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Genetic association studies 
of alterations in protein function 
expose recessive effects on cancer 
predisposition
Nadav Brandes1, Nathan Linial1 & Michal Linial2*

The characterization of germline genetic variation affecting cancer risk, known as cancer 
predisposition, is fundamental to preventive and personalized medicine. Studies of genetic cancer 
predisposition typically identify significant genomic regions based on family-based cohorts or 
genome-wide association studies (GWAS). However, the results of such studies rarely provide 
biological insight or functional interpretation. In this study, we conducted a comprehensive analysis 
of cancer predisposition in the UK Biobank cohort using a new gene-based method for detecting 
protein-coding genes that are functionally interpretable. Specifically, we conducted proteome-
wide association studies (PWAS) to identify genetic associations mediated by alterations to protein 
function. With PWAS, we identified 110 significant gene-cancer associations in 70 unique genomic 
regions across nine cancer types and pan-cancer. In 48 of the 110 PWAS associations (44%), estimated 
gene damage is associated with reduced rather than elevated cancer risk, suggesting a protective 
effect. Together with standard GWAS, we implicated 145 unique genomic loci with cancer risk. While 
most of these genomic regions are supported by external evidence, our results also highlight many 
novel loci. Based on the capacity of PWAS to detect non-additive genetic effects, we found that 
46% of the PWAS-significant cancer regions exhibited exclusive recessive inheritance. These results 
highlight the importance of recessive genetic effects, without relying on familial studies. Finally, we 
show that many of the detected genes exert substantial cancer risk in the studied cohort determined 
by a quantitative functional description, suggesting their relevance for diagnosis and genetic 
consulting.

Cancer is considered a genetic disease. Notably, that characterization typically refers to somatic mutations in 
tumors, not to inherited germline genetic variation. Nonetheless, like with any non-Mendelian disease, germline 
variants are known to contribute to cancer predisposition1.

The best-known examples of cancer predisposition genes are the tumor suppressors BRCA1 and BRCA2 
involved in breast and ovarian cancers2. By 2014, following thirty years of research, 114 cancer predisposition 
genes had been reported, mostly based on families with high prevalence of cancer3. As of 2016, the list was 
expanded to include genes from pediatric cancers4. Some of the genes most prevalent in children are also known 
cancer driver genes from the somatic context (e.g. TP53, APC, BRCA2, NF1, PMS2, RB1 and RUNX1). Recently, 
a based unified list of 152 cancer predisposition genes was refined on germline variants from The Cancer Genome 
Atlas (TCGA) across 33 cancer types5 (see also the discussion in6).

Although the heritability of most cancers is considerable7–9 and despite many years of research leading to 
the identification of numerous genes, the overall genetic risk explained by the discovered genes remains quite 
limited. It turned out that BRCA1 and BRCA2 are quite exceptional in their high penetrance, with most cancer 
predisposition genes showing only mild effects10–13. Notably, a gene’s effect size is highly dependent on the cancer-
type and population context. For example, BRCA1 and BRCA2 are mostly specific to a small set of cancer types 
such as breast and ovarian cancer, and are highly enriched in Ashkenazi Jews2.

In recent years, the exponential growth in genotyped cohorts and the availability of genome-wide associa-
tion studies (GWAS) have allowed the discovery of additional genetic loci associated with cancer. As opposed to 
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family studies, GWAS can pick genetic factors with smaller effect sizes, provided that the variants are common 
enough. Several years of GWAS research into cancer predisposition have implicated numerous cancer predis-
position loci (e.g. in breast14,15, lung16, prostate17, colorectal cancer18 and melanoma19). It is anticipated that by 
increasing cohort sizes, more genetic associations will be found. Interestingly, the overlaps of significant loci in 
independent GWAS works studying the same cancer types tend to be surprisingly small, supporting the claim that 
GWAS efforts in this domain are far from saturated20,21. Benefits from GWAS are also constrained by the lack of 
interpretability of most implicated loci, which do not appear to affect any functional elements in the genome22.

The majority of GWAS projects are restricted to specific cancer types, limiting their capacity to draw strong 
conclusions about the similarities and differences between the genetic signatures of cancer types. Moreover, the 
collective study of all cancer types as a single phenotype, known as pan-cancer, is prevalent in the somatic world23, 
but remains understudied in the germline context24. The UK Biobank (UKB) cohort25,26 is highly suitable for 
comparative studies between phenotypes, due to its uniform standards and protocols applied across all samples. 
The UKB covers ~ 500,000 genotyped individuals with open medical records. As it recruited only individuals 
older than 40 years, the cohort is enriched with cancer cases24.

An important limitation of GWAS is its assumption of additive genetic effects, which leads to oversight of 
dominant and recessive effects. This limitation is particularly relevant to recessive inheritance. While some 
GWAS works have modeled recessive inheritance at the variant level, this solves only a small part of the problem, 
as recessive effects are likely to occur at the gene level. Specifically, it is anticipated that most recessive effects 
would manifest through compound heterozygosity, namely different variants affecting the two copies of the 
same gene27,28. Unfortunately, variant-level approaches like GWAS cannot detect genetic patterns that transcend 
individual variants. As attested by family studies, recessive inheritance is likely to play a major role in cancer 
predisposition29–31, as in other complex traits32.

Recently, we developed Proteome-Wide Association Study (PWAS)33, a new gene-based method that addresses 
many of the shortcomings of GWAS. PWAS detects gene-phenotype associations that are mediated by alterations 
to protein function (Fig. 1). To do so, it considers the proteomic context of genetic variants and their functional 
effects. As a gene-based method, PWAS aggregates the signal from all variants affecting the same protein-coding 
gene, and can detect genes with dominant and recessive effects. Unlike GWAS, PWAS associations are supported 
by concrete functional effects in coding genes, making them more interpretable.

In this work we study genetic predisposition to cancer in the UKB across 10 cancer types (including pan-
cancer) using genome-wide and proteome-wide association studies, thereby providing a systematic view of 
genetic cancer predisposition from a protein function perspective. We compare our results to contemporary 
clinical knowledge about cancer predisposition and to catalogues of cancer driver genes from the somatic world. 
We took advantage of the capacity of PWAS to model dominant and recessive effects to systematically study the 
importance of these heritability modes in cancer predisposition across the human coding genome.

Results
Genetic and protein‑function analysis of cancer predisposition in the UK Biobank.  From the 
UKB, we derived a study cohort of 274,830 unrelated white individuals (Fig. 2). Based on their medical records, 
we determined that 56,634 of those individuals had a history of cancer. In addition to this pan-cancer view, we 
also considered nine distinct cancer types: melanoma, leukemia, breast, ovarian, prostate, lung, skin, pancreatic 
and colorectal cancer. We studied each of the ten defined cancer types (the nine specific cancers and pan-cancer) 
using both GWAS and PWAS independently. With GWAS we found 883 significant variant-cancer associations 
in 100 unique genomic regions, and with PWAS we found 110 significant gene-cancer associations in 70 unique 
genomic regions. Altogether, the GWAS and PWAS associations mapped to 145 unique genomic regions, avail-
able at Supplementary Table S1. The full GWAS and PWAS results across the ten cancer types and all tested vari-
ants and genes are available at Supplementary Table S2 and Supplementary Table S3.

