been associated to the chronic form of OIPN experienced one
year later [67], observed in 50–70% of patients, depending on the intensity of symptoms
assessed in its acute clinical presentation [68–70]. A systematic review by Beijers et al. [71],
in addition to the study by Briani et al. has reported that OIPN may be present in 26–46%
of patients at the 12-month follow-up, in 24% of patients at the 15–18-month follow-up and
even in 84% of patients at the 24-month follow-up [71–73].
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Chronic OIPN occurs in 10% of patients who received cumulated doses from 510 to
765 mg/m2, increasing to almost 50% of patients for more than 1000 mg/m2 doses [74,75] and
specifically a more severe acute form results in a higher incidence of chronic neuropathy [75].

Gene alterations, such as GSTP1 and GSTM1, glutathione-S-transferase genes and
voltage-gated sodium channel genes SCN4A, SCN9A and SCN10A, together with pre-
existing peripheral neuropathy [75–78] have been demonstrated to be the principal risk
factors for OIPN onset.

As for pathogenetic mechanisms for CIPN, like taxanes, platinum salts induce the
activation of glial cells, which on turn provoke the activation of immune cells and the release
of pro-inflammatory cytokines (interleukins and chemokines), leading to the nociceptor
sensitization and hyperexcitability of peripheral neurons, together with blood-brain barrier
damage, also mediated byROS, till the development of neuroinflammation. Platinum salts
also start a mitochondrial damage with the disruption of the respiratory chain function
and an increased production of ROS.

In detail, oxaliplatin and cisplatin form abnormal adducts binding to mitochondrial
DNA (mDNA) both in neuronal and non-neuronal cells, which cannot be repaired as
mitochondria have no DNA repair system. They start transcription of mDNA, leading to
abnormal proteins, impairment of the respiratory chain in mitochondria [79–82,160,161],
an increased production of ROS (superoxide anion in particular) and oxidative stress [58,83,
84,162], lipid peroxidation, protein and DNA oxidation in both sciatic nerves and the spinal
cord. ROS can also accompany a dysregulation of calcium homeostasis and signalling
pathways, inducing apoptotic changes in peripheral nerves and in DRG cells. An increase of
intracellular Ca2+ concentration may result in calpain (a potent protease) activation, which
leads to unregulated proteolysis, directly triggering axon degeneration [163]. Moreover,
oxalate deriving from oxaliplatin hydrolysis is a Ca2+ chelator and may lead to an increase
in Na+ conductance. Calcium homeostasis alterations also modify the function of protein
kinase families (MAPK, mitogen-activated protein kinases; JNK, c-Jun N-terminal kinase;
PKC, protein kinase C; AKT, serine-threonine kinases). Platinum-based drugs also modify
Na+, K+ and TRP ion channel activity, inducing the hyperexcitability of peripheral neurons
and axonal degeneration [85,86].

These toxic effects are part of the mechanisms of action of platinum drugs as anticancer
drugs, so that are almost inevitable [87,88].

In the case of oxaliplatin, animal models also demonstrated that the rapid non-
enzymatic detachment of the leaving-group oxalate, leading to reactive platinum com-
plexes, has an important role in neuropathy onset, contributing to the characteristic acute
cold-induced neuropathy [88]. The results of Fujita et al. also indicate that cells over-
expressing Octn1 and Mate1, the recognized oxaliplatin transporters, bring to platinum
accumulation in DRG neurons, followed by OIPN. The accumulation of platinum is pro-
portionally correlated with the severity of neuropathy in laboratory animals [89].

IL-1b, IL-6 and TNF-a levels, produced by activated glial cells are able to start neuro-
pathic pain [90,164–166] thanks to platinum salts’ ability to activate the Toll-like receptor
(TLR) family, especially TLR4. In knockout mice lacking that receptor, pain induced by cis-
platin was decreased [91]. Jin’s study confirmed that pro-inflammatory cytokines sensitize
nociceptors by the modulation of ion channel propertie [167]. Moreover, these cytokines
can arrive also to spinal and supraspinal levels [92] chemokine ligands are responsible for
the migration and infiltration of monocytes/macrophages and other immune cells, thus
contributing to neuroinflammation and pain behaviour in animal models. Other studies
have confirmed the role of chemokine CXCL12 [93] and chemokine CX3CL1 signalling
in OIPN [94].

