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Abstract 

Background:  Genome-wide optical maps are ordered high-resolution restriction maps that give the position of 
occurrence of restriction cut sites corresponding to one or more restriction enzymes. These genome-wide optical 
maps are assembled using an overlap-layout-consensus approach using raw optical map data, which are referred to 
as Rmaps. Due to the high error-rate of Rmap data, finding the overlap between Rmaps remains challenging.

Results:  We present Kohdista, which is an index-based algorithm for finding pairwise alignments between single 
molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment problem as automaton path 
matching, and the application of modern index-based data structures. In particular, we combine the use of the Gen-
eralized Compressed Suffix Array (GCSA) index with the wavelet tree in order to build Kohdista. We validate Kohdista on 
simulated E. coli data, showing the approach successfully finds alignments between Rmaps simulated from overlap-
ping genomic regions.

Conclusion:  we demonstrate Kohdista is the only method that is capable of finding a significant number of high qual-
ity pairwise Rmap alignments for large eukaryote organisms in reasonable time.
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Background
There is a current resurgence in generating diverse types 
of data, to be used alone or in concert with short read 
data, in order to overcome the limitations of short read 
data. Data from an optical mapping system [1] is one 
such example and has itself become more practical with 
falling costs of high-throughput methods. For example, 
the current BioNano Genomics Irys System requires 
one week and $1000 USD to produce the Rmap data for 
an average size eukaryote genome, whereas, it required 
$100,000 and 6 months in 2009 [2]. These technological 
advances and the demonstrated utility of optical mapping 
in genome assembly [3–7] have driven several recent tool 
development efforts [8–10].

Genome-wide optical maps are ordered high-reso-
lution restriction maps that give the position of occur-
rence of restriction cut sites corresponding to one or 
more restriction enzymes. These genome-wide optical 
maps are assembled using an overlap-layout-consensus 
approach using raw optical map data, which are referred 
to as Rmaps. Hence, Rmaps are akin to reads in genome 
sequencing. In addition, to the the inaccuracies in the 
fragment sizes, there is the possibility of cut sites being 
spuriously added or deleted; which makes the problem of 
finding pairwise alignments between Rmaps challenging. 
To date, however, there is no efficient, non-proprietary 
method for finding pairwise alignments between Rmaps, 
which is the first step in assembling genome-wide maps.

Several existing methods are superficially applicable to 
Rmap pairwise alignments but all programs either strug-
gle to scale to even moderate size genomes or require 
significant further adaptation to the problem. Several 
methods exhaustively evaluate all pairs of Rmaps using 
dynamic programming. One of these is the method of 
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Valouev et al. [11], which is capable of solving the prob-
lem exactly but requires over 100,000 CPU hours to com-
pute the alignments for rice [12]. The others are SOMA 
[13] and MalignerDP [10] which are designed only for 
semi-global alignments instead of overlap alignments, 
which are required for assembly.

Other methods reduce the number of map pairs to be 
individually considered by initially finding seed matches 
and then extending them through more intensive work. 
These include OMBlast [9], OPTIMA [8], and Malign-
erIX [10]. These, along with MalignerDP, were designed 
for a related alignment problem of aligning consensus 
data but cannot consistently find high quality Rmap pair-
wise alignments in reasonable time as we show later. This 
is unsurprising since these methods were designed for 
either already assembled optical maps or in silico digested 
sequence data for one of their inputs, both having a lower 
error rate than Rmap data. In addition, Muggli et al. [14] 
presented a method called Twin, which aligns assembled 
contigs to a genome-wide optimal map. Twin varies from 
these previous methods in that it is unable to robustly 
find alignments between pairs of Rmaps due to the pres-
ence of added or missing cut-sites.

In this paper, we present a fast, error-tolerant method 
for performing pairwise Rmap alignment that makes use 
of a novel FM-index based data structure. Although the 
FM-index can naturally be applied to short read align-
ment [15, 16], it is nontrivial to apply it to Rmap align-
ment. The difficulty arises from: (1) the abundance of 
missing or false cut sites, (2) the fragment sizes require 
inexact fragment-fragment matches (e.g. 1547 bp and 
1503 bp represent the same fragment), (3) the Rmap 
sequence alphabet consists of all unique fragment sizes 
and is so extremely large (e.g., over 16,000 symbols for 
the goat genome). The second two challenges render 
inefficient the standard FM-index backward search algo-
rithm, which excels at exact matching over small alpha-
bets since each step of the algorithm extends the search 
for a query string by a single character c. If the alphabet 
is small (say DNA alphabet) then a search for other sym-
bols of the alphabet other than c can be incorporated 
without much cost to the algorithm’s efficiency. Yet, if the 
alphabet is large enough this exhaustive search becomes 
impractical. The wavelet tree helps to remedy this prob-
lem. It allows efficiently answering queries of the form: 
find all symbols that allow extension of the backward 
search by a single character, where the symbol is within 
the range [α1 . . . αk ] and where α1 and αk are symbols in 
the alphabet such that α1 ≤ αk [17]. In the case of opti-
cal mapping data, the alphabet is all fragment sizes. Thus, 
Muggli et al. [14] showed that constructing the FM-index 
and wavelet tree from this input can allow for sizing error 
to be account for by replacing each query in the FM index 

backward search algorithm with a range query supported 
by the wavelet tree, i.e., if the fragment size in the query 
string is x then the wavelet tree can support queries of 
the form: find all fragment sizes that allow extension of 
the backward search by a single fragment, where the frag-
ment size in the range [x − y, x + y] occur, where y is a 
threshold on the error tolerance.

