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Abstract
The mammalian neocortex has undergone repeated selection for increases and decreases

in size and complexity, often over relatively short evolutionary time. But because probing

developmental mechanisms across many species is experimentally unfeasible, it is

unknown whether convergent morphologies in distantly related species are regulated by

conserved developmental programs. In this work, we have taken advantage of the abun-

dance of available mammalian genomes to find evidence of selection on genomic regions

putatively regulating neurogenesis in large- versus small-brained species. Using published

fetal human RNA-seq data, we show that the gene-neighborhood (i.e., microsynteny) of

long intergenic non-coding RNAs (lincRNAs) implicated in cortical development is differen-

tially conserved in large-brained species, lending support to the hypothesis that lincRNAs

regulating neurogenesis are selectively lost in small-brained species. We provide evidence

that this is not a phenomenon attributable to lincRNA expressed in all tissue types and is

therefore likely to represent an adaptive function in the evolution of neurogenesis. A strong

correlation between transcription factor-adjacency and lincRNA sequence conservation

reinforces this conclusion.

Introduction
The mammalian neocortex is remarkably diverse. While it shows some general uniformity
across species (e.g., a six-layered structure and division into functional areas), it is as varied as
the adaptive behaviors it governs [1, 2]. Development of the neocortex, however, like most
aspects of development [3], retains a much stricter pattern across species, involving a conserved
arsenal of progenitor-types. Indeed, these major progenitor-types—apical radial glia (aRG) and
basal radial glia (bRG), as well as apical and basal intermediate progenitors (IPs)—are puta-
tively present in all mammals [4, 5, 6, 7]. But in those mammals with larger, convoluted neo-
cortices (i.e., gyrencephalic species), a heterogeneity of bRGs is observed [8], and an increased
proliferative potential in basally dividing progenitors is important for cortical size and folding
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[4, 6, 9, 10, 11, 12, 13]. In addition, recent work has shown that, both neuroanatomically and
neurodevelopmentally, mammals may be segregated into two principal groups, delimited by a
threshold gyrencephaly index (GI) value of 1.5 (corresponding to approximately one billion
cortical neurons) [12]. Thus, we may define species as being high-GI or low-GI. But despite
these categorical differences, species differences in cortical development at the genomic level
have been given surprisingly little attention [14, 15, 16, 17, 18, 19] and virtually no attention
across all mammalian orders [20, 21]. It is largely unknown, therefore, how neurogenesis has
evolved in mammals to generate so many radical increases and decreases in neocortical size—
or even whether any general principles of building bigger brains can be found across disparate
clades.

Here, in order to assess the degree to which neocortical convergence, both in the generation
of certain neural progenitor-types and the presentation of cortical growth and folding above a
threshold value, is corroborated by convergence at the genomic level, we probed published
RNA-seq data collected from human fetal neocortical germinal zones during neurogenesis
[22]. Because lincRNAs show accelerated evolution in humans [23], have high levels of tissue-
and age-specificity [24], and are potential developmental regulators [25, 26, 27], we limited our
probes to lincRNAs. We did this, furthermore, because protein and transcript abundance are
poorly correlated [28], at least among closely related species, thus making it difficult to inter-
pret the significance of coding-gene expression for explaining interspecific phenotypic differ-
ences. We show that the ancestral gene-neighborhoods of lincRNAs implicated in cortical
development (neurodevelopmental lincRNAs), in contrast to lincRNAs predominantly
expressed in other tissues, are selectively lost in small-brained species. We argue that this sup-
ports not only a functional role for lincRNAs in mammalian neurogenesis [29], but an adaptive
role for lincRNAs in neocortical evolution.

Materials and Methods
We used previously published RNA-seq data (Series GSE38805) collected from the ventricular
zone (VZ), inner subventricular zone (ISVZ), outer subventricular zone (OSVZ), and cortical
plate (CP) of human fetal neocortex at gestation week (GW)13–16 [22] and employed the
lincRNA discovery pipeline outlined by [30] to identify 187 lincRNA differentially expressed
during human neocortical neurogenesis (Fig 1A–1D, S1 Table). We aligned those lincRNAs
found in our dataset with those deposited at the Human Body Map lincRNAs, so that all
XLOC IDs are preserved from [30]. Of these, 161 were differentially upregulated in a germinal
zone, including 43 overexpressed in the ISVZ and/or OSVZ compared to the VZ (Fig 1B–1D).
Fifty-seven of the 161 lincRNAs are also relatively highly expressed in the adult brain [30]; and,
by comparing names and/or start-sites for our lincRNAs with those identified in recent work
on lincRNA expression in tetrapods, we found 52 to be putatively conserved across primates or
eutheria according to sequence similarity [25]. All differential expression analyses were run
with the R package DESeq [31].