Recently, a new neuropsychological syndrome/cognitive impairment has been associ-
ated to cancer treatment with platinum salts [95,168–171]. Oxaliplatin theoretically does
not pass through blood-brain barrier (BBB), but damage may be caused by proinflamma-
tory cytokines, ROS or other neurotransmitters [172,173]. Branca et al. [96]. demonstrated
that oxaliplatin administration in vitro significantly altered junctional and cytoskeletal
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apparatus of endothelial cells, leading to a higher drug concentration in the brain, which
probably contribute to pain chronification. The study of Sanna et al. shows that oxaliplatin
administration induces changes in the levels of proteins in spinal and supraspinal levels
in laboratory animals and suggests a direct correlation between structural changes in the
central nervous system and chemotherapy-induced neurotoxicity [97].

A systematic review by Hou describes 26 different treatment options for cisplatin-
induced IPN, including pharmacological, light, scrambler, magnetic field, acupuncture,
dietary and long-wave diathermy therapy [174]. However, duloxetine is the only one drug
recommended by the American Society of Clinical Oncology, while photobiomodulation or
low-level laser therapy is only occasionally prescribed for treatment of CIPN. Apart these
options, a lengthy list of other treatments showed no appreciable value to CIPN sufferers
(topical 4% ketamine and 2% amitriptyline, tricyclic antidepressants, andamitriptyline, and
nortriptyline) [174], besides many antioxidants, such as vitamin B6, vitamin E, omega-3
fatty acids, glutamine, glutathione, acetyl-L-carnitine and α-lipoic acid [175,176].

Amifostine was also tested for prevention of CIPN, because one of its active metabo-
lites, WR1065, has been demonstrated to protect differentiated neurons from cisplatin-
induced damage [98]. This thiol accumulates in normal tissues more than in tumors,
protecting them from side effects of radiation and chemotherapy without decreasing their
therapeutic efficacy [177].

Finally, among novel treatments for CIPN, manganese chelates are noted to be
mimetics for mitochondrial manganese superoxide dismutase and efficient in ROS re-
duction [99,178].should discuss the results and how they can be interpreted in perspective
of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

4.3. Bortezomib

Bortezomib is an N-protected dipeptide containing a boronic acid instead of a car-
boxylic acid and is an anti-cancer drug for the treatment of multiple myeloma and mantle
cell lymphoma as first and further line treatment, often co-administered within a complex
medical protocol together with other medications [100,101]. Together with carfilzomib,
bortezomib is a reversible proteasome inhibitor thank to its boron atom which binds the
catalytic site of the26S proteasome [100,102].with high affinity and specificity, blocking the
degradation of cellular proteins and ridding cells of abnormal or misfolded proteins.

Both subcutaneous and intravenous injection provide equal drug exposures and gen-
erally comparable therapeutic efficacy administration, though in the former peak plasma
levels are ~25–50 nM for 1–2h and in the latter case peak plasma levels are ~500 nM for
only ~5 min, after which the drug rapidly distributes to tissues with a large volume of dis-
tribution (~500 L) [101,102] and an elimination half-life of 9–15 h. In the light of these data,
subcutaneous formulation evokes a lower incidence of neuropathy [103,104]. Retrospective
analyses have been made to deepen in the possible differences in neurotoxicity between
the two routes [105–107]: clinical data are not uniform, in some cases [105] no differences
have been evidenced, in others [106,107] a high or higher important incidence of PN has
been reported for intravenous with respect to subcutaneous route.

Bortezomib-induced PN generally starts early, often within 3–4 cycles of treatment
with a peak around cycle 5, followed by a plateau, but also resolves or improves in two-
thirds to three-quarters of the patients after a median of 2 to 3 months. This trend suggests
a neurotoxic dose threshold rather than a cumulative dose effect and a dose adjustment
may be necessary with increasing toxicity.

