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This review of clinical and experimental studies aims at analyzing the interplay between
graft endothelium and host immune system in renal transplantation, and how it affects
the survival of the graft. Graft endothelium is indeed the first barrier between self and
non-self that is encountered by host lymphocytes upon reperfusion of vascularized solid
transplants. Endothelial cells (EC) express all the major sets of antigens (Ag) that elicit host
immune response, and therefore represent a preferential target in organ rejection. Some
of the Ag expressed by EC are target of the antibody-mediated response, such as the AB0
blood group system, the human leukocyte antigens (HLA), and MHC class I related chain A
antigens (MICA) systems, and the endothelial cell-restricted Ag; for each of these systems,
the mechanisms of interaction and damage of both preformed and de novo donor-specific
antibodies are reviewed along with their impact on renal graft survival. Moreover, the rejec-
tion process can force injured EC to expose cryptic self-Ag, toward which an autoimmune
response mounts, overlapping to the allo-immune response in the damaging of the graft.
Not only are EC a passive target of the host immune response but also an active player in
lymphocyte activation; therefore, their interaction with allogenic T-cells is analyzed on the
basis of experimental in vitro and in vivo studies, according to the patterns of expression
of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper
T-cells. Finally, as the response that follows transplantation has proven to be not necessar-
ily destructive, the factors that foster graft endothelium functioning in spite of rejection,
and how they could be therapeutically harnessed to promote long-term graft acceptance,
are described: accommodation that is resistance of EC to donor-specific antibodies, and
endothelial cell ability to induce Foxp3+ regulatory T-cells, that are crucial mediators of
tolerance.

Keywords: endothelial cell antigens, angiotensin II type 1 receptor, vimentin, accommodation, regulatory T-cells,
renal transplantation, antibody-mediated rejection, mTOR inhibitors

INTRODUCTION
Over the last few decades, the practice of kidney transplantation
has improved in many areas up to becoming the optimal treatment
for end-stage renal disease (1). However, despite brilliantly achiev-
ing a 95% 1-year survival, long-term outcomes have not benefited
from such improvements and remain unsatisfying (2). One of the
major causes of late graft loss is occurrence of antibody-mediated
rejection (ABMR), which current immunosuppressive regimens
have mostly proven to be unable to cure (3). Another issue is the
development of accelerated cardiovascular disease, which is due
to the side effects inherent in the immunosuppressive drugs and,
along with opportunistic infections and malignancies, represents
the first cause of recipient death (4).

Allograft endothelium is the first barrier between self and non-
self in vascularized solid-organ transplantation, and preservation
of its integrity and functions is mandatory to ensure a prolonged
survival of the graft (5). As endothelial cells (EC) express a number
of antigens (Ag) that are visible by the immune system of a geneti-
cally disparate individual, donor endothelium is invariably recog-
nized by the host immune system, and therefore, it is the first and

preferential target of the allo-immune response that follows organ
transplantation without an adequate immunosuppression (6).

Both naturally occurring and induced allo-antibodies directed
to the Ag expressed on the membrane of EC are commonly
found in renal recipients, and such antibodies, being capable of
fixing the complement and damaging the tissues, are detrimen-
tal for the correct functioning of the endothelium (7). More-
over EC, besides being target of antibody-mediated response, can
directly interact with allogenic T-cells by displaying not only the
major histocompatibility complex (MHC) antigens but also ade-
quate co-stimulatory molecules and adhesion proteins on their
surface (8).

Nevertheless, the host immune response that follows recog-
nition of EC allo-Ag is not necessarily destructive, in spite of
graft rejection, accommodation, where not active tolerance, may
operationally establish, thus fostering the endothelium to fulfill
its functions (5). Endothelial regulation of blood flow and ves-
sel permeability is paramount not only for the survival of any
vascularized allograft but also for the specific depurative activities
of the kidneys.
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This review aims at analyzing the interplay between allo-
graft endothelium and host immune system, and how differential
unfolding of this interplay may ultimately affect the fate of the
graft. A particular attention will be paid to the factors that, at the
endothelial level, contribute to tipping the balance in favor of graft
acceptance rather than rejection.

