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At present, most of departments in colleges have their own official accounts, which have

become the primary channel for announcements and news. In the official accounts,

the popularity of articles is influenced by many different factors, such as the content

of articles, the aesthetics of the layout, and so on. This paper mainly studies how to

learn a computational model for predicting page view on college official accounts with

quality-aware features extracted from pictures. First, we built a new picture database

by collecting 1,000 pictures from the official accounts of nine well-known universities in

the city of Beijing. Then, we proposed a new model for predicting page view by using

a selective ensemble technology to fuse three sets of quality-aware features that could

represent how a picture looks. Experimental results show that the proposed model has

achieved competitive performance against state-of-the-art relevant models on the task

for inferring page view from pictures on college official accounts.

Keywords: page view, quality-aware features, selective ensemble, human visual system, college official accounts

1. INTRODUCTION

With the popularization and development of the Internet, the official accounts have attracted
extensive attention. The majority of college departments now own accounts because it has become
the main channel for publishing notices and posting news. Page view is a very significant indicator
for college official accounts, capable of visually showing the popularity of an article. If we can
predict the page views, it is of great help to improve the attention of audience for articles. The
number of views on articles is influenced by the content of pictures. To this end, we explore the
quality-aware features of pictures and attempt to predict page views in the official accounts based
on image processing technology in this paper.

In recent years, with the development of image processing technology, there are many
great contributions in multimedia telecommunication domain (Geng et al., 2011; Kang et al.,
2019; Moroz et al., 2019; Su et al., 2019; Wu et al., 2019; Yildirim, 2019), education
and teaching (Richard, 1991; Greenberg et al., 1994; Rajashekar et al., 2002; Yaman and
Karakose, 2016), and environmental perception and protection, such as air pollution detection
(Gu et al., 2020a,c, 2021b; Liu et al., 2021), PM2.5 monitoring (Gu et al., 2019, 2021a),
air quality forecast (Gu et al., 2018, 2020b), and distance education (Zheng et al., 2009).
Among them, picture quality assessment (PQA) has been receiving a lot of attention as
an important part of image processing technology. With a variety of PQA models available
from Wang et al. (2004), how to achieve evaluation results that are consistent with the
subjective PQA of human beings is crucial. Usually, subjective experiments are performed by
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human observers who score the pictures, and the final reliable
results obtained are taken as the ground truth (Gu et al.,
2014, 2015a). However, the method mentioned above is time
consuming and complicated, so the focus of relevant scientific
research has shifted to the design of objective PQA algorithms
implemented by computers. The objective PQA algorithm has
the characteristics of convenience, high-speed, repeatable, batch
processing, and real-time, which make up for the deficiency of
the subjective PQA method.

The objective PQA approach establishes a mathematical
model that is combined with the subjective human visual system
(HVS) to realize the evaluation of picture quality. According to
the amount of information provided by the reference picture,
the existing objective PQA methods can be divided into: full
reference (FR) PQA method, reduced reference (RR) PQA
method, and no reference (NR) PQA method. Among them,
the FR PQA method is the most reliable and technically mature
evaluation method. It has a complete original picture and
allows a one-to-one correspondence comparison of the distorted
picture with the pixels of the original picture. Instead, RR
PQA method requires only partial original picture information,
researchers like Liang and Weller (2016) and Wu et al. (2013)
put forward a series of novel RR PQA algorithms. The FR
PQA algorithm and the RR PQA algorithm combine the visual
features of the picture to quantify the difference between the
original picture and the distorted picture, so as to get the quality
of pictures.