Muggli et  al. [14] demonstrated that the addition of 
the wavelet tree can remedy the first two problems, i.e., 
sizing error and alphabet size, but the first and most-
notable challenge requires a more complex index-based 
data structure. The addition of the wavelet tree to the 
FM-index is not enough to allow for searches that are 
robust to inserted and deleted cut sites. To overcome the 
challenge of having added or deleted cut sites while still 
accommodating the other two challenges, we develop 
Kohdista, an index-based Rmap alignment program 
that is capable of finding all pairwise alignments in large 
eukaryote organisms.

We first abstract the problem to that of approximate-
path matching in a directed acyclic graph (DAG). The 
Kohdista method then indexes a set of Rmaps repre-
sented as a DAG, using a modified form of the general-
ized compressed suffix array (GCSA), which is a variant 
of the FM-index developed by Sirén et  al. [18]. Hence, 
the constructed DAG, which is stored using the GCSA, 
stores all Rmaps, along with all variations obtained by 
considering all speculative added and deleted cut sites. 
The GCSA stores the DAG in a manner such that paths 
in DAG may be queried efficiently. If we contrast this to 
naïve automaton implementations, the GCSA has two 
advantages: it is space efficient, and it allows for efficient 
queries. Lastly, we demonstrate that challenges posed by 
the inexact fragment sizes and alphabet size can be over-
come, specifically in the context of the GCSA, via careful 
use of a wavelet tree [17], and via using statistical criteria 
to control the quality of the discovered alignments.

Next, we point out some practical considerations con-
cerning Kohdista. First, we note that Kohdista can be 
easily parallelized since once the GCSA is constructed 
from the Rmap data, it can be queried in parallel on as 
many threads as there are Rmaps to be queried. Next, in 
this paper, we focus on finding all pairwise alignments 
that satisfy some statistical constraints—whether they 
be global or local alignments. Partial alignments can be 
easily obtained by considering the prefix or suffix of the 
query Rmap and relaxing the statistical constraint.

We verify our approach on simulated E. coli Rmap data 
by showing that Kohdista achieves similar sensitiv-
ity and specificity to the method of Valouev et  al. [12], 
and with more permissive alignment acceptance criteria 
90% of Rmap pairs simulated from overlapping genomic 
regions. We also show the utility of our approach on 
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larger eukaryote genomes by demonstrating that existing 
published methods require more than 151 h of CPU time 
to find all pairwise alignments in the plum Rmap data; 
whereas, Kohdista requires 31 h. Thus, we present the 
first fully-indexed method capable of finding all match 
patterns in the pairwise Rmap alignment problem.

Preliminaries and definitions
Throughout we consider a string (or sequence) 
S = S[1 . . . n] = S[1]S[2] . . . S[n] of |S| = n symbols 
drawn from the alphabet [1 . . . σ ] . For i = 1, . . . , n we 
write S[i…n] to denote the suffix of S of length n− i + 1 , 
that is S[i . . . n] = S[i]S[i + 1] . . . S[n] , and S[1…i] to 
denote the prefix of S of length i. S[i…j] is the sub-
string S[i]S[i + 1] . . . S[j] of S that starts at position i 
and ends at j. Given a sequence S[1,  n] over an alpha-
bet � = {1, . . . , σ } , a character c ∈ � , and integers i,j, 
rankc(S, i) is the number of times that c appears in S[1, i], 
and selectc(S, j) is the position of the j-th occurrence of c 
in S. We remove S from the functions when it is implicit 
from the context.

Overview of optical mapping
From a computer science viewpoint, restriction map-
ping (by optical or other means) can be seen as a pro-
cess that takes in two sequences: a genome A[1, n] and 
a restriction enzyme’s restriction sequence B[1, b] , and 
produces an array (sequence) of integers C , the genome 
restriction map, which we define as follows. First define 
the array of integers C[1,m] where C[i] = j if and only 
if A[j . . . j + b] = B is the ith occurrence of B in A . 
Then R[i] = (C[i] − C[i − 1]) , with R[1] = C[1] − 1 . 
In words, R contains the distance between occur-
rences of B in A . For example, if we let B be act and 
A = atacttactggactactaaact then we would have 
C = 3, 7, 12, 15, 20 and R = 2, 4, 5, 3, 5 . In reality, R is a 
consensus sequence formed from millions of erroneous 
Rmap sequences. The optical mapping system produces 
millions of Rmaps for a single genome. It is performed 
on many cells of an organism and for each cell there are 
thousands of Rmaps (each at least 250 Kbp in length in 
publicly available data). The Rmaps are then assembled 
to produce a genome-wide optical map. Like the final R 
sequence, each Rmap is an array of lengths—or fragment 
sizes—between occurrences of B in A.