DISCUSSION
ANTIBODY-MEDIATED IMMUNE RESPONSE TOWARD ALLO-
GRAFT ENDOTHELIAL CELLS
The importance of donor-specific antibodies in causing allograft
rejection has progressively been uncovered, to the extent that a
humoral theory of transplantation has been formulated in juxta-
position to the cellular one (9). Here, all the sets of Ag expressed
on human EC that are relevant for kidney transplantation will be
discussed (Table 1), along with the mechanisms of damage and
accommodation.

ENDOTHELIAL CELL ANTIGENS TARGET OF ALLO-ANTIBODIES
AB0 blood group antigens
Endothelial cells highly express the AB0 blood group antigens on
their surface (10). Such Ag are carbohydrates linked to glycopro-
teins and glycolipids and are targets of specific Ab (isoagglutinins),
which occur naturally in people lacking the A and/or B antigens
(11). Isoagglutinins, upon binding to A/B incompatible EC, cause
hyperacute or accelerated acute graft rejection (12). AB0 com-
patibility has, therefore, been required for successful cadaveric
transplantation; however, being the allelic variability of this sys-
tem little, it does not represent a barrier for allocation of deceased
donor organs. On the other hand, due to the allelic frequencies,
any two individuals have roughly a 35% probability of being AB0
incompatible (AB0i), and this is an actual limitation to living renal
donations (11). A first breach to the absolute requirement for AB0
compatibility emerged soon after the recognition of AB0 Ag as
a barrier for solid-organ transplantation; the analysis of the out-
comes showed that acceptable results were only obtained when
renal grafts from A2 donors had been transplanted to non-A, i.e., 0
or B, recipients (12, 13). This donor-recipient combination proved
somehow permissive because of the scarce expression of A2 Ag on
EC, and the consequent low titers of anti-A2 Ab in non-A2 recipi-
ents (13). A second breach was the good results reached with AB0i
heart transplants in children, who are known to express lower

amount of A/B Ag and produce less Ab compared to adults (14).
Finally, in 1981, the report of a successful rescue treatment for a
mistakenly performed AB0i renal transplantation was published
(15); the concept of removal of the isoagglutinins with plasma-
pheresis in order to avoid hyperacute rejection laid the basis to
current practice that aims at reducing anti-A/B Ab titers before
and soon after transplantation as a strategy to overcome AB0
barrier (16). Since then, kidney transplantation from AB0i liv-
ing donor has become a routine practice in many transplantation
centers (17).

Human leukocyte antigens
Major histocompatibility complex antigens, also known as human
leukocyte antigens (HLA) in human beings, are highly polymor-
phic surface proteins whose principal function is to display Ag
to T-cells for recognition and activation. Two different classes of
HLA molecules exist: class I molecules are constitutively expressed
by all cell types and present Ag to CD8+ cytotoxic T-cells; class
II molecules, that present Ag to CD4+ helper T-cells, are com-
monly restricted to professional antigen-presenting cells (APC)
such as dendritic cells, but, upon stimulation, can be induced
onto other cell types. Human EC highly express class I and,
albeit at lesser extent, also class II HLA molecules, which can
be further enhanced by appropriate stimuli of inflammatory and
immunologic origin (6, 7).

Apart from presenting Ag to lymphocytes, HLA molecules
can themselves be recognized by an allogenic immune system,
and anti-HLA Ab are produced following immunizing events like
pregnancies, blood transfusions, and organ transplantation (18).
Preformed anti-HLA donor-specific Ab (DSA), i.e., DSA present
prior to transplantation, have long been known to be respon-
sible for hyperacute or accelerated acute graft rejection, which
is determined by mechanisms similar to those for AB0i trans-
plantation performed without an adequate desensitization (19).
Nevertheless, due to the extreme polymorphism of HLA genes,
donor-recipient matching is an exceptional occurrence; therefore,
unlike bone marrow transplantation, most of the kidney trans-
plants are performed across the HLA barrier, for which a profound
immunosuppression is lifelong required. In order to eliminate the
risk of hyperacute rejection, laboratory cross-matching techniques
have been developed, and routinely applied, to identify preformed
anti-HLA Ab in the serum of recipients before transplantation; a

Table 1 | Antibody-mediated immune response toward allograft endothelial cells.