PN frequency is approximately 34% of treated patients, who develop chronic, distal
and symmetrical sensory syndrome with an important neuropathic pain that may last even
for years after drug administration [108]. Also a length-dependent, mixed small and large
fiber axonal sensory neuropathy can take place and disappear after several weeks after
treatment ends. SUMMIT and CREST clinical trials are the most reliable reports on the out-
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come of bortezomib-induced PN on 256 patients. Within the study population, 90 patients
experienced treatment-emergent peripheral neuropathy, in particular, 35 experienced either
grade 3 or 4 neuropathy and/or neuropathy leading to discontinuation of treatment (5%,
14/256), while dose reduction was required in 12% of patients (31/256). In 7% of patients
(19/256), at least one course of bortezomib was omitted because of peripheral neuropathy.

Other mechanisms of neurotoxicity have been proposed to clarify bortezomib-induced
PN, one of which regards its ability to increase sphingolipid metabolism within astro-
cytes with a subsequent increasing levels of ceramide, sphingosine-1 phosphate (S1P) and
dihydrosphingosine-1-phosphate (DH-S1P), that have potent inflammatory and nocicep-
tive actions [109]. S1P receptor-1 (S1PR1) signalling pathways contribute to bortezomib-
induced neuropathic pain, because when it hooks to free S1P, an increase in the release
of presynaptic glutamate at the level of the dorsal horn of the spinal cord takes place,
contributing to the development of neuropathic pain [109]. Alterations in sphingolipid
metabolism is often associated to neuronal degeneration and pain, for instance, the mu-
tations in serine palmitoyltransferase (SPT) gene that notoriously lead neuropathic pain
in humans [179].In the periphery, bortezomib is able to augment tumor necrosis factor
α (TNF-α) and interleukin-1β production, which in turn have an important role in sph-
ingolipid metabolism. Mitochondrial damage also resulted from bortezomib treatment,
giving ROS, which in turn, impair mitochondrial function, like the prior discussed taxanes
and platinum salts. Thanks to its cytotoxic mechanism of action, bortezomib also acti-
vates the mitochondrial-based apoptotic pathway, dysregulates mitochondrial-mediated
Ca++ homeostasis, provokes chromatolysis of DRG neurons, followed by cytoplasmic
accumulation of eosinophilic material, neurofilaments and juxtanuclear electron-dense
cytoplasmic deposits [110].

Some SNPs and other clinical conditions have been identified to clarify the severity
and the late versus early-onset bortezomib neuropathy, demonstrating the probable role of
pre-existing genetic factors [111]:

• a locus in the PKNOX1 gene and one near the CBS gene [112];
• the inhibition of the nuclear transcription factor NFκB, involved in cell survival and

proliferation [113];
• low levels of vitamin D, which are prognostic for a more severe neuropathy in

myeloma patients [114].

To date, dose reduction and schedule change algorithm with weekly administration
rather than 1–4-8–11 days within a cycle, are the only clinical approaches to face bortezomib-
induced PN, as neither neuroprotective agents demonstrated their efficacy nor analgesics,
tricyclic antidepressants, anticonvulsants or vitamin supplements as symptomatic treat-
ments gave sufficient results.

There are recommendations concerning the use of nutritional supplements, such
as pyridostigmine (vitamin B6) and vitamin C that should be omitted in the course of
treatment: vitamin B6 can cause additional sensory neuropathy in patients with impaired
renal function and in association with a protein-deficient diet, while vitamin C may interfere
with bortezomib metabolism and its proteasome activity.

Interestingly, also intravenous immunoglobulin (IVIG) administration has been pro-
posed by a preliminary report on 9 patients as an effective therapy for symptomatic
management of bortezomib-induced PN, being evident an improvement of at least 1 grade
in all patients.

4.4. Thalidomide

Thalidomide is a glutamic acid derivative for the treatment of multiple myeloma [117],
thanks to its immunomodulatory activity, which blocks both the production of tumor
necrosis factor-alpha (TNF-α) and the activation of NF-kB (nuclear factor kappaB), resulting
in the dysregulation of neurotrophins with their receptors which accelerates neuronal cell
death [180]. Thalidomide has also an antiangiogenic activity by the inhibition of basic
fibroblast growth factor (b-FGF) and vascular endothelial growth factor (VEGF), causing
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secondary ischemia and hypoxia of nerve fibres and, subsequently, irreversible damage of
sensory neurons [181].