There are three types of errors that an Rmap (and 
hence with lower magnitude and frequency, also the 
consensus map) can contain: (1) missing and false cuts, 
which are caused by an enzyme not cleaving at a specific 
site, or by random breaks in the DNA molecule, respec-
tively; (2) missing fragments that are caused by desorp-
tion, where small ( < 1 Kbp ) fragments are lost and so 
not detected by the imaging system; and (3) inaccuracy 

in the fragment size due to varying fluorescent dye adhe-
sion to the DNA and other limitations of the imaging 
process. Continuing again with the example above where 
R = 2, 4, 5, 3, 5 is the error-free Rmap: an example of an 
Rmap with the first type of error could be R′ = 6, 5, 3, 5 
(the first cut site is missing so the fragment sizes 2, and 4 
are summed to become 6 in R′ ); an example of an Rmap 
with the second type of error would be R′′ = 2, 4, 3, 5 (the 
third fragment is missing); and lastly, the third type of 
error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the size of 
the third fragment is inaccurately given).

Frequency of errors
In the optical mapping system, there is a 20% probability 
that a cut site is missed and a 0.15% probability of a false 
break per Kbp, i.e., error type (1) occurs in a fragment. 
Popular restriction enzymes in optical mapping experi-
ments recognize a 6 bp sequence giving an expected cut-
ting density of 1 per 4096 bp. At this cutting density, false 
breaks are less common than missing restriction sites 
(approx. 0.25 ∗ .2 = .05 for missing sites vs. 0.0015 for 
false sites per bp). The error in the fragment size is nor-
mally distributed with a mean of 0 bp, and a variance of 
ℓσ 2 , where ℓ is equal to the fragment length and σ = .58 
kbp [11].

Suffix arrays, BWT and backward search
The suffix array [19] SAX (we drop subscripts when they are 
clear from the context) of a sequence X is an array SA[1 . . . n] 
which contains a permutation of the integers [1...n] such that 
X[SA[1] . . . n] < X[SA[2] . . . n] < · · · < X[SA[n] . . . n]. 
In other words, SA[j] = i iff X[i . . . n] is the j th suffix of X 
in lexicographic order. For a sequence Y , the Y-interval in 
the suffix array SAX is the interval SA[s . . . e] that contains 
all suffixes having Y as a prefix. The Y-interval is a represen-
tation of the occurrences of Y in X . For a character c and a 
sequence Y , the computation of cY-interval from Y-interval 
is called a left extension.

The Burrows–Wheeler Transform BWT[1 . . . n] is a 
permutation of X such that BWT[i] = X[SA[i] − 1] if 
SA[i] > 1 and $ otherwise [20]. We also define LF[i] = j 
iff SA[j] = SA[i] − 1 , except when SA[i] = 1 , in which 
case LF[i] = I , where SA[I] = n . Ferragina and Man-
zini [21] linked BWT and SA in the following way. Let 
C[c] , for symbol c, be the number of symbols in X lexi-
cographically smaller than c. The function rank(X, c, i) , 
for sequence X , symbol c, and integer i, returns the 
number of occurrences of c in X[1 . . . i] . It is well known 
that LF[i] = C[BWT[i]] + rank(BWT,BWT[i], i) . 
Furthermore, we can compute the left extension 
using C and rank . If SA[s . . . e] is the Y-interval, then 
SA[C[c] + rank(BWT, c, s),C[c] + rank(BWT, c, e)] is 
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the cY-interval. This is called backward search, and a data 
structure supporting it is called an FM-index [21].

To support rank queries in backward search, a data 
structure called a wavelet tree can be used [17]. It occupies 
n log σ + o(n log σ) bits of space and supports rank que-
ries in O(log σ) time. Wavelet trees also support a variety 
of more complex queries on the underlying string effi-
ciently. We refer the reader to Gagie et al. [17] for a more 
thorough discussion of wavelet trees. One such query we 
will use in this paper is to return the set X of distinct sym-
bols occurring in S[i, j], which takes O(|X | log σ) time.

The pairwise Rmap alignment problem
The pairwise Rmap alignment problem aims to align one 
Rmap (the query) Rq against the set of all other Rmaps 
in the dataset (the target). We denote the target database 
as R1 . . .Rn , where each Ri is a sequence of mi fragment 
sizes, i.e, Ri = [fi1, . . . , fimi ] . An alignment between two 
Rmaps is a relation between them comprising groups of 
zero or more consecutive fragment sizes in one Rmap 
associated with groups of zero or more consecutive frag-
ments in the other. For example, given Ri = [4, 5, 10, 9, 3] 
and Rj = [10, 9, 11] one possible alignment is 
{[4, 5], [10]}, {[10], [9]}, {[9], [11]}, {[3], []} . A group may 
contain more than one fragment (e.g. [4,  5]) when the 
restriction site delimiting the fragments is absent in the 
corresponding group of the other Rmap (e.g [10]). This 
can occur if there is a false restriction site in one Rmap, 
or there is a missing restriction site in the other. Since we 
cannot tell from only two Rmaps which of these scenarios 
occurred, for the purpose of our remaining discussion it 
will be sufficient to consider only the scenario of missed 
(undigested) restriction sites.