In official accounts, the original picture information is
not available, so it is particularly important to propose PQA
algorithm. Most of the current NR PQA methods were proposed
based on two steps, which are feature extraction proposed by Gu
et al. (2017b) and the support vector machine (SVM) proposed
by Smola and Schölkopf (2004) that can find out the underlying
relationship between the selected features and human subjective
evaluations. No reference method is a situation where none of
the information contained in any reference picture or video
is used to draw quality conclusions. Since the picture is not
available in most cases, more and more metrics were proposed
for NR PQA method. Nowadays, the advanced method (e.g.,
BRISQUE) is a universal blind PQA model based on Natural
Scene Statistics (NSS) proposed by Mittal et al. (2012). Natural
scene pictures belong to a small domain of Internet picture
signals that follow predictable statistical laws. Specifically, the
natural scene pictures captured by high-quality devices obey
the Gaussian-like distribution, while the pictures with distortion
(such as blur, noise, watermarks, color transformation, etc.) do
not follow the Bell curve law. Based on this theory, the features
of NSS can be used as an effective and robust natural PQA tool.
In recent years, a large number of studies based on NSS have
been carried out, such as the MSDDs presented by Jiang et al.
(2018), Bliinds-II constructed by Saad et al. (2012), BLIQUE-
TMI created by Jiang et al. (2019b), GMLF designed by Xue
et al. (2014), and DIIVINE presented by Moorthy and Bovik
(2011), which is capable of assessing the quality of distorted
pictures across multiple distortion categories, etc. In addition,
Ruderman (1994) investigated the data rules of natural pictures,
which provides a basis for evaluating the perceptual quality of

pictures. The local features of pictures can perfectly reflect the
perceptual quality of pictures.

Due to the fact that most of the audiences get the information
from official accounts from vision, we also introduce into the
approach based on the HVS. Advances in brain science and
neuroscience studied by Friston et al. (2006) have encouraged
scholars to explore new fields of machine vision. Eye movement
research is also of significance to the visual perception of brain
science. Jiang et al. (2019a), Kim et al. (2019), Lin et al. (2019),
Tang et al. (2020), Zhang et al. (2020), Jiang et al. (2021), Wang
et al. (2021) had carried out a lot of research work. Brain science
research have shown that the brain produces an intrinsic model
to explain the process of perception and understanding, and that
the free energy generated during this cognitive process can reflect
the difference between picture signals and internal descriptions.
By modeling important physiological and psychological visual
features, Xu et al. (2016) discussed the mechanism related to
free energy in the human brain and proposed an efficient PQA
method by using JPEG and JPEG2000 compression, Jiang et al.
(2020) presented a new FR-SIQM method by measuring and
fusing the degradations on hierarchical features. Besides, Gu et al.
(2015b) designed the NFSDM in an alternative way of extracting
features. On the basis of the NFSDM approach, the NFERM is
combined with HVS to reduce the number of extracted by half,
further improving the accuracy of the evaluation.

Based on image processing technology, this paper investigates
a large collection of quality-aware features of pictures to
predict the page view that reflects the popularity of articles. To
accomplish this goal, the authors do a lot of work to collect
the pictures published by the WeChat official accounts of nine
universities in Beijing in recent months, and establish a new
picture database consisting of 1,000 pictures. In addition, we
collect three groups of features from the Official Accounts Picture
Quality Database (OAPQD) and use the selective ensemble
technique proposed for NSS, HVS, and histogram feature analysis
to fuse these features, allowing them to fit the correlation between
page view and the quality of pictures. The results of experiments
show that these features are able to predict the page view of
articles, and that the method of using the three groups of features
can more accurately fit the correlation.

The structure of this paper is as follows. In section 2, we
describe the construction of the OAPQD dataset. In section 3,
the three features and the selective ensemble method that can
fuse them are presented separately. We conduct the comparison
experiment on the OAPQD to analyze themagnitude of the seven
features on fitting the page view in section 4. Section 5 gives the
concluding remarks.

2. THE DATASET

With the development of information and network technology,
traditional media were gradually replaced by digital new media,
such as WeChat official account, which has been widely used by
all walks of life. Currently, most universities use official accounts
as the platform for campus culture construction. In order to
better explore the reasons why articles are popular on public
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accounts, we focus mainly on the page view of articles. To this
end, we first subscribed to the WeChat official accounts of nine
well-known universities in Beijing, then selected the pictures
inserted in the articles that were published by the accounts in
the past months, based on which a new database is created. To
be specific, the most researched and representative pictures are
extracted from the selected article. Simultaneously, the number
of page views corresponding to the selected article is recorded,
with a maximum of 100,000 and a minimum of 253. We selected
a picture from a large number of articles published by official
accounts of schools every day, and we have collected 1,276
pictures altogether. However, not each of the above pictures has
research value. In these pictures, the selection criteria are first
based on the picture content and type, and then exclude extreme
special cases, such as the case where the picture quality is very
poor but the number of clicks is very high. Finally, 1,000 most
representative pictures were selected to form the picture data set.
Figure 1 shows the subset of OAPQD.

