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ABSTRACT
Porphyromonas gingivalis is one of the major bacteria that causes periodontitis. Chronic
periodontitis is a severe form of periodontal disease that ultimately leads to tooth loss.
Virulence factors that contribute to periodontitis are secreted by Type IX Secretion
System (T9SS). There are aspects of T9SS protein components that have yet to be
characterised. Thus, the aim of this study is to investigate the phylogenetic relationship
between members of 20 T9SS component protein families. The Bayesian Inference (BI)
trees for 19 T9SS protein components exhibit monophyletic clades for all major classes
under Bacteroidetes with strong support for the monophyletic clades or its subclades
that is consistent with phylogeny exhibited by the constructed BI tree of 16S rRNA.
The BI tree of PorR is different from the 19 BI trees of T9SS protein components as it
does not exhibit monophyletic clades for all major classes under Bacteroidetes. There is
strong support for the phylogeny exhibited by the BI tree of PorR which deviates from
the phylogeny based on 16S rRNA. Hence, it is possible that the porR gene is subjected
to horizontal transfer as it is known that virulence factor genes could be horizontally
transferred. Seven genes (porR included) that are involved in the biosynthesis of A-LPS
are found to be flanked by insertion sequences (IS5 family transposons). Therefore,
the intervening DNA segment that contains the porR gene might be transposed and
subjected to conjugative transfer. Thus, the seven genes can be co-transferred via
horizontal gene transfer. The BI tree of UgdA does not exhibit monophyletic clades
for all major classes under Bacteroidetes which is similar to the BI tree of PorR (both
are a part of the seven genes). Both BI trees also exhibit similar topology as the four
identified clusters with strong support and have similar relative positions to each other
in both BI trees. This reinforces the possibility that porR and the other six genes might
be horizontally transferred. Other than the BI tree of PorR, the 19 other BI trees of
T9SS protein components also exhibit evidence of horizontal gene transfer. However,
their genes might undergo horizontal gene transfer less frequently compared to porR
because the intervening DNA segment that contains porR is easily exchanged between
bacteria under Bacteroidetes due to the presence of insertion sequences (IS5 family
transposons) that flank it. In conclusion, this study can provide a better understanding
about the phylogeny of T9SS protein components.
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INTRODUCTION
Periodontitis is a form of periodontal disease that is driven by the inflammatory conditions
that have deteriorating effects on the structures that support the teeth, including gingiva
(gum), alveolar bone, and periodontal ligament. Prolonged inflammatory conditions
in chronic periodontitis can cause the destruction of those supporting structures that
ultimately leads to tooth loss and might contribute to systemic inflammation (Kinane,
Stathopoulou & Papapanou, 2017; Escobar et al., 2018). This is evidenced by its implications
in systemic diseases such as atherosclerosis (Gotsman et al., 2007), aspiration pneumonia
(Benedyk et al., 2016), cancer (Gao et al., 2016), rheumatoid arthritis (Laugisch et al., 2016),
and diabetes mellitus (Khader et al., 2006). Porphyromonas gingivalis is an oral pathogen
that is frequently associated with periodontitis and it is found to acquire Type IX Secretion
System (T9SS); a bacterial secretion system that is unique to gram-negative bacteria under
the Bacteroidetes phylum (Sato et al., 2010).

T9SS exhibits diverse roles among species of bacteria under Bacteroidetes. Other
than transporting virulence factors such as gingipains and peptidylarginine deiminase in
P. gingivalis that can cause human oral diseases (Potempa, Pike & Travis, 1995; Maresz et
al., 2013), T9SS also transports virulence factors such as chondroitin sulfate lyases that
can cause columnaris disease which is a form of fish disease. Flavobacterium columnare,
a fish pathogen that contributes to the epidemic that occurred among wild and cultured
fish, is found to acquire T9SS. This epidemic poses a problem to the aquaculture industry
as columnaris disease can significantly increase the mortality rate among cultured fish,
thus threatening the industry output (Li et al., 2017). T9SS is also involved in the transport
of non-virulence factors such as cargo proteins that form the bacterial gliding motility
apparatus in Flavobacterium johnsoniae that aids in its motility (Nakane et al., 2013) and
enzymes that are important for lignocellulose digestion in the rumen of ruminants that
become the hosts for Candidatus Paraporphyromonas polyenzymogenes (Naas et al., 2018).

Gram-negative bacteria have an outer membrane (OM) that acts as an impermeable
layer that prevents the free movement of hydrophilic and hydrophobic molecules across
it. This is because of the presence of lipopolysaccharides (LPS) within the outer leaflet of
the OM. Outer membrane proteins that are embedded in the OM usually form a channel
to allow small molecules to pass through it (Nikaido, 2003; Hong et al., 2006). However,
large molecules such as proteins require larger channels to pass through the OM. Hence,
secretion systems are developed by bacteria to enable coordinated transport of specific
cargo proteins across the OM. Currently, there are nine different types of secretion systems
evolved by bacteria. T9SS is restricted to bacteria under Bacteroidetes (Sato et al., 2010;
Lasica et al., 2017).