We compared the 145 discovered genomic regions against prominent cancer predisposition gene panels used 
in the clinics (CleanPlex TMB 500 and Invitae Multi-Cancer). We also compared our results to three catalogues 
of cancer driver genes: Census34, the pan-software catalogue35 and FABRIC36,37. We find that a majority of the 145 
significant cancer regions are indeed supported by external evidence (clinical panels, cancer driver catalogues, or 
both), but 51 of the 145 regions (35%) appear as new discoveries (Fig. 3). We also observe that external validation 
is slightly stronger for significant regions that are supported by both GWAS and PWAS.

Single‑gene loci with direct interpretation.  To demonstrate the discovered genetic signal of cancer 
predisposition, we begin by focusing on high-confidence associations with plausible causal mechanisms. One 
of the benefits of PWAS is its capacity to suggest concrete protein-coding genes underlying genetic associations. 
However, like GWAS, PWAS is also sensitive to linkage disequilibrium, which can lead to the genetic signal 
being spread across an extended genomic region and mistakenly attributed to an unrelated nearby gene. For this 
reason, it is of interest to examine significant associations that are restricted to single genes. We define a signifi-
cant cancer region to be a soliton region if i) it has exactly one gene significant by PWAS, and ii) the significance 
is very strong (FDR q-value < 1E−03). Of the 145 cancer regions, 14 are solitons according to this definition 
(Table 1).

5 of the 14 soliton genes are supported by gene panels (CleanPlex or Invitae), and 3 of them are supported by 
Census and other cancer driver catalogues. Importantly, the criteria of external evidence for the solitons listed in 
Table 1 are stricter than those used for the genomic regions in Fig. 3. Whereas in Fig. 3 we considered evidence 
for any gene within the same region (which may include up to 138 genes; see Supplementary Table S1), in Table 1 
we only consider evidence matching the exact soliton gene.
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In addition to recovering genomic regions that are missed by GWAS, a major contribution of PWAS is high-
lighting the exact genes that drive known associations. Of the 14 soliton genes, 8 are also found by standard 
GWAS, whereas the other 6 are below the exome-wide significance threshold (5E−07). IRF3 (interferon regula-
tory factor 3), for example, is associated with non-melanoma skin cancer according to PWAS with overwhelming 
significance (FDR q-value = 7E−6), but not according to GWAS (p = 1E−6). IRF3 is part of the innate immune 
system, whose one of its major roles is to recognize and destroy infected and tumorous cells. In-vivo and expres-
sion studies have implicated IRF3 in melanoma38,39 and other cancer types40,41.

The list of solitons also includes novel discoveries. For example, UBE3A (ubiquitin protein ligase E3A; also 
known as E6AP) is known for resulting in the ubiquitylation and degradation of the p53 tumor suppressor in 

Figure 1.   Proteome-wide association study (PWAS). PWAS finds associations between phenotypes (such 
as cancer) and protein-coding genes that are mediated by genetic alterations to protein function. (A) When 
studying a protein-coding gene, PWAS collects all the called variants in the genome of an individual that affect 
the coding sequence of that protein. Using a machine-learning model, it predicts how damaging these variants 
are to the protein function (for example, how likely an enzyme is to retain its catalytic activity given each of 
the mutations, which might affect its 3D structure). It then aggregates the predictions made for all the variants 
into overall gene effect scores. Each gene is assigned two such scores, corresponding to either a dominant or a 
recessive genetic effect. The dominant effect score attempts to capture the event that the gene is affected by at 
least one damaging variant, whereas the recessive effect score attempts to capture the event that it is affected 
by at least two damaging variants. (B) Given a cohort of cases and controls, PWAS assigns each individual 
dominant and recessive effect scores for the studied protein-coding gene based on his or her genetics, as 
described in (A). By comparing the distributions of gene effect scores assigned to cases and controls, PWAS can 
detect statistically significant differences between the two groups (measured by p-values and FDR q-values). 
These differences reflect the estimated functional damage to the gene, finding, for example, that the studied 
protein appears to be more damaged in cases than in controls.
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papillomavirus-positive cervical cancer42, and it has also been implicated with prostate and other cancers43–45. 

Figure 2.   Analysis workflow. From the UK Biobank cohort (~ 500 K individuals), we derived a study cohort 
of 274,830 individuals. Based on their medical records, we determined whether each of the individuals had 
a history of cancer, focusing on nine major cancer types and pan-cancer which combines individuals with 
any cancer (56,634 overall). We used two statistical methods, standard GWAS and PWAS, over each of the 
ten cancer types, and found 883 variant-cancer and 110 gene-cancer significant associations, respectively. We 
merged the significant associations into 145 unique genomic regions (of at least 1,000,000 base pairs each), 
and validated the regions by comparing them with prominent gene panels used in the clinics and catalogues of 
cancer driver genes.

Figure 3.   External evidence supporting the cancer predisposition regions. Partitioning of the 145 significant 
cancer genomic regions according to which method found them (GWAS, PWAS or both) and supporting 
evidence (overlap with clinical cancer gene panels, driver cancer genes, both, or none).
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However, E6AP hasn’t been linked to pancreatic cancer, an association that we observe here (PWAS 
q-value = 8E−04). Another example is AVP (arginine vasopressin; also known as ADH), a gene producing a 
hormone involved in water balance homeostasis and complex behavioral traits46. Despite vast literature about the 
hormone, there doesn’t appear to be any direct evidence linking the gene to cancer or specifically to melanoma, 
as observed here (PWAS q-value = 9E−04).

Functional damage to coding genes is often associated with reduced cancer risk.  An advantage 
of PWAS is that it provides clear interpretation of the directionality of significant associations, namely whether 
gene damage is associated with elevated or reduced cancer risk. Of the 14 solitons, which are high-confidence 
PWAS associations, 8 genes (57%) are associated with elevated and 6 (43%) are associated with reduced cancer 
risk (Table 1). For example, CTLA4 (also known as CD152) is an immune checkpoint and a preferred target in 
cancer immunotherapy. Reduced CTLA4 function, either through natural genetic variation or immunotherapy 
treatment, activates T cells and suppresses tumor (while, on the downside, increases the risk for autoimmun-
ity)47. Therefore, it is not surprising that CTLA4 is characterized by PWAS as a protective gene, with gene dam-
age being associated with reduced cancer prevalence in the UKB cohort.

The characterization of genes as being associated with elevated or reduced cancer risk according to PWAS 
is based on either the dominant or recessive effect scores calculated by the method, depending on the herit-
ability found significant for each association. Notably, the 4 soliton genes showing both dominant and recessive 
inheritance (potentially with different effect sizes and significance levels) all exhibit consistent trends. In other 
words, when estimated damage to these genes is associated with elevated (or reduced) cancer risk according to 
the dominant model, it shows the same trend according to the recessive model.

Across all 110 significant PWAS associations we observe similar patterns, with 62 (56%) being associated 
with elevated cancer risk and the other 48 (44%) with reduced risk. Among the 16 PWAS associations that are 
significant for both dominant and recessive effects, 15 show consistent directionality and only one association 
shows opposite trends between the dominant and recessive models.