Type of

immunity

Target Ag

on EC

Preformed Ab De novo Ab C1 fixing Ab Hyper- or

Accel.-AR

Acute

rejection

Chronic

rejection

Detected by

current XM

Reference

Allo-Ab AB0 Yes Yes Yes Yes Yes Yes – (10, 12, 16, 17)

HLA Yes Yes Yes Yes Yes Yes Yes (6, 7, 18–26)

MICA Yes Yes Yes Yes Yes Yes No (28–33)

ECA Likely yes Yes Likely yes Likely yes Yes Yes No (35–51)

Auto-Ab ATR1 No Yes No No Yes Yes No (56, 57)

Vimentin No Yes No No No Yes No (59, 63)

Ag, antigens; EC, endothelial cells; Ab, antibody; C 1, complement; Accel., accelerated; AR, acute rejection; XM, cross-match; ECA, endothelial cell-restricted antigens;

ATR1, angiotensin II type 1 receptor.
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positive donor-recipient HLA cross-match would currently halt
the organ allocation in the absence of adequate desensitization
(20). Moreover, anti-HLA DSA can occur de novo after trans-
plantation mainly as a consequence of suboptimal immunosup-
pression or scarce adherence to the therapy (21). De novo DSA,
particularly if complement-fixing Ab, is pathogenic for both acute
and chronic rejection of the allograft (22); and the presence of
such Ab in recipient’s serum has prospectively been linked to graft
failure in several studies (23). The EC of graft peritubular cap-
illaries (PTC) are the preferred targets of DSA so much so that
microvascular inflammation is a required criterion for histopatho-
logic diagnosis of ABMR (24), which is further underpinned by
the presence of deposits of the complement fragment C4d on PTC
endothelium (25, 26), and of circulating DSA (24).

MHC class I related chain A antigens
The description of sporadic cases of hyperacute or accelerated
acute rejection of non-AB0i kidneys in recipients lacking anti-
HLA DSA have urged researchers to investigate further sets of
allo-antigens that might be relevant for transplantation (27). MHC
class I related chain A antigens (MICA) are surface glycoproteins
encoded by highly polymorphic genes located on chromosome 6
within the region of MHC genes (28). MICA, whose function is
related to immune surveillance, are expressed by different types
of cells including EC, but importantly neither T nor B lympho-
cytes; thus, current standard cross-match procedures are unable
to detect anti-MICA antibodies (28). MICA have proven to be the
target of complement-fixing allo-Ab that can cause hyperacute,
acute, and chronic ABMR (28–32); the presence of anti-MICA
DSA negatively impact short-term and long-term graft survival,
albeit at lesser extent compared to the effect of anti-HLA DSA
(30). Endothelium damage, microvascular inflammation, and C4d
deposition on PTC endothelium are the hallmark also of ABMR
mediated through anti-MICA DSA (33).

Non-HLA nor-MICA endothelium-restricted antigens
Along with MICA, other non-HLA systems are thought to add
to the gamut of the traditional transplantation Ag (34). Indeed,
ABMR may exceptionally occur following renal transplanta-
tion between non-AB0i HLA-identical siblings, who usually also
share MICA, being them in linkage disequilibrium with the HLA
genes (28).