By observing the data set we constructed, we find that there
is a positive correlation between picture quality and page view.
As shown in Figure 2, there are three pictures from left to right.
The picture on the left is the most colorful and clear among the
three pictures, giving a better visual experience with 41,000 hits.
The intermediate picture is of poor quality, with only 7,466 clicks.
The picture on the far right is the least visually appealing and thus
logically the least clicked picture with only 1,052.

3. METHODOLOGY

The specific features can well reflect the page view of pictures,
but the fitting accuracy of using a certain characteristic feature
alone is relatively low. In this section, we will introduce the three
groups of complementary features extracted based on natural
scene analysis, histogram, and free energy theory, and further
describe a selective ensemble approach capable of fusing the
99 features.

3.1. NSS-Based Feature Extraction
The first group is composed of 36 features (f01-f36), which were
proposed on the basis of NSS theory. Bovik (2010) suggested that
natural pictures have regular statistical characteristics, therefore,
the statistical features of natural scenes can be considered as
an effective and powerful tool for PQA. In general, complex
image textures affect the perceptual level of distortion, and the
local brightness normalization can greatly reduce the correlation
between adjacent pixels of the original picture and the distorted
picture. Thus, the classic spatial NSS model is first used to
preprocess the picture to remove the local mean value, and
then the picture is segmented and normalized to extract the
mean subtracted contrast normalized coefficient of natural scene
pictures. The Mean Subtracted Contrast Normalized (MSCN)
coefficients vary in different ways due to distinct distortions. On
the basis of this variation, the type of picture distortion and
the perceived quality of pictures can be predicted. The pixel
intensity of natural pictures follows a Gaussian distribution,
which can be represented by a Bell curve. In order to clearly
observe the differences in data distribution between different

distortion types and natural pictures, we use the generalized
Gaussian distribution (GGD) to fit the distribution of MSCN.
The sign of the transformed picture coefficients are regular, but
Mittal et al. suggested that the existence of distortion affects this
above correlation structure. In order to research the correlation
information between connected pixels, the zero-mode AGGD is
used to model the inner product of MSCN adjacent coefficient.
Themomentmatching-based approach proposed by Lasmar et al.
(2009) can estimate the parameters of the AGGD. Then we
calculate the adjacent pairs of coefficients from the horizontal,
vertical, and diagonal directions to obtain the 16 parameters,
respectively. Low-resolution pictures are obtained from each
picture through low-pass filtering and downsampling with a
factor of 2.Wemeasure theMSCN parameters fitted by GGD and
the 16 parameters generated by AGGD according to the above
two scales. Once all the work mentioned above is done, the first
feature set consisting of 36 features is obtained.

3.2. Histogram-Based Feature Extraction
The second group consists of 40 features (f37-f76), illustrating
the main features of the HVS introduced from biology in image
processing. Since the visual information in picture is often
redundant, the understanding of the HVS is mainly related
to its basic features, such as contour, zero cross, and so on.
Gradient magnitude (GM) feature can reflect the intensity of
local luminance variations. The local maximum GM pixels can
reflect small details and textural change of pictures, which is
the main element of contour. GM has been widely used for
PQA methods, such as FSIM proposed by Zhang et al. (2011),
GMSD constructed by Xue et al. (2013), PSIM designed by
Gu et al. (2017a), and ADD-GSIM established by Gu et al.
(2016), where picture quality is evaluated only by the similarity
of gradient magnitude. Besides, on the basis of GM method,
Min et al. (2019b) first proposed a picture dehazing algorithm,
then a novel objective index named DHQI was presented by
Min et al. (2019a) can be utilized to evaluate DHAs or optimize
practical dehazing systems. Finally, a blind PQA method was
introduced by Min et al. (2018) has a superior performance.
Generally, GM is calculated using linear filter convolution, where
the typical filters are mainly Sobel, Prewitt, Roberts, etc. Unlike
the GM operator, isotropic measurements on the second spatial
derivative of pictures show the strongest brightness variation.
The Laplacian of Gaussian (LOG) operator reflects the intensity
contrast of a small spatial neighborhood, and Marr and Hildreth
(1980) proposed that it can model the receptive fields of retinal
ganglion cells. The LOG operator and the GM operator adopt
the anisotropic calculation method without angular preference
to obtain the local picture structure from different angles. They
can represent the structural information of pictures, especially
the local contrast features, and therefore can be used to form
the semantic information of pictures. Finally, the picture local
quality prediction is achieved by using these two operators
mentioned above.