Genetic signal varies between cancers.  The uniformity of the UKB as a prospective cohort that covers 
all major cancer types provides a unique opportunity to perform a comparative analysis between cancer types. 
We start by considering the number of significant genomic regions recovered in each cancer type, according 
to GWAS, PWAS or both (Table 2). We observe that the number of recovered regions vary substantially across 
cancer types, ranging from 2 in epithelial ovarian cancer to 58 in non-melanoma skin cancer. As statistical power 
is determined by sample sizes, it is not surprising that cancers with fewer cases tend to recover fewer significant 
regions. However, this is not the only factor. Chronic lymphocytic leukemia, for example, has the fewest cases 
(764), yet it recovers 20 significant regions, more than many other cancers. This could be explained by a strong 
polygenic signal associated with leukemia, or more likely, it could be a spurious effect of mistaking somatic 
mutations as germline variants in blood cancers (as UKB genotypes are based on blood samples)48. Colorectal 
cancer includes 3351 cases but only 4 recovered regions, compared for example to melanoma with 14 recovered 
regions, despite its slightly lower number of cases (3122). Interestingly, although pan-cancer has the highest 

Table 1.   Soliton cancer genes discovered by PWAS. *Below the GWAS exome-wide significance threshold 
(5E−07); P-C, Pan-cancer.

Gene Chromosome bands
Significant cancer 
types

Lowest PWAS FDR 
q-value

Lowest GWAS 
p-value PWAS heritability

Protein damage 
associated with 
cancer risk (R) or 
protection (P)

External evidence 
(out of the 2 gene 
panels and 3 cancer 
driver catalogues)

MUTYH 1p34.1 Colorectal 2E−7 1E−3 Recessive R CleanPlex, Invitae, 
Census

CTLA4 2q33.2-q33.3 Skin 4E−6 2E−13* Both P CleanPlex

MITF 3p14.1-p13 Melanoma 1E−8 4E−4 Both R CleanPlex, Invitae, 
Census

SLC45A2 5p13.3-p13.2 Skin, melanoma, P-C 1E−20 4E−22* Recessive R None

CCDC170 6q25.1-q25.2 Breast 5E−5 1E−13* Dominant R None

POU5F1B 8q24.21 Prostate, P-C, colorec-
tal, breast 1E−22 4E−42* Both P None

MTAP 9p21.3 Skin, melanoma, P-C 1E−4 8E−23* Both P None

STN1 10q24.33-q25.1 P-C, melanoma 9E−6 3E−10* Recessive P None

UBE3A 15q11.2-q12 Pancreatic 8E−4 3E−4 Recessive R None

HOXB13 17q21.32 Prostate, P-C 2E−31 6E−40* Dominant R CleanPlex, Invitae

IRF3 19q13.33 Skin 7E−6 1E−6 Dominant R None

KLK3 19q13.33-q13.41 Prostate 4E−9 3E−25* Dominant P None

AVP 20p13 Melanoma 9E−4 2E−4 Recessive P None

CHEK2 22q12.1-q12.2 Breast, P-C, prostate 5E−5 3E−6 Dominant R
CleanPlex, Invitae, 
Census, PanSoftware, 
FABRIC
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number of cases (by definition), it doesn’t recover the highest number of genomic regions. The comparison 
between cancer types also reinforces the contribution of both GWAS and PWAS to our analysis, with each of the 
two methods dominating the discovery in certain cancer types. Major differences in polygenic signal between 
cancer types are also observed with respect to significance levels (Fig. 4). For example, the 6 significant regions 
of lung cancer are statistically weaker than the 18 significant regions of breast cancer, although this could simply 
reflect the different numbers of cases.

Among the 145 significant cancer predisposition loci, 65 are associated with melanoma or non-melanoma skin 
cancer. Genes affecting skin pigmentation were implicated with both cancer types. Of all the PWAS associations 
recovered in this study, the most significant is the gene MC1R (Melanocortin 1 receptor; q-value = 1E−109 in 
non-melanoma skin cancer and q-value = 2E−53 in melanoma), which plays a central role in skin pigmentation, 
melanin formation and melanocyte differentiation. Many variants in the gene have been associated with pig-
mentation differences and elevated risk of skin cancer and melanoma49. Additional major pigmentation-related 
genes identified in this study include TYR (tyrosinase; PWAS q-value = 6E−13 in non-melanoma skin cancer 
and q-value = 0.005 in melanoma) and SLC45A2 (solute carrier family 45 member 2; PWAS q-value = 1E−20 in 
non-melanoma skin cancer and q-value = 8E−5 in melanoma)50.

Predisposition genomic loci are mostly cancer‑type specific.  We also consider the extent to which 
cancer predisposition genetic signal overlaps between cancers, by counting the number of significant cancer 
regions shared between cancer types (Fig. 5). For example, melanoma and non-melanoma skin cancer share 
a substantial genetic signal, with 7 of the 14 melanoma regions being also significant in non-melanoma skin 
cancer (Fig. 5B). A shared genetic signal between these two cancer types is expected, given their relatedness. 
More surprising is the fact that 3 of the 18 breast-cancer regions are shared with prostate cancer (with overall 
32 regions), while none of the 2 significant ovarian-cancer regions is shared with breast cancer (or any other 
cancer type). One of the 3 genomic regions shared between breast and prostate cancer is found in 11q13.3. Most 
significant in this region is the intergenic variant rs7130881 (lowest GWAS p-value = 3E−36). The other 2 regions 
shared between breast and prostate cancer contain soliton genes listed in Table 1: CHEK2 (22q12.1-q12.2) and 
POU5F1B (8q24.21). All six associations (the three regions with respect to the two cancer types) have strong 
support in literature51–54.

We observe that the pan-cancer phenotype does not substantially add to the recovery of significant genomic 
regions over the nine specific cancer types. Of the 26 significant pan-cancer regions, only 3 are not recovered 
by any of the specific cancer types. From a statistical perspective, this stands out given the high number of pan-
cancer cases (56,634).

The genomic region with the most dominant pan-cancer signal is 5p15.33, which is also significant in non-
melanoma skin cancer, melanoma, prostate cancer and lung cancer. Among the most significant variants in this 
region are rs401681 (GWAS p-value = 7E−32) in the intronic region of the gene CLPTM1L (Cisplatin Resistance 
Related Protein), and rs2853677 (GWAS p-value = 9E−22) in the intronic region of TERT (Telomerase Reverse 
Transcriptase). TERT is a well-known cancer predisposition gene implicated in numerous cancer types55. Muta-
tions in TERT can cause abnormal activities of the telomerase and prevent telomere shortening, thereby leading 
to cell immortality. rs2853677 has been implicated in various Chinese and Indian populations56,57. We provide 
evidence for the importance of this variant in the white British population. CLPTM1L has also been linked to 
cancer in multiple studies. For example, overexpression of the gene has been shown to enhance the growth of 
pancreatic cancer cells in vitro and in vivo58.