Implementation
We now describe the algorithm behind Kohdista. Three 
main insights enable our index-based aligner for Rmap 
data: (1) abstraction of the alignment problem to a finite 
automaton; (2) use of the GCSA for storing and querying 
the automaton; and (3) modification of backward search 
to use a wavelet tree in specific ways to account for the 
Rmap error profile.

Finite automaton
Continuing with the example in the background section, 
we want to align R′ = 6, 5, 3, 5 to R′′′ = 2, 4, 7, 3, 5 and 
vice versa. To accomplish this we cast the Rmap alignment 
problem to that of matching paths in a finite automaton. A 
finite automaton is a directed, labeled graph that defines a 
language, or a specific set of sequences composed of ver-
tex labels. A sequence is recognized by an automaton if it 
contains a matching path: a consecutive sequence of vertex 

labels equal to the sequence. We represent the target Rmaps 
as an automaton and the query as a path in this context.

Backbone
The automaton for our target Rmaps can be constructed 
as follows. First, we concatenate the R1 . . .Rn together 
into a single sequence with each Rmap separated by a 
special symbol which will not match any query sym-
bol. Let R∗ denote this concatenated sequence. Hence, 
R
∗ = [f11, . . . , f1m1 , . . . , fn1, . . . , fnmn ] . Then, construct an 

initial finite automaton A = (V ,E) for R∗ by creating 
a set of vertices vi1 . . . v

i
m , one vertex per fragment for 

a total of |R∗| vertices and each vertex is labeled with 
the length its corresponding fragment. Edges are then 
added connecting vertices representing consecutive 
pairs of elements in R∗ . Also, introduce to A a starting 
vertex v1 labeled with # and a final vertex vf  labeled with 
the character $. All other vertices in A are labeled with 
integral values. This initial set of vertices and edges 
is called the backbone. The backbone by itself is only 
sufficient for finding alignments with no missing cut 
sites in the query. The backbone of an automaton con-
structed for a set containing R′ and R′′ would be #, 6, 5, 
3, 5, 999, 2, 4, 3, 5$, using 999 as an unmatchable value. 
Next, extra vertices (“skip vertices”) and extra edges 
are added to A to allow for the automaton to accept all 
valid queries. Figure 1a illustrates the construction of A 
for a single Rmap with fragment sizes 2, 3, 4, 5, 6.

Skip vertices and skip edges
We introduce extra vertices labeled with compound 
fragments to allow missing cut sites (first type of error) 
to be taken into account in querying the target Rmaps. 
We refer to these as skip vertices as they provide alter-
native path segments which skip past two or more 
backbone vertices. Thus, we add a skip vertex to A for 
every pair of consecutive vertices in the backbone, as 
well as every triple of consecutive vertices in the back-
bone, and label these vertices as the sum of the corre-
sponding vertices. For example, vertex labeled with 7 
connecting 2 and 5 in  1a is an example of a skip ver-
tex. Likewise, 5, 9, 11 are other skip vertices. Skip verti-
ces corresponding to a pair of vertices in the backbone 
would correspond to a single missing cut-site and simi-
larly, skip vertices corresponding to a trip of vertices in 
the backbone correspond to two consecutive missing 
cut-sites. The probability of more than two consecutive 
missing cut-sites is negligible [11], and thus, we do not 
consider more than pairs or triples of vertices. Finally, 
we add skip edges which provide paths around vertices 
with small labels in the backbone. These allow allow for 
desorption (the second type of error) to be taken into 
account in querying R∗.
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Generalized compressed suffix array
We index the automaton with the GCSA for efficient 
storage and path querying. The GCSA is a generaliza-
tion of the FM-index for automata. We will explain the 
GCSA by drawing on the definition of the more widely-
known FM-index. As stated in the background section, 
the FM-index is based on the deep relationship between 
the SA and the BWT data structures of the input string 
X . The BWT of an input string is formed by sorting all 
characters of the string by the lexicographic order of 
the suffix immediately following each character. The 

main properties the FM-index exploits in order to per-
form queries efficiently are (a) BWT[i] = X[SA[i] − 1] ; 
and (b) given that SA[i] = j , and C[c] gives the position 
of the first suffix in SA prefixed with character c, then 
using small auxiliary data structures we can quickly 
determine k = C[BWT[i]] + rank(BWT,BWT[i], i) , 
such that SA[k] = j − 1 . The first of these properties 
is simply the definition of the BWT . The second is, 
because the symbols of X occur in the same order in 
both the single character prefixes in the suffix array and 
in the BWT , given a set of sorted suffixes, prepending 
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size sequence 2, 3, 4, 5, 6. The top half of vertices con-
tains the label, which models a fragment size in Kbp.
The backbone vertices run horizontally along the cen-
ter in this layout. The common prefixes of all suffixes
spellable from a vertex is written in the bottom half.
Note that there is no ordering of vertices such that all
their corresponding suffixes are in lexicographic order;
the leftmost vertex labelled with “5” spells suffixes
beginning “5,4,...” as well as the suffix “5,9,6,$” while
the rightmost 5 spells the suffix “5,6,$”. (b) shows the
prefix sorted automaton corresponding to the one in
(a). The leftmost vertex 5 has been duplicated and
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divided between the new replacement instances. This
also divides the suffixes spellable from the prior version.
Now the three 5 vertices can be ordered based on their
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Fig. 1  Example automata and corresponding memory representation
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the same character onto each suffix does not change 
their order. Thus, if we consider all the suffixes in a 
range of SA which are preceded by the same symbol c, 
that subset will appear in the same relative order in SA : 
as a contiguous subinterval of the interval that contains 
all the suffixes beginning with c. Hence, by knowing 
where the position of the internal in SA corresponding 
to a symbol, and the rank of an instance of that symbol, 
we can identify the SA position beginning with that 
instance from its position in BWT . A rank data struc-
ture over the BWT constitutes a sufficient compressed 
index of the suffix array needed for traversal.