T9SS consists of many different protein components that perform coordinated roles
to ensure proper translocation and modification of its cargo proteins. These roles can be
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categorised into fourmajor functions: translocation,modification, energetic, and regulation
(Sato et al., 2010; Lasica et al., 2017; Naito et al., 2019). Initially, the cargo proteins of T9SS
are translocated across the inner membrane (IM) via Sec translocon where the signal
peptide (SP) of cargo proteins is cleaved (Rahman et al., 2003). The cargo proteins also
acquire a C-terminal domain (CTD) that interacts with the PorK2L3M2N2 trans-envelope
complex to translocate cargo proteins across the periplasm (Vincent et al., 2017; Vincent,
Chabalier & Cascales, 2018) (Fig. 1). PorE has been suggested to form the scaffold of the
periplasm complex that translocates cargo proteins across the periplasm (Heath et al.,
2016; Naito et al., 2019). SprA (ortholog of Sov in F. johnsoniae) has been proposed as the
secretion pore that translocates cargo proteins across the OM (Lauber et al., 2018). PorV
acts as an outer membrane shuttle protein that delivers the cargo proteins to the attachment
complex (Glew et al., 2017) (Fig. 1). In the attachment complex, PorU cleaves the CTD of
cargo protein. Then, it is glycosylated with anionic lipopolysaccharide (A-LPS) delivered by
PorZ at the cleaved site (Glew et al., 2012; Glew et al., 2017). After both post-translational
modifications, the cargo protein will be anchored to the cell surface by A-LPS (Lasica et al.,
2016; Glew et al., 2017) (Fig. 1). PorX and PorY forms a two-component system (TCS) that
regulates the operon of por genes (porP, porK, porL, porM, and porN ) via SigP (Vincent et
al., 2017; Kadowaki et al., 2016) (Fig. 1). PorR is an aminotransferase that is involved in the
Wbp pathway that biosynthesises the structural repeating unit of anionic polysaccharide
(APS) (Shoji et al., 2002; Shoji et al., 2014) (Fig. 1). Despite that, there are T9SS components
without known functions (PorP, PorT, PorW, Omp17, PorF, and PorG) (Fig. 1) and a few
aspects of T9SS components that have yet to be characterised (Nguyen et al., 2009; Saiki &
Konishi, 2010; Sato et al., 2010; Gorasia et al., 2016; Naito et al., 2019; Taguchi et al., 2016).

This work aims to characterise the phylogeny of T9SS protein components. Phylogenetic
analysis was performed on the members of 20 T9SS component protein families that have
been reported (Emrizal & Muhammad, 2018). The Bayesian Inference (BI) trees for 19 T9SS
protein components exhibit monophyletic clades for all major classes under Bacteroidetes
with strong support for the monophyletic clades or its subclades that is consistent with
phylogeny exhibited by the constructed BI tree of 16S rRNA. The BI tree of PorR is different
from the other 19 BI trees as it does not exhibit monophyletic clades for all major classes
under Bacteroidetes. There is also strong support for the phylogeny exhibited by the BI tree
of PorR. Thus, there is a possibility that the porR gene is subjected to horizontal transfer as
it is known that virulence factor genes could be horizontally transferred (Hirt, Schlievert &
Dunny, 2002). Seven genes including porR that are involved in the biosynthesis of A-LPS
are found to be flanked by insertion sequences (IS5 family transposons). This suggests
that the intervening DNA segment that contains porR can be transposed and subjected to
conjugative transfer (Thomas & Nielsen, 2005; Brochet et al., 2009). Thus, the seven genes
might be co-transferred via horizontal gene transfer. The BI trees of PorR and UgdA (both
are a part of the seven genes) exhibit similarities. This reinforces the possibility that porR
and the other six genes might undergo horizontal gene transfer. Other than the BI tree
of PorR, the BI trees of the other 19 components also exhibit evidence of horizontal gene
transfer. However, for the genes that encode those 19 components, they might undergo
horizontal gene transfer less frequently compared to porR because the intervening DNA
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Figure 1 T9SS protein components on the inner membrane (IM) and outer membrane (OM) of Por-
phyromonas gingivalis. The protein components with known functions are represented by coloured
structures. The pathway for cargo protein gingipain (RgpB) translocation and modifications by T9SS is il-
lustrated. The regulation of the pathway by the protein components is also exhibited.

Full-size DOI: 10.7717/peerj.9019/fig-1

segment that contains porR is easily exchanged between bacteria under Bacteroidetes due
to the presence of IS5 family transposons that flank it.

MATERIALS & METHODS
Construction of multiple sequence alignments of T9SS protein
components
The multiple sequence alignments for each T9SS protein component were built using the
putative members of T9SS component protein families. The pipeline that was used to select
those members has been reported (Emrizal & Muhammad, 2018). The pipeline was used to
filter out false positives among the homologs that have been identified through homology
searching using BLASTP which was performed using T9SS component protein sequences
retrieved from theNCBI protein database that were searched against a local BLAST database
constructed from completely sequenced bacterial proteomes from GenBank. The selection
criteria used in the pipeline (e-value ≤ 0.001, query coverage >60%, and Bacteroidetes
homolog with the lowest e-value for bacterial strains with multiple hits) can minimise
the possibility of false positive inclusion (Emrizal & Muhammad, 2018). The sequences of
protein homologs used to build themultiple sequence alignments for each T9SS component
were provided in FASTA format as (Data S1).

The multiple sequence alignments were constructed using MAFFT (version 7.402)
(Katoh et al., 2002) on the CIPRES computing cluster (Miller, Pfeiffer & Schwartz, 2010) in
FASTA format. Unreliable alignment regions in the multiple sequence alignments were
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assessed using GUIDANCE2 (version 2.02) (Sela et al., 2015) on the CIPRES computing
cluster (Miller, Pfeiffer & Schwartz, 2010). Columns with low confidence were removed
from the multiple sequence alignments. The format of multiple sequence alignments was
converted into relaxed interleaved PHYLIP format using an online Format Converter
(https://www.hiv.lanl.gov/content/sequence/FORMAT_CONVERSION/form.html). The
multiple sequence alignments in relaxed interleaved PHYLIP format were manually edited
into NEXUS format.