Another relatively major genetic overlap is observed between prostate cancer and non-melanoma skin can-
cer, which share 3 predisposition regions. On top of 5p15.33 (the locus of CLPTM1L and TERT), prostate and 
non-melanoma skin cancer also share 6p22.1-p21.31 and 21q22.2-q22.3. The 21q22.2-q22.3 region seems to be 
a novel discovery of our analysis, without any existing support from the literature. The most significant variant 

Table 2.   Studied cancer types.

Cancer type ICD-10 codes Sex # samples # cases # controls
# significant GWAS 
regions

# significant PWAS 
regions

# total significant 
regions

Pan-cancer
C00-C26, C30-C34, 
C37-C58, C60-C86, C88, 
C90-C97

All 274,830 56,634 218,196 19 12 26

Breast cancer C50 F 149,186 10,682 138,504 17 2 18

Chronic lymphocytic 
leukemia C91 All 274,830 764 272,079 4 16 20

Colorectal cancer C18 All 274,830 3351 271,479 1 4 4

Epithelial ovarian cancer C56 F 149,186 1112 147,944 2 0 2

Lung cancer C34 All 274,830 2479 272,351 3 4 6

Melanoma C43 All 274,830 3122 271,708 8 12 14

Non-melanoma skin 
cancer C44 All 274,830 18,944 255,886 43 27 58

Pancreatic cancer C25 All 274,830 768 264,559 3 2 5

Prostate cancer C61 M 125,644 7438 118,206 30 8 32
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in that region is rs2849691 (lowest GWAS p-value = 6E−13) that occurs in the non-coding lncRNA transcript 
LOC107985478. The other region, 6p22.1-p21.31, is a 4.7 Mbp genomic region covering the MHC region. Of 
the 138 genes in that region, 7 are significant in non-melanoma skin cancer according to PWAS: HLA-DPA1, 
HLA-C, PPP1R18, CCHCR1, MPIG6B, MUC22 and C6orf15 (Supplementary Table S1).

Other than the handful of shared regions mentioned here, most cancer types show little overlap with other 
cancers (Fig. 5). Overall, of the 145 cancer predisposition regions, only 27 are shared by multiple cancers. Dis-
regarding pan-cancer, only 14 regions are shared by two or more specific cancer types.

Recessive effects are prevalent in cancer predisposition.  Unlike GWAS, PWAS explicitly models 
dominant and recessive effects at the gene level and has the capacity to capture genetic effects that transcend 
the individual variant. It therefore provides the opportunity to assess the importance of these effects to cancer 
predisposition. We observe that recessive effects are indeed common among significant PWAS regions, and 
especially among the regions that are not captured by GWAS (Fig. 6A). The enrichment of recessive effects in 

Figure 4.   Genome-wide cancer predisposition in breast, lung and non-melanoma skin cancer. Manhattan plots 
for three selected cancer types. The plots show the significance of all the variants and genes tested with GWAS 
and PWAS. p-values are capped at 1E-15. Similar Manhattan plots for all ten cancer types (including pan-
cancer) are available in Supplementary Fig. S1.
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Figure 5.   Number of significant regions per cancer-type combination. (A) Venn diagram of the 18 significant 
genomic regions in breast cancer and the 32 significant regions in prostate cancer with 3 overlapping regions 
between these two cancer types, as an example of the unique and shared genetic signals between cancer types. 
(B) Partitioning of the 145 significant cancer genomic regions by the combination of cancer types in which 
they were found significant. Each node in the graph represents a combination of cancer types. Two nodes are 
connected when one combination is a direct subset of the other. Each node is labeled with two numbers: the 
number of significant regions matching the exact combination of cancer types represented by the node (e.g. 12 
genomic regions that are unique to breast cancer), and the total number of significant regions matching any 
combination of cancer types that includes this combination (e.g. overall 18 regions associated with breast cancer, 
including 6 regions shared with other cancers). Node sizes reflect the number of significant regions that match 
the combinations exactly. Nodes representing combinations of more than one cancer type are colored dark blue. 
Pan-cancer is abbreviated as P-C.
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Figure 6.   Dominant and recessive gene effects. (A) Partitioning of the significant cancer genomic regions that 
are PWAS-significant according to their inheritance mode (dominant, recessive or both), and whether they 
are also significant by GWAS. (B) GWAS and PWAS p-values (capped at 1E-15) across all 145 significant caner 
genomic regions. Regions are color coded by whether they were found significant by the dominant model 
of PWAS, the recessive one, both, or none. (C) Three examples of significant PWAS associations: MITF and 
melanoma, HOXB13 and prostate cancer, and SLC45A2 and non-melanoma skin cancer. The plots show how 
risk for the relevant cancer types changes as a function of PWAS effect scores in the UKB cohort. Dominant 
effect scores (orange) aim to capture the likelihood of an individual to have at least one damaged copy of the 
gene, whereas recessive effect scores (purple) aim to capture the likelihood of at least two damaged copies. In 
both types of PWAS effect scores, lower scores reflect individuals with greater gene damage. The line plots show 
a continuous partitioning of the cohort according to the dominant or recessive effect scores on the x-axis, and 
the estimated fraction of individuals with a history of the relevant cancer in each partition on the y-axis. For 
example, in the association between melanoma and the dominant effect scores of MITF (shown on the upper-
left plot in (C)), “Bottom 0.5%” on the x-axis refers to the 0.5% of the cohort with the lowest dominant effect 
scores, namely the 0.5% of individuals that are the most likely to have at least one damaged copy of MITF. The 
prevalence of melanoma in that group is estimated at ~ 2%. The dashed horizontal line shows the baseline cancer 
risk across the entire cohort (1.14% cases for melanoma). The bar plots show the most significant partitioning 
of individuals. For example, among the 0.9% (2,372) of the individuals with the lowest dominant effect scores 
calculated for the MITF gene, 61 (2.57% of them) have had melanoma, compared to 1.12% rate of melanoma 
among the other individuals (3055 melanoma cases among 271,849 individuals). Note that the scales of the 
plots are not uniform. In particular, each plot shows a different partitioning of the cohort (based on the relevant 
distribution of effect scores).



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14901  | https://doi.org/10.1038/s41598-021-94252-y

www.nature.com/scientificreports/

PWAS-exclusive regions is explained by the fact that GWAS (under standard settings) models additive genetic 
effects. Unlike dominant effects, which can be approximated by an additive model, recessive effects cannot be 
effectively recovered by an additive GWAS model. The same trend shows when considering the evidence for each 
genomic region according to continuous p-values: significant regions with little evidence according to GWAS 
tend to be recovered by the recessive model of PWAS (Fig. 6B).

To illustrate the dominant and recessive genetic effects captured by PWAS, we selected three soliton asso-
ciations with strong effects (see Table 1): MITF (melanocyte inducing transcription factor) associated with 
melanoma (q-value = 1E−08; both dominant and recessive effects are significant), HOXB13 (homeobox B13) 
associated with prostate cancer (q-value = 2E−31; only dominant effect is significant) and SLC45A2 (solute 
carrier family 45 member 2) associated with non-melanoma skin cancer (q-value = 1E−20; only recessive effect 
is significant). For each of the three associations, we plot cancer risk among UKB individuals as a function of 
PWAS effect scores (Fig. 6C). PWAS effect scores are assigned to each individual in the cohort with respect to 
each studied protein-coding gene based on their genotype. They reflect the overall estimated functional damage 
affecting genes at the molecular level, with lower effect scores reflecting more damage. For each individual, each 
coding gene is assigned two effect scores that aggregate all the variants within the gene that were genotyped or 
imputed for that individual: a dominant effect score (reflecting the likelihood of at least one damaging hit) and 
a recessive effect score (reflecting the likelihood of at least two damaging hits). These effect scores are used by 
PWAS to detect significant genes (if they correlate with a history of cancer), and they can also be used to assess 
individual-level risk (with respect to specific genes).