Between 1997 and 2005, endothelium-restricted antigens (EA),
expressed neither by lymphocytes nor by monocytes, were pro-
posed as possible targets of pathogenic Ab in renal recipients
who had experienced acute ABMR without any obvious DSA
(35–40). Following these results, the suggestion to adopt newer
cross-matching techniques that would investigate the presence of
these anti-endothelial cell antibodies (AECA) in the recipient’s
serum before transplantation has become stronger (41–46). Mean-
while, the first studies have come out and shown an association
between circulating AECA and acute rejection, chronic rejection,
poor renal graft survival, and transplant glomerulopathy (47–51).

As for the identity of EA, it is still ill defined, despite the appli-
cation of proteomic, protein microarrays, and transcriptome mea-
sures (52). The most relevant information we have is that EA are
expressed only by activated or damaged EC (53). This observation

has lead some authors to hypothesize that the EA, or at least some
of them, might actually be self-molecules rather than allo-antigens,
and AECA would be auto-Ab that arise following the exposure of
these cryptic self-Ag on EC primarily hit by host immune response,
and they would cooperate to graft destruction with allo-immunity
(54, 55). Two examples of self-Ag displayed on EC and targeted by
host immune response following transplantation are angiotensin
II type 1 receptor and vimentin.

Angiotensin II type 1 receptor. In 2005, Dragun et al. linked
the presence of anti-angiotensin II type 1 receptor (AT1R) Ab
to acute rejection of non-AB0i kidneys in 16 recipients without
anti-HLA or anti-MICA DSA (56). Anti-AT1R Ab were studied
because malignant hypertension was part of the clinical picture in
all the rejecting patients, thus somehow resembling preeclampsia,
a condition the researchers had already linked to the presence of
such Abs (57). AT1R is present on EC and vascular smooth muscle
cells and, upon ligation of angiotensin II, elicits transduction of
secondary signals that contribute to the regulation of body liquids
and blood pressure. Anti-AT1R Ab are agonistic non-complement-
fixing immunoglobulins that promote malignant hypertension by
over-activating AT1R (47); moreover, anti-AT1R Ab can induce
microvascular inflammation and coagulation by stimulating NF-
kB pathway and tissue factor expression by EC (58). In accordance
with these data, graft biopsies from the renal recipients in Dragun’s
study lacked C4d deposition, but revealed the presence of endoar-
teritic lesions, fibrinoid necrosis, and thrombi. The authors finally
provided evidence of the pathogenic role of anti-AT1R Ab as their
removal with plasmapheresis and selective blockade of AT1R with
losartan significantly improved graft survival (56). The origin of
such Abs is not clear yet, but, as no polymorphism of the AT1R gene
has been identified, they could be auto-Ab occurring due to mol-
ecular mimicry or to anomalous presentation of over-expressed
AT1R on damaged EC (58).

Vimentin. Vimentin is a cytoskeleton intermediate filament pro-
tein present within the cytosol of cells of mesenchymal origin, such
as EC, fibroblasts, and leukocytes. Anti-vimentin auto-Abs (AVA)
are described in a number of autoimmune diseases (59). In organ
transplantation, exposition of vimentin isoforms on apoptotic EC,
irreparably damaged by the allo-immune response, results in break
of self-tolerance, emergence of active vimentin-specific CD8+ T-
cells, and production of AVA (59,60). AVA have been found in heart
as well as kidney transplantation (61); albeit capable of fixing the
complement and activating platelets (62), AVA alone are not path-
ogenic, they instead contribute with the allo-immune response
to cause the vascular lesions typical of chronic rejection, and to
accelerate the progression of atherosclerotic lesions (63).