Determination of amino acid substitution models for multiple
sequence alignments of T9SS protein components
The multiple sequence alignments in relaxed interleaved PHYLIP format (Data S2)
were used by ProtTest (version 3.4.2) (Guindon & Gascuel, 2003; Darriba et al., 2011)
to determine the amino acid substitution model to be used for each alignment in the
phylogenetic analysis. The graphical user interface (GUI) version of ProtTest was used to
test each alignment against 10 amino acid substitution model matrices (Blosum62, CpREV,
Dayhoff, JTT, MtMam, MtREV, RtREV, VT, WAG, and LG) with any combination of
among-site rate variation (no rate variation across sites, gamma-shaped rate variation
across sites (+G), a proportion of invariable sites (+I), or gamma-shaped rate variation
across sites with a proportion of invariable sites (+G+I)) and stationary amino acid
frequencies (Dirichlet or fixed (empirical) (+F)). The best model according to Bayesian
Information Criterion (BIC) (Schwarz, 1978) was selected to be used in the phylogenetic
analysis for that alignment.

Bayesian Inference (BI) analysis for multiple sequence alignments of
T9SS protein components
Bayesian Inference (BI) analysis was performed using multiple sequence alignments
in NEXUS format (Data S3). The BI analysis was performed using MrBayes (version
3.2.6) (Huelsenbeck & Ronquist, 2001) on the CIPRES computing cluster (Miller, Pfeiffer &
Schwartz, 2010) for alignments of 14 components (PorK, PorL, PorM, PorN, PorP, PorQ,
PorT, PorU, PorV, SigP, Omp17, PorE, PorF, and PorG). The BI analysis for each alignment
was performed with the selected amino acid substitution model and two independent runs
for 50,000,000 generations, each with four chains, with a sampling frequency of every
5,000, and a burn-in of 25%. Beagle CPU was utilised to speed up the BI analysis.

The BI analysis for the other 6 components (PorR, Sov, PorW, PorX, PorY, and PorZ)
was performed using command-line MrBayes (version 3.2.6) (Huelsenbeck & Ronquist,
2001) on a desktop with Nvidia Titan V GPU and CUDA driver (version 10.1) installed.
The BI analysis for each alignment was performed with the selected amino acid substitution
model and two independent runs for 50,000,000 generations, each with four chains (PorR,
Sov, PorW) or eight chains (PorX, PorY, and PorZ), with a sampling frequency of every
5,000, and a burn-in of 25%. Beagle GPU was utilised to speed up the BI analysis. The
constructed BI trees were visualised and annotated using online iTOL (version 4.4.2)
(Letunic & Bork, 2019).
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Construction of Bayesian Inference (BI) tree of 16S ribosomal
RNA (rRNA)
The 16S ribosomal RNA (rRNA) sequences have been used to construct the current
universal tree of life (Winker & Woese, 1991; Pylro et al., 2012). Thus, the BI tree of
16S rRNA has been constructed in this work to compare it with the BI trees of
T9SS protein components. A pre-formatted BLAST database of microbial 16S rRNA
sequences was retrieved from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). The 16S rRNA
sequence from Porphyromonas gingivalis ATCC 33277 (NR_040838.1) was retrieved
from NCBI (https://www.ncbi.nlm.nih.gov/gene) and it was searched against that
database using local BLASTN (Altschul et al., 1990). The pipeline mentioned above
was used to select homologs of 16S rRNA gene in species under Bacteroidetes that
were also found to acquire homologs of T9SS protein components in this work.
For those species that their 16S rRNA sequences could not be retrieved from the
microbial 16S rRNA BLAST database, their 16S rRNA sequences were retrieved directly
from either NCBI Gene (https://www.ncbi.nlm.nih.gov/gene) or NCBI Nucleotide
(https://www.ncbi.nlm.nih.gov/ nuccore/). The selected 16S rRNA sequences were
provided in FASTA format as a (Data S1).

The sequences were used to build the multiple sequence alignment of 16S rRNA
using MAFFT (version 7.402) (Katoh et al., 2002) and unreliable alignment regions in the
multiple sequence alignment were assessed using GUIDANCE2 (version 2.02) (Sela et al.,
2015) on the CIPRES computing cluster (Miller, Pfeiffer & Schwartz, 2010). Columns with
low confidence were removed from the multiple sequence alignment. The alignment in
FASTA format (Data S2) was used to determine the best nucleotide substitution model
to be used in the phylogenetic analysis. The graphical user interface (GUI) version of
ModelTest (Darriba et al., 2020) was used to test the alignment against three nucleotide
substitution model matrices (GTR, HKY85, and F81) with any combination of among-site
rate variation (no rate variation across sites, gamma-shaped rate variation across sites (+G),
a proportion of invariable sites (+I), or gamma-shaped rate variation across sites with a
proportion of invariable sites (+G+I)) and stationary amino acid frequencies (Dirichlet or
fixed (empirical) (+F)). The best model according to Bayesian Information Criterion (BIC)
(Schwarz, 1978) was selected to be used in the phylogenetic analysis for that alignment.

BI analysis was performed using the alignment in NEXUS format (Data S3). The
analysis was performed using MrBayes (version 3.2.6) (Huelsenbeck & Ronquist, 2001)
on the CIPRES computing cluster (Miller, Pfeiffer & Schwartz, 2010) with the selected
nucleotide substitution model and two independent runs for 50,000,000 generations, each
with four chains, with a sampling frequency of every 5,000, and a burn-in of 25%. Beagle
CPU was utilised to speed up the BI analysis. The BI tree of 16S rRNA was visualised and
annotated using online iTOL (version 4.4.2) (Letunic & Bork, 2019).