In the case of MITF, we observe that among the 2,372 individuals with the lowest dominant effect scores 
(comprising 0.9% of the cohort), 61 (2.57% of that group) have had melanoma, compared to only 1.12% risk 
of melanoma in the rest of the cohort (leading to observed risk-ratio of 2.3). When considering recessive effect 
scores, we find that 2 out of the 3 individuals with the lowest scores have had melanoma. We conclude that indi-
viduals with functional damage to the MITF protein have substantially higher rates of melanoma. As the name 
of the gene suggests, MITF is a transcription factor that controls the development and function of melanocytes, 
which are pigment-producing cells. The causal connection of MITF to melanoma is well established59.

Unlike MITF, showing both dominant and recessive effects (which might be interpreted as approximating 
an additive effect), HOXB13 shows a clear dominant effect according to PWAS. Among the 479 males with the 
lowest dominant effect scores (0.4% of the male cohort), 99 of them (20.7%) have a history of prostate cancer, 
compared to 5.87% rate of prostate cancer in the rest of the male cohort (risk-ratio of 3.5). HOXB13 regulates 
cellular response to androgen, an important male hormone. Its link to prostate cancer and early onset of the 
disease has been established in both GWAS and family studies60.

A clear recessive effect is exemplified by SLC45A2 (also known by the names AIM1, MATP and OCA4). 
Among the 13,196 individuals with highest recessive effect scores, i.e. the 5% of the UKB cohort least likely to 
have two damaged copies of the gene, 648 of them (4.91%) are cases of non-melanoma skin cancer, compared to 
6.99% of cases in the rest of the cohort (risk-ratio of 1.4). SLC45A2 is a transporter protein likely involved in the 
production of melanin. The gene has indeed been implicated in melanoma and skin cancer through albinism, a 
disorder known for recessive inheritance50.

These three examples demonstrate the applicability of PWAS effect scores to clinical risk assessment. Similar 
plots for all 110 significant PWAS associations are available in Supplementary Fig. S2.

To further examine the recessive associations, we list the 30 genomic regions with only significant recessive 
effects (Fig. 6A) in Table 3 (full summary statistics for these and all other significant regions are available in Sup-
plementary Table S1 and Supplementary Table S3). We find that 29 of the 30 recessive regions support exactly 
one significant association of gene and cancer-type, and we therefore identify the regions by the significant 
genes (the only exception is the region of SEMA3F on chromosome 3, in which another gene, MST1R, is also 
significant, but less so). Notably, 9 of the 30 recessive genes are enzymes (or part of enzyme complexes), which 
are considered a standard model for recessive effects61. Additional 4 genes are transporters associated with the 
solute carrier family (or regulators of such transporters). In fact, of all 110 significant PWAS associations, these 
genes are the only transporters of that family (namely, all 4 genes associated with the solute carrier family that we 
have recovered exhibit pure recessive effects). Both SLC12A9 and SLC45A2, which we associate with melanoma 
and non-melanoma skin cancer, are implicated with pigmentation according to the Open Targets Platform62. 
We also observe that many of the 30 recessive genes are involved in cellular processes of apoptosis, ubiquitina-
tion and immunology. Interestingly, leukemia seems to be particularly enriched with recessive effects. Of the 
16 genomic regions associated with leukemia according to PWAS, 12 show exclusive recessive effects and are 
listed in Table 3. The possibility of mistaking somatic mutations as germline variation in blood cancers should 
be taken into account when interpreting this finding. For example, the high prevalence of recessive heritability 
in leukemia might be a reflection of the “second-hit” hypothesis63. As an external validation scheme, Table 3 also 
lists published cancer genetic associations curated by the Open Targets Platform. We find that the cancer types 
reported by the Open Targets Platform are usually in agreement with our results. Nevertheless, most recessive 
genes appear to represent novel genetic associations, maybe as a result of recessive genetic studies being largely 
neglected in case–control cohorts. When considering the external validation used earlier (Fig. 3), only 2 of the 
30 recessive genes are supported by clinical panels or catalogues of cancer drivers. Specifically, MUTYH and 
BIRC3 are both established as cancer drivers, and they both appear in clinical panels. Overall, these 30 recessive 
genes highlight the importance of modeling recessive inheritance in non-familial (case–control) cancer studies.
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Discussion
We performed a comprehensive analysis of cancer predisposition in the UKB cohort and identified 145 signifi-
cant genomic regions by combining both GWAS and PWAS. The two methods complemented each other. While 
GWAS identifies variants with additive genetic effects, PWAS identifies coding genes with dominant or recessive 
effects (or a combination of these effects).

The capacity of PWAS to detect non-additive effects has proven substantial in our analysis. We detected 
30 genomic regions with pure recessive effects, indicating that recessive inheritance is substantial for cancer 
predisposition also outside of family studies. Many of the discovered genes with significant recessive effects 
had not been previously implicated with cancer predisposition (Table 3), indicating that non-additive effects 
are neglected in contemporary genetic association studies. The main reason for the scarcity of studies on reces-
sive effects is that GWAS and current variant-level methods are not designed to capture such genetic effects, 
especially when compound heterozygosity is involved. By exposing the importance of recessive inheritance to 
cancer predisposition and presenting a methodology for recovering it, we aim to motivate future investigation 
of this underexplored source of cancer risk (and of other conditions).

Many of the genomic loci recovered in this study are supported by external evidence (clinical panels and can-
cer drivers), while many are novel associations (Fig. 3, Table 3). While proving definite causal links is beyond the 
scope of this work, many of our novel discoveries appear as promising candidates. In particular, genes defined as 
solitons (Table 1) are likely less sensitive to linkage-disequilibrium and are therefore more likely to prove causal.

Many of the reported genes are associated with substantial cancer risk (Fig. 6C). For example, we show that 
individuals in the male cohort with substantial damage to HOXB13 have an increased risk of prostate cancer 
(20.7%, compared to 5.9% in the rest of the male cohort). We provide a similar cancer risk analysis for all 110 
PWAS gene associations (Supplementary Fig. S2). The capacity for risk assessment at the resolution of whole 

Table 3.   Recessive cancer predisposition genes.