When Wani [118] proposed the role of the dihydroxy metabolite of thalidomide in
extensive redox-activated DNA cleavage through the formation of ROS as probable guilt
for the well-known thalidomide-induced teratogenesis, a series of preclinical and clinical
trials have started to study ROS-dependent mechanisms also for the onset of PN, being
typical of the most neurotoxic chemotherapeutics.

Thalidomide-induced peripheral neuropathy occurs in 25–75% of patients, with dose-
dependent prevalence and severity [182], in particular in advanced-aged patients with
pre-existing neuropathy, responsible for a limited treatment duration [119]. More than other
drugs, thalidomide also induces motor impairment and gastrointestinal and cardiovascular
autonomic manifestations [182]; all these effects lead approximately 15% of patients to
treatment discontinuation [120]. The median time to onset is usually months, but higher
doses accelerate the process, especially in patients with relapsed disease, whose incidence
doubles after 6 to 12 months of thalidomide exposure. Recovering from this nerve damage
is variable, taking 4 to 6 years for only a quarter of patients and up to 3 years for the first
signs of improvement.

Some genetic studies have evidenced that ADME gene group (drug Absorption, Dis-
tribution, Metabolism and Excretion), cytochromes and genes involved in neural processes
and central nervous system development can possible risk factors for the onset and pro-
gressingof thalidomide-induced peripheral neuropathy [115], as well as single nucleotide
polymorphisms (SNPs) in genes involved in inflammation and repair mechanisms in the
peripheral nervous system [121].

The association bortezomib and thalidomide is a common therapeutic strategy in
multiple myeloma [104,114,115]. Though their common activity in peripheral neuropathy
induction, some studies have evidenced that no incremental effects are experienced by
patients [116]. Finally, a retrospective study suggested a lower incidence of PN outcomes
and superior efficacy with subcutaneous bortezomib combined with thalidomide and
dexamethasone (VTD) in MM when compared with intravenous route [115,116,122].

4.5. Epothilones

Epothilones, in particular ixabepilone, are tubulin destabilizers like taxanes, binding
preferentially to the beta III tubulin isotype. In the United States, FDA approved ixabepilone
for the treatment of breast cancer not responding to other available chemotherapies [14,147],
while in Europe this class of drugs didn’t received any approved clinical application.
The prevalence of CIPN for ixabepilone has been estimated approximately 67%, with an
incidence of severe CIPN from 1% in previously untreated patients to 24% in pretreated
patients [14]. The clinical manifestation of CIPN is similar to taxane, sharing similar
mechanism of action both in anticancer and in neuronal damage activity [14]: in particular
mild to moderate sensory dominant neuropathy, mostly affecting small-diameter sensory
fibers, in form of paresthesias, numbness and pain in the feet and hands (stocking-and-
glove distribution), while motor involvement is rare, manifesting as mild muscle weakness
and autonomic manifestation was observed in less than 1% of patients. These symptoms
are dose-dependent and are reversible with treatment discontinuation [14]. Intuitively, the
pathomechanisms for PN induced by epothilones are also similar to taxanes:

• microtubule disruption impairs axonal transport and leads to Wallerian degeneration;
• altered activity of ion channels and hyperexcitability of peripheral neurons;
• mitochondrial damage, which increases the production of ROS that insult neuronal en-

zymes, proteins and lipids as well as provoke apoptotic changes and altered excitabil-
ity to peripheral nerves [183];-ROS release stimulates the attraction and activation of
T-lymphocytes and monocytes, as well as pro-inflammatory cytokines (interleukins
and chemokines), which are responsible for neuroinflammation.
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Being epothilone-induced PN severity milder than taxanes [122], it is generally ac-
cepted that off-target mechanisms responsible for taxane-induced neuropathy may not be
shared for epothilones, but the question is still under investigation.