Identification of porR and its neighbouring genes’ arrangement in
Porphyromonas gingivalis ATCC 33277 genome
The sequence of P. gingivalis ATCC 33277 genome and annotation files of the genome
were retrieved from Genbank (Naito et al., 2008). The P. gingivalis ATCC 33277 genome
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sequence and its annotation files were provided in the (Data S4). The part of P. gingivalis
ATCC 33277 genome sequence that contains the porR and its neighbouring genes was
extracted. Then, it was searched against the non-redundant protein sequences (nr) database
using online BLASTX. The search was narrowed down to the proteome of P. gingivalis
ATCC 33277 only. The maximum target sequences were set at the highest value available
which is 20,000. Other parameters were left at its default values (Altschul et al., 1990). Only
the matches with 100% percentage identity and 0 e-value were used to annotate the part of
P. gingivalis ATCC 33277 genome sequence that contains the porR gene.

Construction of Bayesian Inference (BI) tree of UgdA
Based on the identification of porR neighbouring genes, the two genes that are involved in
the Wbp pathway (ugdA and porR) are found to be within the intervening DNA segment
that is flanked by IS5 family transposons. Thus, the BI tree of UgdA was constructed to
be compared with the BI tree of PorR. The pipeline mentioned above was used to select
homologs of UgdA (Data S1) and construct the multiple sequence alignment of UgdA with
low confidence columns being removed. The alignment in relaxed interleaved PHYLIP
format (Data S2) was used to determine the best amino acid substitution model. BI
analysis was performed using UgdA alignment in NEXUS format (Data S3). The analysis
was performed using command-line MrBayes (version 3.2.6) (Huelsenbeck & Ronquist,
2001) on a desktop with Nvidia Titan V GPU and CUDA driver (version 10.1) installed
with the selected amino acid substitution model and two independent runs for 50,000,000
generations, each with four chains, with a sampling frequency of every 5,000, and a burn-in
of 25%. Beagle GPU was utilised to speed up the BI analysis. The constructed BI tree was
visualised and annotated using online iTOL (version 4.4.2) (Letunic & Bork, 2019).

RESULTS
Bayesian Inference (BI) trees of T9SS protein components
Bayesian Inference (BI) trees are constructed from the multiple sequence alignments of
putative members of T9SS component protein families that have been reported (Emrizal &
Muhammad, 2018). The characteristics of alignments and the best amino acid substitution
model that has been selected for each alignment are shown in Table 1. The selected amino
acid substitution model for each alignment defines the parameters that were used for
BI analysis for each alignment. The unrooted BI trees of T9SS protein components are
shown (Figs. 2–6). The identified monophyletic clades that were formed by terminal nodes
that belong to the same class under Bacteroidetes are denoted by solid curves (Figs. 2–6).
The monophyletic clades or its subclades with strong support (posterior probability value
> 0.95) are denoted by dashed curves (Figs. 2–6).

Out of 20 BI trees of T9SS protein components, only 19 exhibit monophyletic clades for
all major classes under Bacteroidetes (Figs. 2–6). Major classes are those with more than
five families under the class (Bacteroidia, Cytophagia, and Flavobacteriia) while minor
classes are those with less than or equal to five families under the class (Chitinophagia,
Sphingobacteriia, Saprospiria, Incertae sedis, and unclassified). Nine of the BI trees (PorK,
Sov, PorT, PorV, PorW, PorX, Omp17, PorE, and PorF) exhibit monophyletic clades
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Table 1 The characteristics of T9SS component protein alignments and the best amino acid substitu-
tion models that have been selected for them. The characteristics of T9SS component protein alignments
such as number of taxa used to construct the alignments and umber of characters of the alignments are
provided. The best amino acid substitution model that has been selected for each alignment is also pro-
vided. The definition of parameters of the best amino acid substitution models are provided in the foot-
note.

Alignment No. of taxa No. of
characters

Model

Omp17 180 245 LG + G + F
PorE 137 793 LG + G + I
PorF 121 829 LG + G + I + F
PorG 55 487 LG + G + I
PorK 153 561 LG + G + I
PorL 123 281 LG + G + I
PorM 159 406 LG + G + I + F
PorN 62 267 LG + G + I
PorP 138 281 LG + G + I + F
PorQ 108 358 LG + G + F
PorR 176 471 LG + G + I
PorT 151 202 LG + G + F
PorU 109 919 LG + G + I
PorV 162 360 LG + G + I + F
PorW 137 995 LG + G + I + F
PorX 162 624 LG + G + I
PorY 162 897 LG + G + I
PorZ 102 569 LG + G + I
SigP 177 197 LG + G + I
Sov 159 2704 LG + G + I + F
UgdA 176 460 LG + G + I
16S rRNA 144 1452 GTR + G + I

Notes.
LG + G: LG substitution model matrix with gamma-shaped rate variation across sites and Dirichlet stationary amino acid fre-
quencies.
LG + G + I: LG substitution model matrix with gamma-shaped rate variation across sites with a proportion of invariable sites
and Dirichlet stationary amino acid frequencies.
LG + G + I + F: LG substitution model matrix with gamma-shaped rate variation across sites with a proportion of invariable
sites and fixed (empirical) stationary amino acid frequencies.
LG + G + F: LG substitution model matrix with gamma-shaped rate variation across sites and fixed (empirical) stationary
amino acid frequencies.
GTR + G + I: General Time Reversible (GTR) substitution model matrix with gamma-shaped rate variation across sites with a
proportion of invariable sites and Dirichlet stationary nucleotide frequencies.