Gene symbol Gene name Chromosome bands Molecular function Cancer type
Cancer genetic associations according to 
open targets platform

PADI1 Peptidyl Arginine Deiminase 1 1p36.13 Enzyme Melanoma None

AKIRIN1 Akirin 1 1p34.3-p34.2 Regulator Lung None

MUTYH Adenine DNA glyc osylase 1p34.1 Enzyme Colorectal Colorectal and other cancers

FCGR1A High affinity immunoglobulin gamma Fc 
receptor I 1q21.2 Receptor Leukemia None

OR6K6 Olfactory receptor 6K6 1q23.1-q23.2 Receptor Pancreatic None

DPT Dermatopontin 1q24.2 ECM Leukemia Leukemia

TNFSF18 Tumor necrosis factor ligand superfamily 
member 18 1q24.3-q25.1 Cytokine Leukemia None

XPC DNA repair protein complementing XP-C cells 3p25.1 DNA binding Skin Skin

LYZL4 Lysozyme-like protein 4 3p22.1 Enzyme Leukemia None

SEMA3F Semaphorin-3F 3p21.31-p21.2 Chemotaxis Skin None

POLR2H DNA-directed RNA polymerases I, II, and III 
subunit RPABC3 3q27.1-q27.2 Enzyme Melanoma None

RCHY1 RING finger and CHY zinc finger domain-
containing protein 1 4q13.3-q21.1 Enzyme Leukemia None

PCDH10 Protocadherin-10 4q28.3 Cell adhesion Leukemia None

SLC45A2 Membrane-associated transporter protein 5p13.3-p13.2 Transporter Skin Skin and melanoma

PTPN12 Tyrosine-protein phosphatase non-receptor 
type 12 7q11.23-q21.11 Enzyme Skin None

LMTK2 Serine/threonine-protein kinase LMTK2 7q21.3-q22.1 Enzyme Prostate Prostate

SLC12A9 Solute carrier family 12 member 9 7q22.1 Transporter Melanoma Skin

STN1 CST complex subunit STN1 10q24.33-q25.1 DNA binding Pan-cancer Many cancers

BIRC3 Baculoviral IAP repeat-containing protein 3 11q22.1-q22.2 Regulator Leukemia Leukemia and other blood cancers

JDP2 Jun dimerization protein 2 14q24.3 Regulator Skin Leukemia

UBE3A Ubiquitin-protein ligase E3A 15q11.2-q12 Enzyme Pancreatic Leukemia

SLC12A6 Solute carrier family 12 member 6 15q14 Transporter Lung None

STX8 Syntaxin-8 17p13.1 Receptor Melanoma None

ATPAF2 ATP synthase mitochondrial F1 complex assem-
bly factor 2 17p11.2 Enzyme complex Lung None

AVP Vasopressin-neurophysin 2-copeptin 20p13 Hormone Melanoma None

SLC2A4RG SLC2A4 regulator 20q13.33 Regulator Prostate Prostate and other cancers

CCT8 T-complex protein 1 subunit theta 21q21.3 Chaperone Leukemia None

SGSM3 Small G protein signaling modulator 3 22q13.1-q13.2 Regulator Leukemia Breast

RBMX2 RNA-binding motif protein, X-linked 2 Xq25-q26.1 RNA binding Leukemia None

ZNF449 Zinc finger protein 449 Xq26.3 DNA binding Leukemia None
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genes is enabled by PWAS through the aggregation of all variants affecting an individual. Integration of such 
data into the clinics could have a substantial impact on individual and familial cancer risk evaluation. Even when 
variants of unknown significance are observed after the initial study, PWAS can still estimate gene damage and 
compare it to the population distribution, thereby providing risk assessment.

The presented analysis was conducted over nine specific cancer types and pan-cancer. We observe that most 
cancer predisposition loci are cancer-type specific. Only 14 of the 145 loci are shared by two or more specific 
cancer types, with 7 of them shared only by melanoma and non-melanoma skin cancer. Only 2 loci are shared 
by three or more specific cancer types (Fig. 5). The pan-cancer analysis recovered only 3 unique associations 
not discovered in specific cancers. This observation is in stark contrast to somatic tumor genomics, where most 
discovered cancer drivers are pan-cancer36. Our results suggest that cancer predisposition of germline genetic 
variation, unlike positive selection of somatic mutations in tumors, are mostly cancer-type specific. The cancer 
type with the highest number of recovered loci is non-melanoma skin cancer, with 58 of the 145 genomic regions 
associated with that cancer type. While this could be explained by the high number of cases for that cancer type, 
it highlights a substantial polygenic signal for non-melanoma skin cancer. Such strong polygenicity is compat-
ible with the substantial role of environmental factors such as UV radiation and viral infection in this cancer64.

An important limitation of our analysis is its restriction to the white British population, as the UKB cohort 
does not include a substantial number of individuals from other ethnicities required for sufficient statistical 
power (see Methods). This leads to a lack of validation of the discovered associations on other populations, as 
well as oversight of additional associations only present in other ethnic groups. Another limitation of the UKB 
is the lack of sequencing data for the vast majority of the cohort. In this analysis we relied solely on genotyping 
of ~ 800 K predefined genetic markers and ~ 600 K variants in coding regions imputed from the original set of 
markers 26. This limitation is particularly relevant for PWAS, which underestimates genetic damage when non-
genotyped variants are involved, leading to diminished statistical power (but, critically, not to false discoveries)33.

This study demonstrates the power of exhaustive genomic and protein-centric analysis over large biobanks for 
expanding the discovery of cancer predisposition loci beyond family studies. In particular, we have demonstrated 
that recessive effects are also prevalent in case–control cohorts when looked for by suitable methods. We have 
also demonstrated the benefit of cohorts with diverse cancer-type annotations for cross-cancer comparisons. 
Finally, our results show promise towards individual clinical risk assessment of cancer.

Methods
Study cohort.  From the entire UK Biobank (UKB) cohort of 502,520 individuals (application ID 26664)25,26, 
we filtered out 227,690 individuals (see Fig. 2) for the following reasons: i) 14 individuals had asked to with-
draw from the UKB, ii) 92,922 were non-whites (according to self-reported ethnicity or their genetics), iii) 
312 had self-reported sex mismatching their genetics, iv) 75,848 were family-related to other individuals in the 
cohort (from each group of related individuals we chose only one representative), and v) 58,594 didn’t have any 
recorded ICD-10 codes (which were required to determine cancer history).

Following these filtrations, we remained with a study cohort of 274,830 individuals, 56,634 (20.06%) of them 
had a history of cancer according to their ICD-10 codes (the number of cases and controls per cancer type are 
listed in Table 2).

In addition to cancer status, we also extracted from the UKB the following set of covariates: sex, year of 
birth, 40 genetic principal components (PCs), genotyping batch (105 categories) and UKB assessment center (25 
categories). Altogether, 173 covariates (including a constant intercept) were included in the GWAS and PWAS 
analyses. We chose using 40 PCs, which is the maximal number of PCs provided by the UKB, to minimize the 
risk of false discoveries due to unaccounted population structure (at the cost of slightly reduced statistical power).

While this work would clearly benefit from trans-ethnic analysis (in particular, validation of the reported 
associations on independent cohorts of other ethnicities)65, the UKB does not include a sufficient number of 
samples from any non-white ethnic group to support such analysis. The largest minority group in the UKB is the 
Indian group which includes ~ 6000 samples. Such sample size is sufficient in the presence of continuous traits 
or very common binary traits, but not binary traits with a prevalence of 1–2% (which is the typical prevalence 
of most cancer types; see Table 2). Specifically, a sample size of ~ 6000 and a disease prevalence smaller than 2% 
entails only up to ~ 100 cases. In other words, under such settings, the number of events would be smaller than 
the number of variables (having 173 covariates), while PLINK recommends at least 10 events per variable66.