FOCUS ON THE MECHANISMS OF REJECTION TOWARD GRAFT
ENDOTHELIAL CELLS
Nature and abundance of the allo-Ag expressed on EC, and
type and titers of the DSA are the determinants of the intensity
of host antibody-mediated immune response toward the allo-
graft (Figure 1). This evidence has both theoretical and practice
consequences. First, AB0 Ag, carbohydrates in nature, are less
immunogenic than HLA molecules that are proteins, and indeed
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Piotti et al. Immune response to graft endothelium

FIGURE 1 | Schematic representation of the complex interaction
between allogenic endothelial cells and host immune system following
vascularized solid-organ transplantation. EC, endothelial cells; Tc, CD8+

cytotoxic T-cells; Th, CD4+ helper T-cells; Treg, CD4+ CD25+ Foxp3+

regulatory T-cells; SMC, smooth muscle cells; AR, acute rejection; Ab,
antibody; Cl, complement; expr., expression; apopt., apoptotic.

desensitization procedures for AB0i recipients are less intense
and obtain better outcomes than those for anti-HLA immunized
patients (16, 20). Second, A1 Ag elicit a more powerful response in
kidney recipients of non-A blood group compared to A2 Ag due to
minor expression of the latter on EC (13). Third, preformed DSA
cause a more acute and severe rejection than de novo DSA, because
they are more rapidly and abundantly produced by memory B-cells
without any need of helper T-cells, and are more harmful for the
graft (64). Fourth, complement-fixing DSA are associated with a
poorer prognosis compared to non-fixing Abs (65). Finally, DSA
concentration is critical for survival of both AB0i and HLAi renal
transplants, with higher titers linked to more rejection episodes
and shorter graft survival (20, 66).

Preformed DSA can cause hyperacute or accelerated acute
rejection within minutes from the revascularization by binding
to EC and fixing the complement; antibody-mediated comple-
ment activation extensively damages the endothelium integrity
and initiates intravascular coagulation cascade that results in vessel
thrombosis and tissue infarction (67).

Acute ABMR is a severe, albeit less catastrophic, event charac-
terized by deposition of complement-fixing Abs on graft endothe-
lium, mainly on the PTC endothelium, without initial activation
of the coagulation (3). Upon DSA binding, activated EC increase
the display on their surface membrane of MHC molecules, which
further amplify the allo-immune specific response (65). Moreover,
anti-HLA Ab ligation forces targeted EC to release prothrombotic
mediators, like von Willebrand Factor (VWF), and to express
more adhesion molecules, which foster platelets aggregation and
leukocytes invasion of the graft (68). Graft invasion by T-cells

is sustained by the enhanced expression on EC of vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-
1 (ICAM-1), and endothelium leukocyte adhesion molecule-1
(ELAM-1) (69), adhesion molecules, which can be induced by
the inflammatory mediators interleukin-1 (IL-1), tumor necro-
sis factor-α (TNF-α), and interferon-γ (INF-γ), produced by the
lured leukocytes (70–72). The invasion by host lymphocytes and
inflammatory cells of functional structures of the graft, such as the
tubuli and the PTC, and the development of small vessel occlusion
due to thrombi formation and cell accumulation determine acute
deterioration of graft function (3).

Alternatively, acute episodes self-limit and relapse thereafter
repeatedly, thus resulting in chronic injuries that lead to trans-
plant atherosclerosis, tubular atrophy, and interstitial fibrosis, the
hallmark of chronic rejection (24). Transplant atherosclerosis in
particular is sustained by the acquisition by EC of proliferative
capabilities. Upon DSA binding to HLA molecule, EC are dri-
ven to express growth factor receptors, such as the fibroblast
growth factor receptor (FGF-R) (73), and to re-arrange fila-
ments of the cytoskeleton, such as forming stress fibers (74) and
recruiting integrin-ß4 (75). Cytoskeleton rearrangements confer
EC the capability of reacting to appropriate stimuli by proliferat-
ing. The transduction of integrin-ß4-dependent signals activates
several cytoplasmatic kinases that ultimately result in the stimu-
lation of the mechanistic target of rapamycin (mTOR) pathway
(76); mTOR activation promotes progression of cell cycle from
G1 phase to S phase and ultimately induces EC division, such
a proliferation is reinforced by the susceptibility to FGF of EC
expressing FGF-R (73).
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ACCOMMODATION
Accommodation was originally the term used to describe the
acquisition by EC of resistance to ABMR of AB0i renal grafts
following reappearance of anti-A/B donor Ab (77). Nowadays,
much interest is dedicated at understanding the mechanisms of
accommodation and whether they could also be therapeutically
harnessed to prevent transplant damage from anti-HLA DSA, that
unlike anti-A/B Ab, are currently thought to invariably lead to
allograft ABMR (78).