To generalize the FM-index to automata from strings, 
we need to efficiently store the vertices and edges in a 
manner such that the FM-index properties still hold, 
allowing the GCSA to support queries efficiently. An FM-
index’s compressed suffix array for a string S encodes a 
relationship between each suffix S and its left extension. 
Hence, this suffix array can be generalized to edges in 
a graph that represent a relationship between vertices. 
The compressed suffix array for a string is a special case 
where the vertices are labeled with the string’s symbols in 
a non-branching path.

Prefix‑sorted automata
Just as backward search for strings is linked to suffix sort-
ing, backward searching in the BWT of the automaton 
requires us to be able to sort the vertices (and a set of the 
paths) of the automaton in a particular way. This property 
is called prefix-sorted by Sirén et al. [18]. Let A = (V ,E) be 
a finite automaton, let v|V | denote its terminal vertex, and 
let v ∈ V  be a vertex. We say v is prefix-sorted by prefix p(v) 
if the labels of all paths from v to v|V | share a common prefix 
p(v), and no path from any other vertex u  = v to v|V | has 
p(v) as a prefix of its label. Automaton A is prefix-sorted if 
all vertices are prefix-sorted. See Fig. 1a for an example of a 
non-prefix sorted automaton and a prefix sorted automa-
ton. A non-prefix sorted automaton can be made prefix 
sorted through a process of duplicating vertices and their 
incoming edges but dividing their outgoing edges between 
the new instances. We refer the reader to Sirén et al. [18]) 
for a more thorough explanation of how to transform a 
non-prefix sorted automaton to a prefix-sorted one.

Clearly, the prefixes p(v) allow us to sort the vertices 
of a prefix-sorted automaton into lexicographical order. 
Moreover, if we consider the list of outgoing edges (u, v), 
sorted by pairs (p(u),  p(v)), they are also sorted by the 
sequences ℓ(u)p(v) , where ℓ(u) denotes the label of ver-
tex u. This dual sortedness property allows backward 
searching to work over the list of vertex labels (sorted 
by p(v)) in the same way that is does for the symbols of a 
string ordered by their following suffixes in normal back-
ward search for strings.

Each vertex has a set of one or more preceding vertices 
and therefore, a set of predecessor labels in the automa-
ton. These predecessor label sets are concatenated to 
form the BWT . The sets are concatenated in the order 
defined by the above mentioned lexicographic ordering of 
the vertices. Each element in BWT then denotes an edge 
in the automaton. Another bit vector, F , marks a ‘1’ for the 
first element of BWT corresponding to a vertex and a ‘0’ 
for all subsequent elements in that set. Thus, the prede-
cessor labels, and hence the associated edges, for a vertex 
with rank r are BWT[select1(F, r) . . . select1(F, r + 1)] . 
Another array, M , stores the outdegree of each vertex 
and allows the set of vertex ranks associated with a BWT 
interval to be found using rank() queries.

Exact matching: GCSA backward search
Exact matching with the GCSA is similar to the standard 
FM-index backward search algorithm. As outlined in the 
background section, FM-index backward search proceeds 
by finding a succession of lexicographic ranges that match 
progressively longer suffixes of the query string, start-
ing from the rightmost symbol of the query. The search 
maintains two items—a lexicographic range and an index 
into the query string—and the property that the path pre-
fix associated with the lexicographic range is equal to the 
suffix of the query marked by the query index. Initially, 
the query index is at the rightmost symbol and the range 
is [1…n] since every path prefix matches the empty suf-
fix. The search continues using GCSA’s backward search 
step function, which takes as parameters the next symbol 
(to the left) in the query (i.e. fragment size in Rq ) and the 
current range, and returns a new range. The query index 
is advanced leftward after each backward search step. In 
theory, since the current range corresponds to a consec-
utive range in the BWT , the backward search could use 
select() queries on the bit vector F (see above) to deter-
mine all the edges adjacent to a given vertex and then 
two FM-index LF() queries are applied to the limits of the 
current range to obtain the new one. GCSA’s implemen-
tation uses one succinct bit vector per alphabet symbol to 
encode which symbols precede a given vertex instead of 
F . Finally, this new range, which corresponds to a set of 
edges, is mapped back to a set of vertices using rank() on 
the M bit vector.