for all major classes under Bacteroidetes with strong support. Ten of the BI trees (PorL,
PorM, PorN, PorP, PorQ, PorU, PorY, PorZ, SigP, and PorG) exhibit strong support for
the monophyletic clades or its subclades for all major classes under Bacteroidetes (Figs.
2–6). Despite the presence of PorR homologs from species under Bacteroidia, Cytophagia,
and Flavobacteriia, the BI tree of PorR does not exhibit monophyletic clades for all major
classes under Bacteroidetes (Fig. 3C). Thus, the BI tree of PorR is different compared to
the other 19 BI trees of T9SS protein components that exhibit monophyletic clades for all
major classes under Bacteroidetes.
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Figure 2 The Bayesian Inference (BI) phylogenetic trees of T9SS protein components (PorK, PorL,
PorM, and PorN). (A) BI tree of PorK. (B) BI tree of PorL. (C) BI tree of PorM. (D) BI tree of PorN. The
terminal nodes are labelled with coloured circles that represent the classes under Bacteroidetes that each
protein homolog belongs to. The classes represented by each colour are provided in the legend inside the
figure. The branches with strong support (posterior probability value> 0.95) are coloured in black. Oth-
erwise, the branches are coloured in red. The solid curve denotes a monophyletic clade that was formed by
terminal nodes that belong to the same class under Bacteroidetes. The dashed curve denotes a strong sup-
port for the monophyletic clade or its subclade. The colour of curve represents the class of terminal nodes
that form the clade. The classes represented by each colour are shown in the legend inside the figure.

Full-size DOI: 10.7717/peerj.9019/fig-2

Some of the terminal nodes of the 19 BI trees of T9SS protein components are out
of their expected monophyletic clades (Figs. 2–6). The species corresponding to those
terminal nodes are listed in Table S1. There are species that frequently have their terminal
nodes out of their expected monophyletic clades such as Fluviicola taffensis DSM 16823,
bacterium L21-Spi-D4, Owenweeksia hongkongensis DSM 17368, and Draconibacterium
orientale. The terminal nodes corresponding to F. taffensis DSM 16823 are found to be
out of their expected monophyletic clades in 14 out of 19 BI trees (except PorK, PorN,
PorP, PorU, and SigP). The terminal nodes corresponding to bacterium L21-Spi-D4 are
found to be out of their monophyletic clades in 10 out of 19 BI trees (except PorK, PorL,
PorM, Sov, PorT, PorU, PorX, PorY, and PorE). The terminal nodes corresponding to O.
hongkongensis DSM 17368 are found to be out of their expected monophyletic clades in
6 out of 19 BI trees (PorM, PorP, PorV, PorY, Omp17, and PorE). The terminal nodes
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corresponding to D. orientale are found to be out of their expected monophyletic clades in
7 out of 19 BI trees (PorN, PorP, PorV, PorW, PorY, SigP, and Omp 17). The 20 BI trees
with terminal nodes labelled with their corresponding species and support values for each
branch are shown in the (Figs. S1–S20).

Bayesian Inference (BI) tree of 16S rRNA
The BI tree of 16S rRNA was constructed from the multiple sequence alignment of 16S
rRNA homologs from species that were identified to also acquire T9SS protein homologs.
Out of 181 species that acquire T9SS protein homologs, only 16S rRNA sequences from 144
species were able to be retrieved from NCBI. The characteristics of 16S rRNA alignment
and the best nucleotide substitution model that had been selected for that alignment are
shown in Table 1. The unrooted BI tree of 16S rRNA is shown in Fig. 7. The identified
monophyletic clades that were formed by terminal nodes that belong to the same class
under Bacteroidetes are denoted by solid curves (Fig. 7). The monophyletic clades or its
subclades with strong support (posterior probability value >0.95) are denoted by dashed
curves (Fig. 7).

The BI tree of 16S rRNA was constructed to be compared to the BI trees of T9SS
protein components. The 16S rRNA exhibits monophyletic clades for all major classes
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under Bacteroidetes with strong support (Fig. 7) similar to the 19 BI trees of T9SS protein
components. The 16S rRNA also exhibits monophyletic clades for all minor classes under
Bacteroidetes with strong support denoted by 4 monophyletic clades of red, pink, yellow,
and orange circles (Fig. 7). None of the 20 BI trees of T9SS protein components exhibit
phylogeny of the minor classes that is consistent with the phylogeny exhibited by the 16S
rRNA tree (Figs. 2–7). Hence, minor classes are excluded in the comparison between 20 BI
trees of T9SS protein components. The BI tree of 16S rRNA with terminal nodes labelled
with their corresponding species and support values for each branch are shown in the
(Fig. S21).

Arrangement of porR and its neighbouring genes in P. gingivalis
ATCC 33277 genome
As shown in Fig. 8, porR and its neighbouring genes are flanked by IS5 family transposons.
The IS5 family transposon (cyan rectangles) encodes IS5 family transposase that cleaves
the flanking 12 bp inverted repeats (purple triangles) (Fig. 8). This might suggest the
possibility that the intervening DNA segment that contains seven genes that are involved
in A-LPS biosynthesis (yellow rectangles) can undergo transposition and is possibly
subjected to conjugative transfer (Fig. 8) (Thomas & Nielsen, 2005; Brochet et al., 2009).
porR (PGN_1236) and ugdA (PGN_1243) genes (Fig. 8) have been reported to be involved
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in theWbp pathway that is important for the biosynthesis of structural sugar (di-acetylated
glucuronic acid) of A-LPS (Shoji et al., 2002; Shoji et al., 2014). porS (PGN_1235) and
wzy (PGN_1242) genes (Fig. 8) have been reported to participate in the assembly
of A-LPS in bacterial inner membrane (Shoji et al., 2013). gtfB (PGN_1251) and gtfE
(PGN_1240) glycosyltransferase genes (Fig. 8) are important for A-LPS biosynthesis while
rfa (PGN_1255) glycosyltransferase gene (Fig. 8) is important for the biosynthesis of lipid
A-core portion of A-LPS (Shoji et al., 2018).