A small but interesting study investigated the behavior of EC in
hyper-immune desensitized recipients who experienced reappear-
ance of anti-HLA Abs following renal transplantation (79). None
of the seven enrolled patients had hyperacute ABMR but three
lost the graft due to various immunological damages, and three
of the four remaining patients suffered curable acute rejection or
transplant glomerulopathy. Analysis of the graft biopsies revealed
increased expression of anti-apoptotic Bcl-xl gene in glomerular
and peritubular capillary EC. Furthermore, in vitro incubation
of human EC with sub-saturating concentrations of anti-HLA
Ab eluted from the patients decreased ICAM-1 expression and
provided resistance to complement-mediated cell lysis (79).

These preliminary results have been corroborated by further
studies according to which sub-saturating anti-HLA Ab can induce
EC expression of the anti-apoptotic genes Bcl-2 and Bcl-xL,
whereas saturating titers induce EC apoptosis (Figure 1) (80–82).

Despite these encouraging results, a full knowledge of the
accommodation process is far from been achieved and many more
studies are needed in order to establish adequate protocol to desen-
sitize hyper-immune recipients and safely perform transplantation
in such population.

CELL-MEDIATED IMMUNE RESPONSE TOWARD ALLOGRAFT
ENDOTHELIAL CELLS
As said, EC have all the properties required to drive direct
activation of allogenic T-cells that is the pivotal step in all the forms
of rejection non-mediated by preformed DSA (Figure 1) (8).

The rejection process has long been thought to be induced, at
least initially, by donor professional APC that, upon migration into
host secondary lymphoid organs, would present allo-Ag to T-cells.

Nevertheless, human EC, which are not professional APC, have
proven to be able to directly activate T-cells (Table 2); human EC
provide “signal 1” as, unlike porcine and rodent EC, they robustly
express HLA molecules, and in particular small vessel and capillary
human EC constitutively express both class I and II HLA molecules
(8). They also provide “signal 2” by expressing the co-stimulatory
molecules required for an effective Ag presentation (8). Direct acti-
vation of T-cells by EC is of particular importance because while
donor professional APC are destined to fade over time, EC, whose
survival is linked to that of the allograft, can potentially ignite
acute rejection at any time following transplantation (83).

ENDOTHELIAL CELLS AND CD8+ CYTOTOXIC T-CELLS
In vitro mixed lymphocyte reaction (MLR) experiments using
EC as stimulators of allogenic CD8+ sorted naive T-cells have
confirmed that EC are able to behave as professional APC (84).

CD8+ cytotoxic T-cells (Tc), so co-cultured with EC, respond
proliferating and acquiring an effector phenotype defined by
higher expression of perforin and production of IL-2 and INF-
γ, which in turn enhance EC expression of HLA class I and II
molecules (84).

With the use of blocking monoclonal Ab (mAb), the essential
signals for Tc activation have been identified in the HLA-A and
B class I molecules on EC that are target of the T-cell receptor
(TCR) and CD8 co-receptor, as well as the co-stimulatory mole-
cule CD80 (B7-I) on EC and its ligand CD28 on T-cells (85). In vivo
experiments have confirmed that CD8+ T-cell direct activation by
non-hematopoietic cells, such as EC, leads to graft rejection in a
murine model of class I restricted heart allo-grafts transplanted
into CD4-depleted recipients devoided of secondary lymphoid
organs (86). Finally, the finding of vimentin-specific autoreactive
CD8+ T-cells in heart recipients have shown that transplantation
cellular response, as for the humoral response, may spread from
being directed to allo-antigens to autoimmunity (60).