4.6. Vinca Alkaloids

Vincristine, vinblastine, vinorelbine and vindesine are the well-known phase M cycle-
specific drugs belonging to this class of chemotherapeutics, commonly prescribed in the
treatment of different tumors, such as Hodgkin and non–Hodgkin lymphoma, testicular
cancer and non–small cell lung cancer. In analogy to taxanes, vinca alkaloids bind with
tubuline, but blocking its polymerization and assembly into microtubules cell and lead
to disrupting axonal transport. Though unable to readily cross the blood-brain barrier,
they can act on the soma of peripheral nerves, generating a dose-dependent sensorimo-
tor neuropathy, with symptoms’ onset (usually pain in hands and feet) within the first
months of treatment. Patients also experienced muscle weakness, including wrist extensors,
dorsiflexor weakness and cramping [8].

Vincristine is generally considered the most neurotoxic drug among vinca alkaloids,
followed by vinblastine and vinorelbine: its neurotoxic effects involve both sensory (early
symptoms at cumulative doses of 4 mg/m2) and motor (distal weakness after 6–8 mg/m2)
and autonomic fibers in up to one-third of patients [123]. Vincristine-induced neuropathic
pain is principally due to axonal distal neuropathy by disrupting the microtubular both fast
and slow axonal transport system, but also a reduction of sensory nerve action potential
amplitude has been reported [124]. Vincristine also induces ultrastructural changes in the
cytoskeleton of large myelinated axons and an accumulation of neurofilaments in dorsal
sensory ganglion neurons [125,184]. Both sensory and motor neuropathy with vinorelbine
is usually milder than vincristine and has been reported in 14% to 48% of patients receiving
a total dose of 30 mg/m2 [126].

The recognized and principal pathogenetic mechanisms of CIPN by vinca alkaloids are:

• changes to large axons and DRG neurons, which leads to Wallerian degeneration;
• altered activity of ion channels and hyperexcitability of peripheral neurons;
• inhibition of polymerization into microtubules inhibits axonal transport, generating distal
• axonopathy and altered excitability;
• attraction and activation of immune cells start the release of pro-inflammatory cy-

tokines (interleukins and chemokines), inducing neuroinflammation.

FDA issued a black box warning on vincristine prescription in Charcot–Marie–Tooth
disease (CMT) patients [127], having the ERG2 gene mutation, who have been demon-
strated more sensitive to vincristine [59], as well as a polymorphism in the CEP72 gene,
which is associated with an increased risk and severity of vincristine-induced neuropa-
thy [128].Due to their hepatic metabolism by CYP3A4 enzymes, a concomitant use of
taxanes or CYP3A4 inhibitors (Ketoconazole, clarithromycin, ritonavir) increases the risk
of vinca alkaloids-induced neuropathy, together with a decreased serum level of folic acid
and vitamin B12, pre-existing neuropathy and comorbidities, such as diabetes, smoking
history and low creatinine clearance. There is no specific treatment for vinca alkaloid
induced peripheral neuropathy. The use of pyridoxine or pyridostigmine revealed a certain
efficacy in vincristine-induced neuropathy [129]. A topical cream containing capsaicin
demonstrated to give benefit in PN [130,185], thanks to the depletion of P substance in the
distal nerve endings. In the case of paraesthesia and pain, the patient should be treated
with carbamazepine, imipramine or lignocaine [186].

4.7. Tyrosine Kinase Inhibitors: Sorafenib

A tyrosine kinase inhibitor (TKI) is an anticancer drug able to inhibit tyrosine kinase
receptors, which are endowed of an enzymatic activity, responsible for the activation
by phosphorylation of many proteins by signal transduction cascades. TKIs operate by
different mechanisms:
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• competition withthe physiological ligand adenosine triphosphate(ATP) on the active
site within the receptor;

• binding outside the active site (allosteric site) of the enzymatic portion of the receptor,
affecting its activity and conformational status [187];

• depriving tyrosine kinases of access to the Cdc37-Hsp90 molecular chaperone sys-
tem on which they depend for their cellular stability, leading to their ubiquitylation
and degradation [188].