3.3. Free Energy-Based Feature Extraction
The 23 features (f77-f99) extracted in the third group are inspired
by the free energy principle and the structural degradation
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FIGURE 1 | Representative nine pictures from the OAPQD data set, the content of above mainly includes architecture, landscape, people, text content, meeting

scene, etc.

FIGURE 2 | The quality of the three pictures in the OAPQD decreases gradually from left to right.

model (SDM). A basic premise of the free energy theory is
that an internal generative model can be used to estimate the
gap between the viewing scene and the corresponding brain
prediction. It measures the difference between the probability
distribution of environmental quantities acting on the system
and an arbitrary distribution encoded by its configuration.
Since this process is very closely related to the quality of
human visual perception, it can be used for the PQA method.
The free energy of pictures can be approximated by the
AR model as the total description length of pictures data.

In an effective RR SDM proposed by Gu et al. (2015b),
we observe the structural degradation after low-pass filtering
of the picture. The spatial frequency of input picture I
has different degrees of decrease. We first define the local
mean and variance of I with a two-dimensional circularly
symmetric Gaussian weighting function. The linear dependence
between the free energy and the structural degradation
information provides an opportunity to characterize distorted
pictures in the absence of the information of original picture.
Furthermore, the NFEQM is added to the third group as
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feature f99 due to its excellent performance in noisy and
blurred pictures.

3.4. Selective Ensemble-Based Page View
Inference
A single picture feature does not represent the picture quality
well, which will lead to its poor fitting of the relationship
between features and page view. To solve this question, we
consider an ensemble learning approach which can produce
strong generalization to improve the fitting accuracy. This
content has become a hot research topic in the international
machine learning community, so there are more and more
methods presents by scholars, such as the geometric structural
ensemble (GSE) learning framework approach presented by Zhu
et al. (2018). Zhou et al. (2002) suggested that the presence of
high-dimensional selective ensemble methods based on direct
merging is prone to overfitting or some of these features
may be overlooked in the fitting process. On the basis of
this theory, we adopt the method of selective ensemble to
further enhance the performance of our presented approach in
this paper.

It is natural to combine features to derive a more effective
preprocessing method, so as to better remove random details
caused by the varying viewing method and picture resolution
in different but supplementary domains. We combine the
three features two by two and last fuse the three by using a
selective ensemble technique proposed by Gu et al. (2020b)
and Chen et al. (2021), so as to make an experimental
comparison with the accuracy of the fit using single features.
The following seven categories can be generated based on the
number of features: (1) BRISQUE; (2) GMLF; (3) NFERM; (4)
BRISQUE+GMLF; (5) BRISQUE+NFERM; (6) GMLF+NFERM;
(7) BRISQUE+GMLF+NFERM. The experimental results show
that the number of fused features affects the linearity of
the results, where the method that fuses three features has
the best performance and the single feature has the worst
accuracy in fitting the correlation between picture quality and
page view.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we carry out the comparison experiment on the
OAPQD, so as to understand the degree of seven features on
fitting the page view of articles. In this process, we select the two
classical metrics to evaluate the performance of experiments.

In order to further predict page view with quality-aware
features, experiments are conducted on the OAPQD dataset
consisting of 1,000 pictures selected from the WeChat official
accounts of nine universities in Beijing. The pictures from
the dataset used for testing are rich in content and variety,
and can improve well the hit of pictures published in the
college official accounts. This provides a certain foundation for
our proposed method. In the experimental analysis section,
we use two commonly statistical indicators as the metrics
to assess the performance, which are the Pearson linear

correlation coefficient (PLCC) and the Spearman rank order
correlation coefficient (SRCC). The PLCC is a linear correlation
coefficient with scale invariance, which indicates the degree of
similarity between picture features and page view. The PLCC is
defined as