The computational pipeline for processing the UK Biobank data used in this work is an open-source project 
available at https://​github.​com/​nadav​bra/​ukbb_​parser.

GWAS.  To run GWAS, we used the PLINK software66 (https://​www.​cog-​genom​ics.​org/​plink/2.​0/; version 
v2.00a2.3LM 64-bit Intel, 24 Jan 2020). For example, to run GWAS for breast cancer over chromosome 1, we ran 
the following command:

plink2 --glm --bed ukb_cal_chr1_v2.bed --bim ukb_snp_chr1_v2.bim --fam ukb2666_cal_chr1_v2_s488366.
fam --pheno breast_cancer.txt --covar covariates.txt --out chr1_breast_cancer --1 hide-covar no-x-sex --mac 20 
--covar-variance-standardize --freq --threads 32 --memory 100000.

Where ukb_cal_chr1_v2.bed, ukb_snp_chr1_v2.bim and ukb2666_cal_chr1_v2_s488366.fam are the files with 
the genetic data of chr1, provided by the UKB. The files breast_cancer.txt and covariates.txt are PLINK-formatted 
tab-separated data files with the cancer phenotype (case–control status) and covariates of each of the samples in 
the study cohort, respectively. The --glm argument specifies the use of a linear/logistic model; the --1 flag specifies 
that cases and controls are encoded as 1 and 0, respectively; the hide-covar flag indicates that summary statis-
tics are to be reported only with respect to the phenotype (but not the individual covariates); the no-x-sex flag 
indicates that sex is not to be re-added as a covariate (since it’s already included among the provided covariates); 

https://github.com/nadavbra/ukbb_parser
https://www.cog-genomics.org/plink/2.0/
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--mac 20 limits the analysis to variants with at least 20 occurrences of the minor allele (according to PLINK’s rec-
ommendation), so that the linear model is properly calibrated; --covar-variance-standardize linearly transforms 
all quantitative covariates to mean-zero, variance 1; –freq specifies that allele frequencies are to be calculated 
and reported; and --threads 32 --memory 10,000 allocate 32 CPU cores and ~ 10 GB of RAM for the process.

We ran GWAS independently over ten cancer phenotypes (nine specific cancer types and pan-cancer) and 
over 26 chromosomes (22 autosomal chromosomes, chrX, chrY, chrXY and chrMY, as provided by the UKB). 
The complete GWAS results with all the summary statistics, including 883 variant-cancer associations below the 
exome-wide significance threshold (5E−07), are available per cancer-type in Supplementary Table S2.

PWAS.  Proteome-Wide Association Study (PWAS) is a protein-centric, gene-based method for genetic asso-
ciation studies (Fig. 1). The method is fully described and validated in a previous work33. In the case of cancer 
predisposition, PWAS detects protein-coding genes that are significantly more (or less) damaged in individuals 
with a history of cancer. To determine to what extent a given gene is damaged within a given individual (based 
on his or her genetics), PWAS employs a machine-learning model that assigns functional effect score to each 
variant affecting the coding sequence of the gene. Specifically, PWAS uses the FIRM predictor, a random-forest 
classifier that assigns each variant a score reflecting the probability of the gene to retain its function in the pres-
ence of that variant36. FIRM relies on 1109 numerical features capturing the rich proteomic context of the gene 
and the affecting variant. The main features included in FIRM are: (i) the location of the variant within the 
protein sequence, (ii) the reference and alternative amino acids, (iii) amino-acid scales (i.e. various numeric 
values assigned to amino acids, in different contexts of the protein and the variant); (iv) protein annotations 
extracted from UniProt67 (e.g. secondary structure, post-translational modifications, functional sites, etc.), and 
(v) Pfam domain and clan annotations68 (e.g. whether the variant is within or next to a domain). Following the 
assignment of effect scores to individual variants, PWAS aggregates the effect scores of all variants in the cod-
ing sequence of the gene (in the context of the individual’s genetics). Specifically, it calculates dominant and 
recessive effect scores which reflect the probabilities for at least one or at least two damaging events in the gene, 
respectively. Finally, PWAS tests whether the dominant and recessive effect scores of the gene are significantly 
different between cases and controls. Under the combined model (for which p-values are reported in this work), 
the tested null hypothesis is that the coefficients of both the dominant and recessive effect scores are zero when 
fitting a logistic regression model to explain cancer status. In other words, a significant PWAS association indi-
cates that at least one of the two effect scores (or some linear combination of them) is associated with cancer 
predisposition.

We used version 1.0.4 of the PWAS software (available at https://​github.​com/​‌nadav​bra‌/​‌pwas) and executed 
the standard PWAS pipeline (as specified on that GitHub page). We derived the dominant and recessive PWAS 
effect scores for the entire UKB cohort (which depend solely on the genetic information) and tested associa-
tions between 18,053 protein-coding genes and the ten cancer phenotypes. The complete PWAS results with full 
summary statistics, which include 110 FDR-significant gene-cancer associations, are available per cancer type 
in Supplementary Table S3.

Multiple testing correction.  We accounted for multiple testing by using the accepted exome-wide signifi-
cance threshold ( p < 5E−7 ) in GWAS, and false discovery rate (FDR) with the standard significance threshold 
( q < 0.05 ) across all 18,053 tested genes in PWAS. Nonetheless, some interpretations of our results may warrant 
stricter significance threshold. First, the genome-wide significance threshold (5E−08) is more appropriate when 
considering non-exonic regions by GWAS. Second, as our analysis considers ten different cancer types, another 
factor of 10 in the significance threshold might be justified (e.g. 0.005 instead of 0.05 in PWAS). On the other 
hand, if one considers only a specific cancer type of interest, then this would not be unnecessary. A conservative 
interpretation of our results may warrant further division of the significance threshold by another factor of 2, 
to account for the fact that both GWAS and PWAS have been used (even though this might be somewhat too 
conservative, as the two methods are applied over the same data and are not completely independent). As always, 
p- and q-values are best interpreted as continuous measures of statistical evidence rather than dichotomous 
markers of significance. A prudent interpretation of statistical analysis should always consider their exact values, 
and not only whether or not they are below a certain threshold. Due to the considerations outlined here, GWAS 
results with p-values between 2.5E−09 and 5E−07 and PWAS results with q-values between 0.0025 and 0.05 may 
be seen as borderline. To allow easy interpretation of our results and comparison between GWAS and PWAS in 
exonic regions, we decided to stick with the simple thresholds of p < 5E−7 and q < 0.05 throughout this work, 
while making available the full summary statistics across all regions (Supplementary Table S1), variants (Sup-
plementary Table S2) and genes (Supplementary Table S3).