Previous work has shown that sequence conservation is a poor predictor of functional con-
servation in non-coding RNA [32] and that long non-coding RNAs are often functionally—or
at least transcriptionally—linked to adjacently located protein-coding genes [33, 34]. There-
fore, we analyzed lincRNA conservation as a function of gene-neighborhood (i.e., microsyn-
teny). For each lincRNA, we defined its gene-neighborhood as the immediately flanking
protein-coding genes and discarded any lincRNAs which did not have at least one flanking
gene expressed during neurogenesis. Orthologous flanking genes were identified using Ortho-
mam v8.0 [35]; if they could not be found there, then 1-to-1 orthologs were identified in
Ensembl.
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The greatest distance between a lincRNA and its nearest neighbor was 22.3 Mb
(XLOC_000380), although the median distance was 46 kb. The final list included 142 lincR-
NAs, whose gene-neighborhoods were collectively enriched for Gene Ontology terms related
to forebrain development and cell proliferation (S1 Table; Fig 1E).

We assessed lincRNA gene-neighborhood conservation for the 142 lincRNAs in humans
and 30 other species (see S2 Table) by BLASTing the lincRNA sequence retrieved from the
human RNA-seq data and visually inspecting (using the UCSC Genome Browser) the gene-
neighborhood for each species (Fig 2A). Regions with the maximum BLASTn alignment score,
E-value< 1 × 10−4, and query cover> 20% were selected. When BLASTn was unsuccessful in
returning any sequences matching these criteria, discontiguous megablast was used. To
increase the likelihood of finding an orthologous region in non-human species, we used both
the entire lincRNA sequence, as well as, when available, only the region of the lincRNA show-
ing signs of transcriptional activity in human as evidenced by ENCODE data on chromatin-

Fig 1. Germinal zone-specific transcript levels of lincRNAs in GW13–16 human neocortex as determined by RNA-seq. (A) Schematic of human
germinal zones dissected for RNA-seq [22], depicting aRG, bRG, neurogenic basal intermediate progenitors (n-bIPs), proliferative basal intermediate
progenitors (p-bIPs), and neurons. Adapted from [9]. (B) Number of differentially expressed lincRNAs in each germinal zone (VZ, red; ISVZ, green; OSVZ,
blue; CP, orange). Analyses were run for each layer against the VZ. (C,D) LincRNAs differentially overexpressed in the (C) ISVZ and (D) OSVZ. The dashed
grey line shows the mean transcript level for lincRNAs overexpressed in the VZ. (E) LincRNAs expressed during human neurogenesis tend to have gene-
adjacent neighbors involved in neocortical development. Shown are fold-enrichments of Gene Ontology (GO) terms for adjacent protein-coding gene
neighbors of the 142 lincRNAs expressed during human neurogenesis (see S1 Table). GO terms are listed if they are over-represented in the protein-coding
gene set (FDR < 0.05). Fold differences for enriched GO terms were analyzed using DAVID (http://david.abcc.ncifcrf.gov/summary.jsp) with the entire set of
genes expressed in the fetal brain [22] as a base.

doi:10.1371/journal.pone.0131818.g001
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Fig 2. LincRNA gene-neighborhood conservation in neurodevelopmental and non-neurodevelopmental tissue. (A) Schematic of the protocol used
for determining lincRNA gene-neighborhood conservation across species. In the example given, only chimp is scored as conserved. Chromosomal synteny
is not a condition for gene-neighborhood conservation. (B) Gene-neighborhood conservation of 142 lincRNAs expressed during human neurogenesis across
29 mammalian species (S2 Table). Gene-neighborhood conservation is shown to be above null phylogenetic expectations in high-GI species (red) and below
expectations for low-GI species (blue). The two exceptions are the marmoset, a low-GI primate, and the manatee, a large-brained lissencephalic Afrotherian;
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level information [36]. Both sequences consistently identified the same region in non-human
species. Due to considerable scaffolding at the time of the analysis, we were only able to assess a
portion of the lincRNAs (66) for the dolphin.

Conservation scores for each lincRNA of a given species were tallied as either conserved (1;
at least one conserved neighbor) or not conserved (0) (S2 Table). Expectation scores were then
calculated under an Ornstein-Uhlenbeck model with a single optimum based on phylogenetic
generaliized least squares [37] using three 102-species pruned mammalian supertrees [12, 38]
and R package geiger [39]. The percentage deviations of actual from expected scores for each
species are presented in Fig 2B. GI values were collected from [12].

178 lincRNAs showing their highest levels of expression in non-brain human tissue were
collected from [30] and analyzed as above for 30 species (Fig 2C and 2D). Rates of molecular
evolution for different species were collected from [40] and used to assess the degree to which
different molecular rates across species might confound adaptive explanations for lincRNA
gene-neighborhood evolution (S1 Fig).