PLCC =

∑

i(qi − q̄) · (oi − ō)
√

∑

i(qi − q̄)2 ·
∑

i(oi − ō)2
(1)

where oi and ō represent the features of the ith picture and its
overall mean value, and qi and q̄ are the page view of ith picture
and its mean value. Before using the PLCC metric for evaluation,
we employ the nonlinear regression equation proposed by Sheikh
et al. (2006), which is given by

p(x) = α1

[

1

2
−

1

1+ eα2(x−α3)

]

+ α4x+ α5 (2)

where p(x) represents the predicted score, αi (i = 1,2,3,4,5) is
the parameter of the generation fitting, and x is the original
prediction score. While the SRCC represents the strength of the
monotonic relationship predicted by the algorithm, it can be
calculated by

SRCC = 1−
6

N(N2 − 1)

N
∑

i=1

d2i (3)

where N is the number of pictures in the dataset, and di is the
difference between the ranking of ith picture in features and
page view. The value range of PLCC and SRCC is [−1, 1]. The
closer the absolute value of these two indicators is to 1, the
stronger the correlation between picture features and page view,
where >0 means a positive correlation and <0 means a negative
correlation. In the regression problem, the closer the value is to 1,
the higher the accuracy of the algorithm.

We extract three types of features, where the first set of
feature coefficients has the characteristic statistical property
of varying due to the distortion. Quantifying these variations
allows obtaining the type of picture distortion while enabling
the prediction of page view. The second group of features
is composed of 40 local contrast features, GM and LOG,
which can detect changes in the semantic structure of the
picture due to variations of luminance for the purpose
of predicting the page view of the article. The third set
of features consists of 23 features based on free energy
and structure degradation information. In addition, they are
inspired by the HVS and the free energy theory, which
fill the gap in the NR PQA method due to the lack of
prior knowledge.

The features mentioned above can reflect the page view
well, and based on this, we use selective ensemble technology
to fuse features in different ways for comparison experiments.
The results of comparison experiments show that the method
that fuses all the three features together obtain the largest data
value and the highest accuracy of the results, followed by the
method of fusing two features. The experimental data is placed
inside Table 1, where the values obtained by the best-performing
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TABLE 1 | The Pearson linear correlation coefficient (PLCC) and Spearman rank

order correlation coefficient (SRCC) values of seven feature fusion methods on the

dataset.

Algorithm PLCC SRCC

BRISQUE (direct use) 0.0156 0.0347

GMLF (direct use) 0.0034 0.0343

NFERM (direct use) 0.0683 0.0146

BRISQUE (re-train) 0.3925 0.2707

GMLF (re-train) 0.3911 0.3340

NFERM (re-train) 0.3983 0.2782

BRISQUE+GMLF 0.4545 0.3577

BRISQUE+NFERM 0.4454 0.3054

GMLF+NFERM 0.4387 0.3655

BRISQUE+GMLF+ NFERM 0.4764 0.3863

The top data values are given in bold.

method are given in bold. In Table 1, it can be seen that the
values of PLCC and SRCC are very approximate when using
a single algorithm. It is not difficult to find that GMLF has
gained the best results (on average) of SRCC, which is sensitive
to pictures with gradient features. However, Table 1 reports the
low correlation performance on SRCC when combined with the
features from BRISQUE and NFERM. It also can be seen that
the more the number of fused picture features, the better the
fit to the relation between features and page view. Meanwhile,
it shows a certain degree of similarity between the features and
click-through rate. This method proposed in this paper can
provide guidance for themanagement of college official accounts.
For example, the insertion of high-definition and high-quality
pictures into published articles can increase the visibility of
the articles.

5. CONCLUSION

In this paper, we have studied the connection between picture
features and the popularity of articles published in college

official accounts. We elaborately select 1,000 pictures from

the official accounts of nine universities, construct a picture
database named OAPQD, and record the clicks of corresponding
articles. Three groups of features extracted from different angles
can reflect the features, and the stacked selective ensemble
technology is used to fuse them for comparison experiments.
The experimental results show that the method integrating three
groups of 99 features at the same time has the highest accuracy
in fitting the page view. Therefore, in future publicity work,
the selection of pictures is very meaningful for the popularity
of official account articles. For the publicity department of
the college, they can import our method to predict the
page views of their articles and use these data parameters
to adjust picture quality or change diffusion strategy. All of
these measures can improve the visibility of official accounts to
some extent.
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