Bayesian Inference (BI) tree of UgdA
The BI tree of UgdA was constructed from the multiple sequence alignment of UgdA
homologs that were identified using the same pipeline that has been reported to select T9SS
protein homologs (Emrizal & Muhammad, 2018). The characteristics of UgdA alignment
and the best amino acid substitution model that had been selected for that alignment are
shown in Table 1. The unrooted BI tree of UgdA is shown in Fig. 9B. The unrooted BI
tree of PorR is also shown in Fig. 9A to be compared with the BI tree of UgdA. Both BI
trees do not exhibit monophyletic clades for all major classes under Bacteroidetes. Both BI
trees also exhibit similar topology. Four similar clusters (I, II, III, and IV) were identified
between both BI trees. Cluster I consists primarily of terminal nodes from Flavobacteriia
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and a few terminal nodes from other classes. Cluster II consists of terminal nodes from
Porphyromonas, Tannerella, and Parabacteroides genera. Cluster III consists of terminal
nodes from Rufibacter and Hymenobacter genera. Cluster IV consists of terminal nodes
from Prevotella, Bacteroides, Proteiniphilum, and other genera. The BI tree of UgdA
with terminal nodes labelled with their corresponding species and support values for each
branch are shown in the (Fig. S22).

Taxonomic distribution of T9SS protein components
As shown in the 20 BI trees of T9SS components (Figs. 2–6), only bacteria under Bacteroidia,
Flavobacteriia, and Chitinophagia classes acquired the 20 components investigated in this
work.

The bacteria under Cytophagia class acquired only 19 protein components (except
PorN). The bacteria under Saprospiria class acquired only 18 protein components (except
PorL and PorG). The bacteria under Sphingobacteriia class acquired only 17 protein
components (except PorQ, PorU, and PorZ). The unclassified bacteria acquired only 17
protein components (except PorN, PorU, and PorG). The bacteria under Incertae sedis
class acquired only 11 protein components (PorQ, PorR, Sov, PorU, PorV, PorX, PorY,
PorZ, SigP, Omp17, and PorF).
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The findings in this work are consistent with the taxonomic distribution of T9SS
components among bacteria under Bacteroidetes where it has been reported that
Bacteroidia, Flavobacteriia, Cytophagia, Sphingobacteriia, and Incertae sedis classes
acquired T9SS component homologs (McBride & Zhu, 2013). However, comparing the
reported taxonomic distribution of T9SS components to the findings in this work, we have
identified other species under Chitinophagia, Saprospiria, and those that are unclassified
that have acquired T9SS component homologs. Those species and T9SS component
homologs they acquired are illustrated in Fig. 10.

DISCUSSION
The 19 Bayesian Inference (BI) trees of T9SS protein components exhibit monophyletic
clades for all major classes under Bacteroidetes with strong support for the monophyletic
clades or its subclades (Figs. 2–6). Similar to the 19 BI trees of T9SS protein components,
the BI tree of 16S rRNA also exhibits monophyletic clades for all major classes under
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Bacteroidetes with strong support (Fig. 7). 16S rRNA has been extensively used in
phylogenetic analysis for the purpose of evolutionary comparison and classification.
The reliability of this approach lies on the assumption that the 16S rRNA gene undergoes
hierarchical and unidirectional evolution and no gene transfer of 16S rRNA occurs between
species (Karlsson et al., 2011). Due to the advantages that the 16S rRNA gene has such as
ubiquity in bacterial genomes, being easily sequenced, and widely available in public
sequence databases, the current universal tree of life is based on the phylogeny of this gene
(Winker & Woese, 1991; Coutinho et al., 1999; Pylro et al., 2012). That assumption has been
challenged due to the presence of multiple copies of 16S rRNA in a bacterial genome and
the 16S rRNA genes from operons in the same genome are rather distinct which might
suggest that such genes might have undergone horizontal gene transfer (Pei et al., 2010;
Karlsson et al., 2011). However, the extent of 16S rRNA evolution remains considerably
less compared to the other genes in the bacterial genome (Espejo & Plaza, 2018). Thus, 16S
rRNA remains relevant for the purpose of evolutionary comparison and classification.

It is expected that the BI trees of T9SS protein components would exhibit similar
phylogeny with the BI tree of 16S rRNA. However, the BI trees of T9SS protein components
exhibit inconsistent positions of terminal nodes from minor classes among themselves and
the phylogeny for the minor classes deviate from the phylogeny exhibited by the BI tree
of 16S rRNA (Figs. 2–7). Hence, the minor classes under Bacteroidetes are excluded from
the comparison between the 20 BI trees of T9SS protein components. This might arise due
to insufficient taxa from minor classes provided to construct those BI trees. Hence, the
information that is provided is insufficient to fully resolve the phylogeny of minor classes.
As more T9SS-acquiring species from minor classes are sequenced later on, the phylogeny
of T9SS protein components will be more resolved (Alvizu et al., 2018).

Emrizal and Nor Muhammad (2020), PeerJ, DOI 10.7717/peerj.9019 15/26

https://peerj.com
https://doi.org/10.7717/peerj.9019/fig-8
http://dx.doi.org/10.7717/peerj.9019


Bacteroidetes classes

Bacteroidia

Cytophagia

Flavobacteriia

Chitinophagia

Sphingobacteriia

Incertae sedis

Saprospiria

Unclassified

A B

Tree scale: 1

IV
III

III

III

II

II

II

I
I

Tree scale: 0.1
II

IV

III
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Different from the other 19 BI trees of T9SS protein components, the BI tree of PorR
does not exhibit monophyletic clades for all major classes under Bacteroidetes (Figs. 2–6).