Merging the significant associations into unique genomic regions.  We merged the 883 significant 
GWAS associations and 110 significant PWAS associations into 145 unique genomic regions by extending each 
association by 500,000 base-pairs on both sides and iteratively merging overlapping regions. GWAS associations 
started as 1 bp and were extended into 1,000,001 bp regions (the position of the variant, plus 500,000 bp on 
each side) while PWAS associations started as the region of the gene’s coding-sequence (i.e. from the genomic 
coordinate of the start codon to the last before the stop codon). This merging procedure resulted in 145 non-
overlapping genomic loci of sizes of at least 1Mbp, available in Supplementary Table S1. The largest obtained 
locus was chr6:30,145,049–34,892,998 (of size 4.7 Mbp), which covers the MHC region. This region contains 
7049 variants genotyped by the UKB (223 of which are GWAS-significant) and 138 protein-coding genes tested 
by PWAS (7 of them are PWAS-significant).

https://github.com/‌nadavbra‌/‌pwas
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External cancer evidence.  We validated each of the 145 cancer predisposition regions against three cata-
logues of cancer drivers (Census34, pan-software35 and FABRIC36,37) and two gene panels used in the clinics 
(CleanPlex TMB 500 and Invitae Multi-Cancer). The “Cancer Gene Census” was downloaded as a CSV file 
(cancer_gene_census.csv, from https://​cancer.​sanger.​ac.​uk/​cosmic/​downl​oad) containing 723 genes. Each of the 
Census genes is identified as a tumor-suppressor gene (TSG), oncogene or a fusion gene (or any combination of 
these three categories). The list of 515 genes in the CleanPlex TMB 500 panel was downloaded from https://​www.​
parag​ongen​omics.​com/​wp-​conte​nt/​uploa​ds/​2019/​04/​PS1008_​Clean​Plex_​TMB-​500-​Panel_​Gene-​List.​txt, and 
the list of 83 genes in the Invitae Multi-Cancer panel was downloaded from https://​www.​invit​ae.​com/​en/​​physi​
cian/​tests/​01101/#​info-​panel-​assay_​infor​mation. The list of 83 Invitae Multi-Cancer genes was further extended 
by 50 extra genes, contributed by Vardiela Meiner from the Center for Clinical Genetics in Hadassah Medical 
Center (Supplementary Table S4). The Census gene list was downloaded in May 2020, and the two panel gene 
lists were downloaded in June 2020. The list of 299 pan-software driver genes was downloaded from Supplemen-
tary Table S1 of the publication35. The list of 593 FABRIC driver genes was downloaded from Supplementary 
Table S1 of the publication 36. We mapped the obtained lists of genes onto our 18,053 analyzed genes according 
to their UniProt ID (in the case of FABRIC) or gene symbols (in the case of the other resources). For each of the 
145 genomic regions listed in Supplementary Table S1, we include all the genes in the region that are supported 
by each of these external catalogues.

In Fig. 3, we consider a genomic locus to be supported by clinical panels or driver catalogues if it contains at 
least one gene listed in those external resources. In Table 1 and Table 3, we consider the external evidence to be 
relevant only if it matches the exact gene listed on the table.

In Table 3 we also include cancer associations of the listed genes according to the Open Targets Platform62. 
We consider a reported association to be relevant only if (i) it is related to cancer or neoplasm, and (ii) it is sup-
ported by genetic association (as opposed to the overall association score reported by the platform, which also 
includes other sources of evidence, including somatic mutations).

Determining whether PWAS‑estimated gene damage is associated with elevated or reduced 
cancer risk.  In Table 1 we indicate for each of the genes recovered by PWAS whether estimated protein dam-
age is associated with cancer risk or protection, based on the signs the Cohen’s d summary statistics reported by 
PWAS. Cohen’s d is the (normalized) difference in mean gene effect score between cases and controls (calculated 
independently for both dominant and recessive effect scores). When negative, it indicates that cases have a lower 
mean effect score (i.e. more gene damage) compared to controls, meaning that gene damage is associated with 
elevated cancer risk. Conversely, a positive Cohen’s d indicates that gene damage is associated with reduced risk.

Cancer risk as a function of PWAS effect scores.  In Fig. 6C and Supplementary Fig. S2 we illustrate 
the potential clinical utility of PWAS associations by plotting the risk for the relevant cancer types as a function 
of dominant and recessive effect scores (which capture the overall amount of gene damage to the relevant gene, 
per individual). The underlying data for these figures (cancer case–control status and PWAS effect scores) was 
taken directly from the study cohort (see the relevant sections in the Methods). In the continuous line plots, we 
examine the entire distribution of PWAS effect scores by considering all possible cutoffs of the relevant cohort, 
i.e. all subsets with effect scores that are either below or above a certain threshold. Since the precise effect-score 
values are not very informative, we describe the relevant sub-populations by percentiles (e.g. “bottom 0.9%”, 
referring to the 0.9% of the cohort with the lowest scores, namely the 0.9% with the greatest estimated functional 
damage to the gene, or “top 5%”, referring to the 5% of the cohort with the highest scores, namely the 5% with 
the least estimated functional damage to the gene). Each of the continuous plots also includes a reference to the 
entire cohort, marked on the x-axis as “All”. Cutoffs of bottom percentiles are shown to the left of the entire-
cohort reference point, and cutoffs of top percentiles are shown to its right (both in log scale). On the y-axis 
of these plots we show the estimated prevalence of the relevant cancer type in the study cohort. Note that the 
estimated cancer prevalence is not the naïve fraction of individuals who were diagnosed with the relevant cancer 
type (among the group of individuals described by the relevant partition). Rather, it is based on the 95% con-
fidence interval for the fraction of cases in the relevant group, calculated by Wilson score interval’s method for 
binomial proportion. When the confidence interval overlaps with the baseline cancer rate (the dashed horizontal 
line in the plot), then the estimated prevalence is taken to be that baseline value. When the entire confidence 
interval is strictly above or below the baseline rate, then the more conservative bound of the confidence interval 
(that is closer to the baseline rate) is taken as the estimated prevalence. In other words, when the confidence 
interval is above the baseline rate, then its lower bound is taken, and when it is below the baseline rate, then its 
higher bound is taken. By relying on the 95% confidence interval, rather than naïve frequency of cases, more 
reliable estimates are obtained when dealing with small groups at the tails of the distributions (which could show 
wild random variations due to small numbers).

In addition to the continuous plots that capture the entire distribution of PWAS effect scores, we also illustrate 
the associations by choosing specific cutoffs showing the strongest differences. Specifically, we tested each cutoff 
by Fisher’s exact test for the association between the effect-score cutoff to cancer case–control status, selecting 
the cutoff with the lowest p-value (and display the plot only if it’s lower than 1E−03).

Note that these plots do not account for covariates, and should therefore not be considered as rigorous statisti-
cal evidence for the associations (unlike the summary p-values reported by PWAS, which account for covariates 
and consider the entire distribution of effect scores).

https://cancer.sanger.ac.uk/cosmic/download
https://www.paragongenomics.com/wp-content/uploads/2019/04/PS1008_CleanPlex_TMB-500-Panel_Gene-List.txt
https://www.paragongenomics.com/wp-content/uploads/2019/04/PS1008_CleanPlex_TMB-500-Panel_Gene-List.txt
https://www.invitae.com/en/​physician/tests/01101/#info-panel-assay_information
https://www.invitae.com/en/​physician/tests/01101/#info-panel-assay_information
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