Inexact matching: modified GCSA backward search
We modified GCSA backward search in the follow-
ing ways. First, we modified the search process to com-
bine consecutive fragments into compound fragments 
in the query Rmap in order to account for erroneous 
cut-sites. Secondly, we added and used a wavelet tree in 
order to allow efficient retrieval of substitution candi-
dates to account for sizing error. Lastly, we introduced 
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backtracking to allow aligning Rmaps in the presence of 
multiple alternative size substitutions candidates as well 
as alternative compound fragments for each point in the 
query. We now discuss these modifications in further 
detail below.

To accommodate possible false restriction sites that are 
present in the query Rmap, we generate compound frag-
ments by summing pairs and triples of consecutive query 
fragment sizes. This summing of multiple consecutive 
query fragments is complementary to the skip vertices in 
the target automaton which accommodate false restric-
tion sites in the target. We note for each query Rmap 
there will be multiple combinations of compound frag-
ments generated.

Next, in order to accommodate possible sizing error in 
the Rmap data, we modified the backward search by add-
ing and using a wavelet tree in our query of the GCSA. 
The original implementation of the GCSA does not con-
struct or use the wavelet tree. Although it does consider 
alignments containing mismatches, it is limited to small 
alphabets (e.g., DNA alphabet), which do not necessitate 
the use of the wavelet tree. Here, the alphabet size is all 
possible fragment sizes. Thus, we construct the wavelet 
tree in addition to the GCSA. Then when aligning frag-
ment f in the query Rmap, we determine the set of candi-
date fragment sizes that are within some error tolerance 
of f by enumerating the distinct symbols in the currently 
active backward search range of the BWT using the wave-
let tree algorithm of Gagie et al. [17]. As previously men-
tioned, this use of the wavelet tree also exists in the Twin 
[14] but is constructed and used in conjunction with an 
FM-index. We used the SDSL-Lite library by Gog et  al. 
[22] to construct and store the GCSA.

Finally, since there may be multiple alternative size 
compatible candidates in the BWT interval of R∗ for 
a compound fragment and multiple alternative com-
pound fragments generated at a given position in query 
Rmap, we add backtracking to backward search so each 
candidate alignment is evaluated. We note that this is 
akin to the use of backtracking algorithms in short read 
alignment [15, 16]. Thus, for a given compound frag-
ment size f generated from Rq , every possible candidate 
fragment size, f ′ , that can be found in R∗ in the range 
f − t . . . f + t and in the interval s . . . e (of the BWT of 
R
∗ ) for some tolerance t is considered as a possible sub-

stitute in the backward search.
Thus, to recap, when attempting to align each query 

Rmap, we consider every possible combination of com-
pound fragments and use the wavelet tree to determine 
possible candidate matches during the backward search. 
There are potentially a large number of possible can-
didate alignments—for efficiency, these candidates are 
pruned by evaluating the alignment during each step of 

the search relative to statistical models of the expected 
error in the data. We discuss this pruning in the next 
subsection.

Pruning the search
Alignments are found by incrementally extending can-
didate partial alignments (paths in the automaton) to 
longer partial alignments by choosing one of several 
compatible extension matches (adjacent vertices to the 
end of a path in the automaton). To perform this search 
efficiently, we prune the search by computing the Chi-
squared CDF and binomial CDF statistics of the partial 
matches and use thresholds to ensure reasonable size 
agreement of the matched compound fragments, and the 
frequency of putative missing cut sites. We conclude this 
section by giving an example of the backward search.

Size agreement
We use the Chi-squared CDF statistic to assess size 
agreement. This assumes the fragment size errors are 
independent, normally distributed events. For each pair 
of matched compound fragments in a partial alignment, 
we take the mean between the two as the assumed true 
length and compute the expected standard deviation 
using this mean. Each compound fragment deviates from 
the assumed true value by half the distance between 
them. These two values contribute two degrees of free-
dom to the Chi-squared calculation. Thus, each devia-
tion is normalized by dividing by the expected standard 
deviation, these are squared, and summed across all 
compound fragments to generate the Chi-squared sta-
tistic. We use the standard Chi-squared CDF function 
to compute the area under the curve of the probability 
mass function up to this Chi-squared statistic, which 
gives the probability two Rmap segments from common 
genomic origin would have a Chi-squared statistic no 
more extreme than observed. This probability is com-
pared to Kohdista’s chi-squared-cdf-thresh and 
if smaller, the candidate compound fragment is assumed 
to be a reasonable match and the search continues.

Cut site error frequency
We use the Binomial CDF statistic to assess the probabil-
ity of the number of cut site errors in a partial alignment. 
This assumes missing cut site errors are independent, 
Bernoulli processes events. We account for all the puta-
tively conserved cut sites on the boundaries and those 
delimiting compound fragments in both partially aligned 
Rmaps plus twice the number of missed sites as the num-
ber of Bernoulli trials. We use the standard binomial 
CDF function to compute the sum of the probability den-
sity function up to the number of non-conserved cut sites 
in a candidate match. Like the size agreement calculation 
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above, this gives the probability two Rmaps of common 
genomic origin would have the number of non-conserved 
sites seen or fewer in the candidate partial alignment 
under consideration. This is compared to the binom-cdf-
thresh to decide whether to consider extensions to the 
given candidate partial alignment. Thus, given a set of 
Rmaps and input parameters binom-cdf-thresh and 
chi-squared-cdf-thresh, we produce the set of all 
Rmap alignments that have a Chi-squared CDF statistic 
less than chi-squared-cdf-thresh and a binomial 
CDF statistic less than binom-cdf-thresh. Both of 
these are subject to the additional constraint of a maxi-
mum consecutive missed restriction site run between 
aligned sites of two and a minimum aligned site set car-
dinality of 16.