With an incidence of >10%, several oral TKIs can induced PN: brigatinib, crizo-
tinib, encorafenib, imatinib, ivosidenib, ixazomib, lorlatinib, ponatinib, vemurafenib, so-
rafenib [189–194]. Sorafenib is a TKI anticancer drug approved in clinics for the treatment
of hepatocellular and renal carcinomas, whose repeated administration causes the onset
of a peripheral painful neuropathy, which often leads to premature discontinuation of
therapy, being resistant to common analgesic drugs [131,195]. The pathomechanism for this
PN is still under investigation, but the first studies have identified a direct neurotrophic
role for vascular endothelial growth factor (VEGF). VEGFR inhibition by sorafenib seems
to be responsible for peripheral sensory neuropathies, interfering with the endogenous
neuroprotective action of VEGF on sensory neurons. This role of VEGF/VEGFR interac-
tion provides an unprecedented evidence that VEGF receptor inhibitors may themselves
trigger a painful neuropathy and aggravate paclitaxel-induced neuropathies, when used
in combination. For the same reason, also the anti-VEGF bevacizumab in association to
paclitaxel precipitates taxane-induced PN [132,196]. The disruption of the neuroprotective
effect of VEGF leads to neuronal stress and apoptosis through a mechanism involving
VEGF receptor-2-mediated expression of the anti-apoptotic protein Bcl2 [197]. Due to this
peculiar pathogenetic mechanism which is also its biological target as anticancer drug,
sorafenib-induced PN can be modulated only with dose reduction and often resolved by
treatment discontinuation.

All the described drugs or class of drugs induce CIPN preferentially in patients with
comorbilities. Neither drugs in therapy or prevention have succeeded in ameliorating
sharply neuropathic symptoms and pain, nor quantitative assessment of neuropathy has
been authorized or approved so far. Nevertheless, since taxanes and platinum salts are
known to hit first small autonomic C-fibers, some efforts have been made to quantify
neuropathic damagein the early steps of the anticancer treatment [133,198–200]. Recently,
a sudomotor function testing has been suggested to screen early peripheral neuropathy, on
the basis that sweat glands are innervated by small C-fibers,. Other assessment tools have
already been reported in literature [198–200]:

• skin biopsy to determine the intradermal nerve fiber density and innervated skin structure;
• corneal confocal microscopy to quantify small nerve fibers in the cornea;
• sympathetic skin response, measured the unmyelinated nerve sudormotor function

after a transient change in electrical skin potential;
• axon flare reflex tests, evidencing the hyperemic response of the axons;
• pain-related evoked potentials to assess the nociceptive system.

If the route to quantify neurotoxicity induced by these drugs has recently brought to
some results, the treatment of CIPN is still far from a common consensus.

This paper is a starting point for opening in our hospital a new scenario for the
preventive evaluation of neuropathic onset and has energized our efforts to start creating
a database with real data about our patients. In the next future, these data together with
clinical outcomes will be object of an original publication.

5. Conclusions

Chemotherapy-induced painful neuropathy is a major side effect of several chemother-
apeutic agents commonly administered by most patients. To prevent or alleviate its symp-
toms without limiting the potentially life-saving therapy is a due aim for oncologists,
physicians and hospital pharmacists who prescribe and manage anticancer drugs. The
negative impact on patients’ quality of life constitutes a major problem both for the path



Int. J. Mol. Sci. 2021, 22, 1980 14 of 22

of cure they are passing through and for their health care providers. For this reason, in
high-risk patients, a neurological examination with electrophysiological evaluation should
be done early and as soon as first symptoms appear.

Different drugs have been tested to reduce the incidence or severity of CIPN, but
none of them are currently applied or strongly recommended. In the ASCO guidelines, no
agent for the prevention and only a moderate recommendation for duloxetine in treatment
are present.

Understanding CIPN pathomechanisms and risk factors is the only route to identify
the most susceptible patients and stimulate research in new possible treatments, together
with next advances in genome-wide association studies (GWAS), that could permit the
identification of critical genes involved in biological pathways leading to peripheral nerve
damage [201]. In the future, a translation of the GWAS results would allow the prediction
of CIPN occurrence during chemotherapy administration and could address also to target
therapies for managing it.
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