Because sequence conservation was likely to be more constrained in closely related species,
we computed PhyloP and PhastCons sequence conservation scores for primates for lincRNAs
showing gene-neighborhood conservation in primates but not in mouse (S3 Table) [41]. These
were used to assess the sequence-level conservation in primates for lincRNAs with and without
transcription factor-adjacency (Fig 3).

Results
We identified 187 lincRNAs differentially expressed in a germinal zone or the cortical plate (CP)
of the embryonic human neocortex (Fig 1A–1D, S1 Table). Of these, we shortlisted 142, which
had at least one adjacent protein-coding gene also expressed during human neurogenesis (Fig
1E). We then determined whether the genes immediately flanking the lincRNA in the human
genome (defined as the lincRNA gene-neighborhood; Fig 2A) were similarly flanking the ortho-
logous genomic sequence in 30 other species (29 mammals plus chicken). We found, firstly, that
lincRNA gene-neighborhood conservation could not be explained by phylogenetic relatedness
(Fig 2A–2C). By calculating the number of lincRNAs expected to be conserved in each species
based on phylogenetic relatedness to human, we could determine which species fell below and
which above null expectations. We found that all low-GI species fell below and all high-GI species
above phylogenetic expectations (Fig 2B), with two exceptions: the marmoset, a near-lissence-
phalic primate that is hypothesized to have recently evolved from a gyrencephalic ancestor and
therefore may still be in the process of purging unneeded neurodevelopmental lincRNAs [42];
and the manatee, a large-brained (382g), albeit lissencephalic species [43]. Importantly, we found

both of these show lincRNA gene-neighborhood conservation considerably above null expectations The chicken is not shown. (C) Gene-neighborhood
conservation for neurodevelopmental lincRNAs (green) and lincRNAs showing maximum levels of expression in non-brain human tissue (lilac) for three high-
GI (red) and three low-GI (blue) species. Conservation in the naked mole rat, rabbit, and elephant are significantly different for neurodevelopmental
compared to non-brain (Other) lincRNAs, while similar levels of conservation are observed for both classes of lincRNAs in macaque, mouse, and horse.
Predicted conservation values for each species (dashed lines) were calculated from null evolutionary models based on divergence times with human.
Asterisks denote significantly different values from predicted (P < 0.05). (D) Plot of neurodevelopmental versus non-neurodevelopmental (absolute)
conservation deviation scores based on a phylogenetic expectation model (see Materials and Methods) for 29 mammalian species. From the regression
slope delineating no deviation from expected scores, it is clear that neurodevelopmental lincRNAs deviate more frequently and more sizeably from
conservation expectations than non-neurodevelopmental lincRNAs. Crosses and Xs indicate negative deviations for neurodevelopmental and non-
neurodevelopmental lincRNAs, respectively. (B) is adapted from [20].

doi:10.1371/journal.pone.0131818.g002
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no similar pattern of conservation with non-neurodevelopmental lincRNAs [30] (Fig 2C and
2D); no significant correlation between rate of molecular evolution and neurodevelopmental
lincRNA gene-neighborhood conservation (P> 0.1); and GI to be a stronger predictor (R2 =
0.68, P< 0.001) than body weight (Z = 1.967, P = 0.025, one-tailed) or longevity (Z = 2.105,
P = 0.018, one-tailed) of gene-neighborhood conservation. We therefore provide evidence for a
possible genomic correlate of the GI threshold [12] in the disproportionate conservation of neu-
rodevelopmental lincRNAs in high- versus low-GI species.

Secondly, we found that, in primates, sequence conservation was highest for gene-neighbor-
hoods containing at least one transcription factor (Fig 3). Mean conservation scores between
lincRNAs with and without at least one adjacent transcription factor were significantly differ-
ent for both PhastCons and PhyloP measures of sequence conservation. These results are in
line with increasing evidence for the role of lincRNAs in neurodevelopment as important tran-
scriptional regulators (e.g., [44]). Among large-brained primates, interspecific discrepancies in
the timing of neurogenesis are largely a matter of scale, rather than a rearrangement of tran-
scriptional events [45]. It is possible that, at this close phylogenetic range, there has been a

Fig 3. Sequence conservation among primates for lincRNAs expressed during human neurogenesis tends to be higher for lincRNAs flanked by at
least one transcription factor. PhastCons scores are shown for 62 lincRNAs, whose gene-neighborhoods are not conserved in mouse (S2 Table). PhyloP
scores for the same lincRNAs are shown as dotted bars. (Inset) Boxplot of the mean and median PhyloP and PhastCons scores for primates for the 62
lincRNAs. Mean conservation scores between lincRNAs with (purple) and without (brown) at least one adjacent transcription factor were significantly
different for both PhastCons (T = -2.371, P = 0.023) and PhyloP (T = -3.513, P = 0.001), but median scores were significantly different only for PhyloP (T =
-5.211, P < 0.001).

doi:10.1371/journal.pone.0131818.g003
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strong selection pressure to conserve lincRNAs, even at the primary sequence level, which act
as regulatory elements of transcription factors during neurogenesis.