Example traversal
A partial search for a query Rmap [3 kb, 7 kb, 6 kb] in 
Fig. 1a and Table (b) given an error model with a constant 
1 kb sizing error would proceed with steps:

1.	 Start with the semi-open interval matching the 
empty string [0…12).

2.	 A wavelet tree query on BWT would indicate the set 
of symbols {5, 6, 7} is the intersection of two sets: (a) 
the set of symbols that would all be valid left exten-
sions of the (currently empty) match string and (b) 
the set of size appropriate symbols that match our 
next query symbol (i.e. 6 kb, working from the right 
end of our query) in light of the expected sizing error 
(i.e. 6kb +/− 1 kb).

3.	 We would then do a GCSA backward search step on 
the first value in the set (5) which would yield the 
new interval [4…7). This new interval denotes only 
nodes where each node’s common prefix is compat-
ible with the spelling of our current backward tra-
versal path through the automaton (i.e. our short 
path of just [5] does not contradict any path spella-
ble from any of the three nodes denoted in the match 
interval).

4.	 A wavelet tree query on the BWT for this interval for 
values 7 kb +/− 1 kb would return the set of symbols 
{7}.

5.	 Another backward search step would yield the new 
interval [8…9). At this point our traversal path would 
be [7, 5] (denoted as a left extension of a forward 
path that we are building by traversing the graph 
backward). The common prefix of each node (only 
one node here) in our match interval (i.e. [7 kb]) is 
compatible with the path [7, 5]. This process would 
continue until backward search returns no match 

interval or our scoring model indicates our repeat-
edly left extended path has grown too divergent from 
our query. At this point backtracking would occur 
to find other matches (e.g. at some point we would 
backward search using the value 6 kb instead of the 5 
kb obtained in step 2.)

Practical considerations
In this section we describe some of the practical consid-
erations that were made in the implementation.

Memoization
One side effect of summing consecutive fragments in 
both the search algorithm and the target data structure 
is that several successive search steps with agreeing frag-
ment sizes will also have agreeing sums of those succes-
sive fragments. In this scenario, proceeding deeper in 
the search space will result in wasted effort. To reduce 
this risk, we maintain a table of scores obtained when 
reaching a particular lexicographic range and query cur-
sor pair. We only proceed with the search past this point 
when either the point has never been reached before, or 
has only been reached before with inferior scores.

Wavelet tree threshold
The wavelet tree allows efficiently finding the set of ver-
tex labels that are predecessors of the vertices in the 
current match interval intersected with the set of vertex 
labels that would be compatible with the next compound 
fragment to be matched in the query. However, when the 
match interval is sufficiently small ( < 750 ) it is faster to 
scan the vertices in BWT directly.

Quantization
The alphabet of fragment sizes can be large considering 
all the measured fragments from multiple copies of the 
genome. This can cause an extremely large branching 
factor for the initial symbol and first few extensions in 
the search. To improve the efficiency of the search, the 
fragment sizes are initially quantized, thus reducing the 
size of the effective alphabet and the number of substitu-
tion candidates under consideration at each point in the 
search. Quantization also increases the number of identi-
cal path segments across the indexed graph which allows 
a greater amount of candidate matches to be evaluated in 
parallel because they all fall into the same BWT interval 
during the search. This does, however, introduce some 
quantization error into the fragment sizes, but the bin 
size is chosen to keep this small in comparison to the siz-
ing error.
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Results
We evaluated Kohdista against the other available opti-
cal map alignment software. Our experiments measured 
runtime, peak memory, and alignment quality on simu-
lated E. coli Rmaps and experimentally generated plum 
Rmaps. All experiments were performed on Intel Xeon 
computers with ≥ 16 GB RAM running 64-bit Linux.

Parameters used We tried OPTIMA with both 
“p-value” and “score” scoring and the allMaps option and 
report the higher sensitivity “score” setting. We followed 
the OPTIMA-Overlap protocol of splitting Rmaps into 
k-mers, each containing 12 fragments as suggested in [8]. 
For OMBlast, we adjusted parameters maxclusteritem, 
match, fpp, fnp, meas, minclusterscore, and minconf. For 
MalignerDP, we adjusted parameters max-misses, miss-
penalty, sd-rate, min-sd, and max-miss-rate and addi-
tionally filtered the results by alignment score. Though 
unpublished, for comparison we also include the propri-
etary RefAligner software from BioNano. For RefAligner 
we adjusted parameters FP, FN, sd, sf, A, and S. For Koh-
dista, we adjusted parameters chi-squared-cdf-
thresh and binom-cdf-thresh. For the method of 
Valouev et al. [12], we adjusted score_thresh and t_score_
thresh variables in the source. In Table 1 we report sta-
tistical and computational performance for each method.