ENDOTHELIAL CELLS AND CD4+ HELPER T-CELLS
Accumulating evidence has convincingly clarified that human EC
of microvascular origin can directly activate CD4+ helper T-cells
(Th) (8, 87–89). Th are central mediators of allo-immunity as they
provide help for allo-Ab production, they arm cytotoxic T-cells,

Table 2 | Cell-mediated immune response toward allograft endothelial cells.

T-cell types DefiningTF Direct activation

by EC

Co-stimulation

(T-cell vs EC)

Outcome upon

activation

Mechanisms of

action

Effects

on EC

Reference

CD8+ cytotoxic – Yes, through

HLA class I

CD28 vs CD80 Graft rejection Cytotoxicity Enhancement of HLA

expression

(8, 59, 84–86)

CD4+ helper T-bet (Th1)

GATA3 (Th2)

RORγt (Th17)

Yes, through

HLA class II

LFA1, LFA2 vs

ICAM-1, LFA3

Graft rejection Provision of help to

B- and T-cells,

guidance of innate

immunity

Enhancement of HLA

and adhesion

molecules expression

(8, 83, 94–100)

CD4+ CD25+

Treg

Foxp3 Yes, through

HLA class II

– Tx tolerance Disarming of APC,

recruitment of new

cohorts of Treg

VCAM-1 and IL-6 red. (95–100)

CD62E and CD62P red.

PDL-1 and IDO induct.

TF, transcription factor; EC, endothelial cells;Th, helperT-cell;Treg, regulatoryT-cell;Tx, transplantation; APC, antigen-presenting cells; red., reduction; induct., induction.
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and drive innate unspecific inflammatory response (8). Human
EC constitutively express MHC class II molecules, HLA-DR, DP,
and DQ, albeit at lesser extent compared to class I molecules. These
class II molecules, which are recognized by TCR and bound with
the help of CD4 co-receptor, are “signal 1” for Th direct activation.
EC can also provide “signal 2” specific for Th; they indeed display
ICAM-1 (CD54) and lymphocyte function-associated antigen-3
(LFA3) (CD58), which are bound by LFA1 (CD11a/18) and LFA2
(CD2) on T-cells. As shown in vitro, following EC provision of
signals 1 and 2, Th start to proliferate and acquire an effector
phenotype characterized by the induction of the co-stimulatory
molecule CD40L (90) and of the adhesion molecules that favor
trans-endothelium migration (91). Depending on local cytokine
microenvironment, resting CD4+ T-cells differentiate into differ-
ent Th subsets. Along with Th1 and Th2 subsets, whose ability to
mediate rejection is well known (92), also Th17, which are impli-
cated in a number of autoimmune diseases, can emerge guided by
activated EC that provide the critical cytokine IL-6 in the presence,
under inflammatory conditions, of transforming growth factor-ß
(TGF-ß) (93). This is of particular interest as not only Th17 have
recently proven capable of causing allograft rejection (94) but also
they and CD4+ CD25+ Foxp3+ regulatory T-cells (Treg) seem
to keep reciprocally at bay. Since Treg, that are crucial cells for
transplantation tolerance, require TGF-ß but not IL-6 for their
induction, it has been hypothesized that EC could also mediate
the induction of peripheral Treg.

ENDOTHELIAL CELLS AND REGULATORY T-CELLS
CD4+ CD25+ Treg are a well-defined subset of CD4+ T-cells
identified by the expression of the master transcription factor
Foxp3. They are crucial regulators of the immune response; nat-
ural Treg of thymic origin prevent autoimmune diseases, while
peripherally induced Treg actively regulate transplantation toler-
ance (95). Treg act at a tissue level where they influence APC ability
of presenting Ag to conventional T-cells (Tconv), which in turn
become either anergic or regulatory cells themselves. Therefore,
empowering Treg at the expense of Tconv can induce a state of local
immune privilege that promotes long-term graft survival (95).