The presence of strong support (posterior probability value >0.95) as denoted by the
black branch leading to the top half of the BI tree of PorR (Fig. 3C) suggests that there
is strong support that the phylogeny exhibited by the BI tree of PorR deviates from the
phylogeny based on the 16S rRNA sequence (Fig. 7). Thus, there is a possibility that the
porR gene is subjected to horizontal transfer hence causing deviation from the expected
phylogeny (Pylro et al., 2012). Hirt, Schlievert & Dunny have demonstrated that virulence
factors and antibiotic resistance genes could be horizontally transferred (Hirt, Schlievert &
Dunny, 2002). Hence, this suggests the possibility that the porR gene that encodes one of
the virulence factors produced by P. gingivalis can be horizontally transferred (Shoji et al.,
2002; Shoji et al., 2014).

The arrangement of porR and its neighbouring genes in the P. gingivalis ATCC 33277
genome was identified in order to support the possibility that porR is horizontally
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transferred. P. gingivalis ATCC 33277 genome was chosen because many gene orthologs
that are involved in A-LPS biosynthesis have been identified in this genome (Shoji et al.,
2018). porR and its neighbouring genes are found to be flanked by insertion sequences
(IS5 family transposons) (Fig. 8). The IS5 family transposons (cyan rectangles) contain a
single open reading frame that encodes for IS5 family transposase that cleaves the 12 bp
inverted repeats (purple triangles) that flank the insertion sequences (Fig. 8). The 12 bp
inverted repeats show imperfect homology to each other with the consensus sequence:
GAGACCTTTG[CA]A. Both of the IS5 family transposons are ∼1300 bp in length. These
features are typical of IS5 family transposons (Mahillon & Chandler, 1998; Naito et al.,
2008). The intervening DNA segment and both IS5 family transposons that flank it might
form a composite transposon where the cleaving action of IS5 family transposases on
inverted repeats can mobilise the intervening DNA segment that contains the porR gene
and possibly subject it to conjugative transfer (Thomas & Nielsen, 2005; Brochet et al.,
2009). The length of the composite transposon is ∼70 kbp. However, it is also possible for
IS5 family transposase to cleave the inverted repeat directly downstream of rfa (PGN_1255)
(Fig. 8) which will reduce the length of the composite transposon to ∼47 kbp. It has been
reported that a transposon of ∼47 kbp in length is able to undergo both transposition
and conjugation processes (Brochet et al., 2009). Hence, it might be possible for composite
transposons of such length to undergo transposition and subsequently be horizontally
transferred via bacterial conjugation.

The intervening DNA segment contains seven genes that are involved in the biosynthesis
of A-LPS (Fig. 8). Both porR (PGN_1236) and ugdA (PGN_1243) genes are involved in
the Wbp pathway that is important for the biosynthesis of di-acetylated glucuronic acid
which is the structural sugar of A-LPS (Shoji et al., 2002; Shoji et al., 2014). The porS gene
(PGN_1235), which is an O-antigen flippase, and wzy gene (PGN_1242), which is an
O-antigen polymerase, are involved in the assembly of A-LPS on the periplasmic side of
bacterial IM (Shoji et al., 2013). gtfB (PGN_1251) and gtfE (PGN_1240) glycosyltransferase
genes are involved in the biosynthesis of the sugar moiety of A-LPS. rfa (PGN_1255)
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glycosyltransferase gene is involved in the biosynthesis of the lipid A-core moiety of A-LPS
(Shoji et al., 2018). However, there are other genes that are involved in the biosynthesis of
A-LPS and they are spread out throughout the genome (Shoji et al., 2018). Usually, genes
that are co-regulated and involved in a similar pathway are clustered in a single operon
(Yanofsky & Lennox, 1959; Osbourn & Field, 2009). Thus, it is possible that the other genes
do not form a cluster with the seven genes that are identified to be flanked by insertion
sequences (IS5 family transposons) because they are not co-regulated.

It is possible that those seven genes might be co-transferred via horizontal gene transfer.
Thus, phylogenetic analysis was performed for the protein alignment of UgdA that is
encoded by ugdA which, together with porR, are involved in the Wbp pathway and are
co-localised in the intervening DNA segment flanked by IS5 family transposons (Fig. 8).
The BI tree of UgdA (Fig. 9B) was constructed to be compared with the BI tree of PorR
(Fig. 9A). Different to the 19 BI trees of T9SS protein components, both BI trees do not
exhibit monophyletic clades for all major classes under Bacteroidetes. They also exhibit
similar topology where four similar clusters (I, II, III, and IV) with strong support (denoted
by a black branch leading to the cluster) have been identified in both BI trees. Cluster I
consists of terminal nodes from Flavobacteriia and a few terminal nodes from other classes.
Cluster II consists of terminal nodes fromPorphyromonas, Tannerella, and Parabacteroides
genera. Cluster III consists of terminal nodes from Rufibacter and Hymenobacter genera.
Cluster IV consists of terminal nodes from Prevotella, Bacteroides, Proteiniphilum, and
other genera. These four clusters exhibit similar relative positions to each other in both
BI trees (e.g., cluster I is closer to cluster II than the other clusters and cluster III is closer
to cluster II than the other clusters). However, due to the differences in branch lengths
between both BI trees, they look slightly different as the upper part of the UgdA tree (Fig.
9B) appears more elongated than the upper part of the PorR tree (Fig. 9A), while the lower
part of the UgdA tree (cluster I) appears more shortened than the lower part of the PorR
tree (cluster I).