Discussion
The adaptation of proliferative basal progenitors may be tantamount to a relaxation of con-
straints along lineages leading to larger-brained species [46]. However, in light of the evidence
presented here, we think that convergent gain-of-function along lineages leading to large-brai-
ned species is unrealistic. Rather, our analysis of lincRNA gene-neighborhood conservation
suggests that the selective loss of genomic elements regulating neurogenesis may be responsible
for the evolution of smaller brains in mammals. This means that the genomic developmental
toolbox necessary for adapting proliferative basal progenitors, leading to increases in neocorti-
cal size and folding, is ancestral to eutherian mammals. Our definition of conservation in terms
of microsyteny, rather than primary sequence similarity, allows for such conservation of lincR-
NAs over extended evolutionary time periods, despite the well-known phenomenon of rapid
sequence changes in lincRNAs [47, 48]. Of course, it could be argued that the loss of lincRNAs
in low-GI species, which are typically small-bodied, may simply be caused by a higher rate of
meiotic recombination in low-GI species, resulting in more frequent meiotic errors and there-
upon loss of lincRNAs. However, several lines of evidence presented here make this unlikely to
be the case: GI is a better predictor (R2 = 0.68, P< 0.001) than lifespan (R2 = 0.44, P< 0.001)
or body weight (R2 = 0.39, P< 0.001) of lincRNA gene-neighborhood conservation [20]; in
non-neurodevelopmental lincRNAs, gene-neighborhood conservation can generally be
explained by phylogenetic relatedness (Fig 2C and 2D); and rates of molecular evolution are
not typically faster in low-GI species compared to high-GI species (S1 Fig). Nonetheless, we
cannot entirely rule out faster microsynteny evolution in smaller-brained species as a contrib-
uting factor—and, indeed, we would expect it to make some contribution—to neurodevelop-
mental lincRNA conservation in large-brained species. It is also worth noting that a
considerable fraction of lincRNAs overlap enhancer regions [30], which allows for the possibil-
ity that enhancer-associated RNAs, rather than lincRNAs, are driving the microsynteny con-
servation we observe. However, because enhancer-associated RNAs are not enriched
(Z = 0.213, P = 0.584) in the neurodevelopmental over the non-neurodevelopmental set of
lincRNAs (S2 Table), even though both sets are more enriched than average (Z> 2, P< 0.05),
we are confident that the observed effect is driven primarily by selection on lincRNAmicrosy-
teny. Finally, while we analysed all mammalian species for which genomic data were available,
our sample constitutes a minor fraction (< 1%) of all mammalian species, and so we cannot
conclusively say that the confidence intervals for GI, lifespan, and body weight as predictors of
lincRNA conservation would hold if the other 99% of mammals were analysed.

We think that, because broadly non-functional heritable sequence mutations are more fre-
quent in lincRNAs compared to protein-coding genes, sequence similarity may not be a reliable
measure for functional conservation in lincRNAs between distantly related species. Rather, the
microsynteny of a lincRNA, particularly if it is cis-acting, may be a better indicator across spe-
cies of its functional conservation [32].

We therefore hypothesize, given the results presented here, that the selective loss or reten-
tion of neurodevelopmental lincRNAs is relevant for neocortical development and evolution.
We think this is a first step in uncovering how convergent evolution of a complex structure
may have been achieved at the genomic level. Evidence for lincRNA transcriptional activity in
other mammalian species will be crucial for taking this hypothesis forward. Ultimately, how
such genomic elements function towards neocortical growth and folding will require investiga-
tions into the molecular mechanisms of the differentially conserved lincRNAs identified here.
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Supporting Information
S1 Fig. lincRNA conservation as a function of rate of molecular evolution. lincRNA conser-
vation scores plotted against paired differences between species-level and mammalian-average
molecular rates, as reported by [40]. Separate regression analyses for high-GI species (R2 =
-0.06, P = 0.52) and low-GI species (R2 = 0.03, P = 0.30) are also not significant.
(EPS)

S1 Table. Differential expression levels between germinal zones of lincRNAs expressed dur-
ing human neurogenesis.
(XLSX)

S2 Table. Gene-neighborhood conservation of lincRNAs expressed during human neuro-
genesis.
(XLSX)

S3 Table. PhastCons and PhyloP conservation scores for lincRNAs expressed during
human neurogenesis (not conserved in mouse).
(XLS)
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