A few papers have investigated the ability of EC to interact with
Treg. INF-γ-stimulated EC have proven to be capable of induc-
ing Treg when co-cultured with allogenic CD4+ T-cells (96); but
more importantly, similar results have been obtained when EC
were pre-treated with the clinically available immunosuppressant
rapamycin (Rapa), which exerts its functions by inhibiting the
mTOR pathway (97). Expansion of Treg results from the con-
version of naive CD4+ cells into Foxp3+ cells, and depends on
cell–cell contact and the local microenvironment (98); not only
Rapa reduces the display of VCAM-1 in EC (99) but also forces the
expression of the inhibitory molecules programed death ligand-1
(PDL-1) and indoleamine 2,3-dioxygenase (IDO), which are cru-
cial for Treg induction (96–98). Finally, EC pre-treated with Rapa
produce less IL-6 (97), which is instead required for the expansion
of Th17 but not that of Treg (93). EC-induced Treg are functionally
active as they can effectively suppress the proliferative response of
Ag-stimulated CD8+ T-cells. On the other side, Treg can influence
EC behavior; Treg release TGF-ß that downregulate the expression
on EC of the adhesion molecules CD62E and CD62P (respectively,

E- and P-selectin), thus limiting transmigration of Tc and reducing
local inflammation (100).

CONCLUSION
Graft endothelium is the first barrier between self and non-self
in transplantation of vascularized solid organs, such as kidney
transplants. Indeed, upon organ reperfusion, host lymphocytes
initially encounter graft EC, which express all the most relevant
antigens in transplantation immunobiology. Such antigens are
invariably recognized by the host immune system, and toward
them antibody-mediated and cell-mediated immune responses
mount. Moreover, not only are EC a passive target of the host
immune system but they also are an active player in the recruit-
ment and activation of allogenic lymphocytes, and in the invasion
of graft tissues by them. The ability of EC to directly activate
allogenic naive T-cells deserves to be highlighted as EC represent
a long-term source of allo-antigens and can potentially induce
graft rejection at any time post-transplantation. Therefore, the
fate of renal transplants largely depends on how such interplay
between graft endothelium and host immune system unfolds: on
one side, the activation of the immune response may lead to all
the forms of graft rejection, from hyperacute to chronic, and to
the deterioration of graft function primarily because of damages
to the endothelium integrity. On the other side, even in the pres-
ence of circulating donor-specific antibodies directed to antigens
expressed on donor EC, graft endothelium may thrive and fulfill its
functions of regulating blood flow and vessel permeability, which
are crucial not only for graft survival but also for the depurative
activities of the kidney.

Current immunosuppressive drugs have been developed with
the aim of targeting host immune response, be it depleting or
blocking T-cells and B-cells or halting the complement cascade;
however, given the central role of EC in modulating the allo-
immune response, graft endothelium may represent a preferential
target of newer immunosuppressive protocols aimed at promot-
ing long-term graft acceptance by reducing EC immunogenic-
ity and antigen presentation, while favoring their survival. The
class of immunosuppressants mTOR inhibitors has been more
and more utilized in the clinic for its pro-tolerogenic and anti-
neoplastic activities; the pro-tolerogenic effects of the mTOR
inhibitor rapamycin have proven to rely at least in part on its ability
to condition antigen presentation by EC so that regulatory T-cells
emerge at the expense of rejecting conventional T-cells. Although
scientific data lack, it is conceivable that also the latest immuno-
suppressant introduced in the clinic, belatacept, may prevent graft
rejection by limiting EC ability to activate T-cells (101); belatacept
is a CTLA-4 fusion protein with the human IgG Fc, which blocks
“signal 2,” by binding to the co-stimulatory molecules CD80 and
CD86 that are expressed not only on the APC but also on the
surface of EC.

As therapeutically blocking EC from presenting antigens
prevents direct activation of T-cells and, in turn, induction of
de novo donor-specific antibodies, developing such immunosup-
pressive strategy could become the answer to the issue of late
ABMR, toward which current immunosuppressants are blunt, and
could contribute to the improvement of long-term transplantation
outcomes.
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