Other than the BI tree of PorR, the BI trees of the other 19 T9SS protein components also
exhibit evidence of horizontal gene transfer perhaps between classes under Bacteroidetes.
As listed in Table S1, there are terminal nodes that are out of their expected monophyletic
clades in the BI trees of those components that suggests the genes that encode themmight be
horizontally transferred. In theory, the common ancestral species of a monophyletic clade
for a class under Bacteroidetes passes the gene that encodes T9SS protein components
to its descendant species. Thus, the descendant species that are out of their expected
monophyletic clades most likely acquired that gene from the common ancestral species
of a monophyletic clade from another class that could be interpreted as a horizontal gene
transfer between classes under Bacteroidetes (Thomas & Nielsen, 2005; Brochet et al., 2009).
It is interesting to highlight that there are species that frequently have their corresponding
terminal nodes in those 19 BI trees out of their expected monophyletic clades (Figs. 2–6)
such as F. taffensis DSM 16823, bacterium L21-Spi-D4, O. hongkongensis DSM 17368, and
D. orientale. Thus, it is likely that those bacteria frequently acquire their T9SS components
through horizontal gene transfer. However, for the genes that encode those 19 components,
they might undergo horizontal gene transfer less frequently compared to porR that causes
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most of the terminal nodes of BI trees of those components to cluster according to their
respective classes. It might be because the intervening DNA segment that contains the
porR gene is easily exchanged between bacteria under Bacteroidetes due to the presence of
insertion sequences (IS5 family transposons) that flank it (Fig. 8).

T9SS is made up of various protein components that form the regulation, translocation,
energetic, and modification components. Currently, the secretion system is primarily
found in bacteria under the Bacteroidetes phylum (Abby et al., 2016). Bacteria from
classes under Bacteroidetes (Bacteroidia, Flavobacteriia, Cytophagia, Chitinophagia,
Sphingobacteriia, Saprospiria, Incertae sedis, and unclassified) are found to acquire T9SS
protein components (Figs. 2–6). However, not all of them acquire the 20 components that
have been reported (Sato et al., 2010; Lasica et al., 2017). As shown in the 20 BI trees of
T9SS protein components (Figs. 2–6), only bacteria under Bacteroidia, Flavobacteriia, and
Chitinophagia acquired the 20 components investigated. The bacteria under Cytophagia
only acquired 19 components (except PorN). The bacteria under Saprospiria only acquired
18 components (except PorL and PorG). The bacteria under Sphingobacteriia only acquired
17 components (except PorQ, PorU, and PorZ). The unclassified bacteria only acquired
17 components (except PorN, PorU, and PorG). The bacteria under Incertae sedis only
acquired 11 components (PorQ, PorR, Sov, PorU, PorV, PorX, PorY, PorZ, SigP, Omp17,
and PorF). It is interesting to note that PorU, PorZ, and PorQ form the modification
components of T9SS. Thus, Sphingobacteriia does not acquire the components that
perform post-translational modifications on T9SS cargo proteins such as cleavage of CTD
and A-LPS glycosylation. Perhaps, T9SS acquired by Sphingobacteriia does not cleave
the CTD of cargo protein and glycosylate it with A-LPS, but leaves the cargo protein
bounded to PorV after it is translocated to bacterial cell surface by Sov. Another possible
explanation is that Sphingobacteriia does have proteins that perform the functions of
missing protein components. However, those proteins exhibit limited sequence similarity
with any currently known T9SS protein component. Thus, they could not be detected by
the homology searching method used in this work. This explanation could also be applied
for other species of bacteria under Bacteroidetes that do not acquire the homologs of the
20 T9SS components.

This work has found other species under Chitinophagia, Saprospiria, and those that are
unclassified that acquired homologs of T9SS components that, to our knowledge, might
not have been reported (McBride & Zhu, 2013). Those other species and the homologs of
T9SS components they acquired are shown in Fig. 10. This identification might be due to
the analysis that was performed which might cover more bacterial species than previous
works as more bacterial genomes have been completely sequenced in the past few years.

CONCLUSIONS
The objective of this work was to investigate the phylogenetic relationship among putative
members of 20 T9SS component protein families (Emrizal & Muhammad, 2018). The
Bayesian Inference (BI) trees for 19 T9SS protein components exhibit monophyletic clades
for all major classes under Bacteroidetes with strong support for the monophyletic clades
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or its subclades, which is consistent with the phylogeny exhibited by the constructed BI
tree of 16S rRNA. However, the BI tree of PorR is different from the other 19 BI trees of
T9SS protein components as it does not exhibit monophyletic clades for all major classes
under Bacteroidetes. There is strong support for the phylogeny exhibited by the BI tree of
PorR which deviates from the phylogeny based on the 16S rRNA sequence. Thus, there
is a possibility that the porR gene is subjected to horizontal transfer as it is known that
virulence factor genes could be horizontally transferred. Seven genes that are involved
in the biosynthesis of A-LPS that includes porR are found to be flanked by insertion
sequences (IS5 family transposons). This suggests that the intervening DNA segment that
contains the porR gene can be transposed and subjected to conjugative transfer. Thus,
the seven genes might be co-transferred via horizontal gene transfer. Similar to the BI
tree of PorR, the BI tree of UgdA does not exhibit monophyletic clades for all major
classes under Bacteroidetes (both are a part of the seven genes). Both BI trees also exhibit
similar topology where the four identified clusters with strong support have similar relative
positions to each other in both BI trees. Other than the BI tree of PorR, the BI trees of the
other 19 components also exhibit evidence of horizontal gene transfer. However, for the
genes that encode those 19 components, they might undergo horizontal gene transfer less
frequently compared to porR because the intervening DNA segment that contains porR
is easily exchanged between bacteria under Bacteroidetes due to the presence of insertion
sequences (IS5 family transposons) that flank it. This work also found other species under
Chitinophagia, Saprospiria, and those that are unclassified that acquired T9SS component
protein homologs that, to our knowledge, might not have been reported.
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