OMBlast was configured with parameters meas = 
3000, minconf = 0.09, minmatch = 15 and the rest left at 
defaults. RefAligner was run with parameters FP = 0.15, 
sd = 0.6, sf = 0.2, sr = 0.0, se = 0.0, A = 15, S = 22 and 
the rest left at defaults. MalignerDP was configured with 
parameters ref-max-misses = 2, query-miss-penalty = 3, 
query-max-miss-rate = 0.5, min-sd = 1500, and the rest 
left at defaults.

The method of Valouev et al. [12] was run with default 
parameters except we reduced the maximum compound 
fragment length (their δ parameter) from 6 fragments to 
3. We observed this method rarely included alignments 
containing more than two missed restriction sites in a 
compound fragment.

Performance on simulated E. coli Rmap data
To verify the correctness of our method, we simulated a 
read set from a 4.6 Mbp E. coli reference genome as fol-
lows: we started with 1,400 copies of the genome, and 
then generated 40 random loci within each. These loci 
form the ends of molecules that would undergo digestion. 
Molecules smaller than 250 Kbp were discarded, leav-
ing 272 Rmaps with a combined length equating to 35x 
coverage depth. The cleavage sites for the XhoI enzyme 
were then identified within each of these simulated mol-
ecules. We removed 20% of these at random from each 
simulated molecule to model partial digestion. Finally, 
normally distributed noise was added to each fragment 
with a standard deviation of .58 kb per 1 kb of the frag-
ment. This simulation resulted in 272 Rmaps. Simulated 
molecule pairs having 16 common conserved digestion 
sites become the set of “ground truth” alignments, which 
our method and other methods should successfully iden-
tify. Our simulation resulted in 4,305 ground truth align-
ments matching this criteria. Although a molecule would 
align to itself, these are not included in the ground truth 
set. This method of simulation was based on the E. coli 
statistics given by Valouev et  al. [12] and resulting in 
a molecule length distribution as observed in publicly 
available Rmap data from OpGen, Inc.

Most methods were designed for less noisy data but 
in theory could address all the data error types required. 
For methods with tunable parameters, we tried aligning 
the E. coli Rmaps with combinations of parameters for 
each method related to its alignment score thresholds 
and error model parameters. We used parameterization 
giving results similar to those for the default parameters 
of the method of Valouev et  al. [12] to the extent such 
parameters did not significantly increase the running 
time of each method. These same parameterization were 
used in the next section on plum data.

Even with tuning, we were unable to obtain pair-
wise alignments on E. coli for two methods. We found 
OPTIMA only produced self alignments with its 

Table 1  Performance on simulated E. coli dataset

Kohdista (lax) demonstrates that our indexing and search method is capable of finding the majority of ground truth alignments when the search is pruned to the more 
relaxed thresholds for chi-squared-cdf-thresh and binom-cdf-thresh, i.e., chi-squared-cdf-thresh = 0.02 and binom-cdf-thresh = 0.5

Method Time (s) Memory (MB) Align-ments Recall Precision

Kohdista 20 19.0 907 702/4305 (16%) 702/771 (91%)

Kohdista (lax) 373 18.3 8545 3925/4305 (91%) 3925/8545 (46%)

Valouev et al. 148 4.0 742 699/4305 (16%) 699/742 (94%)

MalignerDP 47 6.0 1959 1296/4305 (30%) 1296/1959 (66%)

OMBlast 116 2078 1008 806/4305 (19%) 806/1008 (80%)

RefAligner 31 81.2 992 958/4305 (22%) 948/992 (97%)

MalignerIX 4 6.0 0 0/4305 (0%) 0/0 (N/A)

OPTIMA 455 10756.5 0 0/4305 (0%) 0/0 (N/A)



Page 10 of 13Muggli et al. Algorithms Mol Biol           (2019) 14:25 

recommended overlap protocol and report its resource 
use in Table  1. For MalignerIX, even when we relaxed 
the parameters to account for the greater sizing error 
and mismatch cut site frequency, it was also only able 
to find self alignments. This is expected as by design 
it only allows missing sites in one sequence in order to 
run faster. Thus no further testing was performed with 
MalignerIX or OPTIMA. We did not test SOMA [13] as 
earlier investigation indicate it would not scale to larger 
genomes [14]. We omitted TWIN [14] as it needs all cut 
sites to match. With tuning, Kohdista, MAligner, the 
method of Valouev et  al. [12], RefAligner and OMBlast 
produced reasonable results on the E.coli data. Results 
for the best combinations of parameters encountered 
during tuning can be seen in Figs. 2 and 3. We observed 
that most methods could find more ground truth align-
ments as their parameters were relaxed at the expense of 
additional false positives, as illustrated in these figures. 
However, only the method of Valouev et  al. and Koh-
dista approached recall of all ground truth alignments. 

Table  1 illustrates the results for Kohdista and the 
competing methods with parameters optimized to try 
to match those of Valouev et  al. [12], as well as results 
using Kohdista with a more permissive parameter set-
ting. All results include both indexing as well as search 
time. Kohdista took two seconds to build its data struc-
tures. Again, Kohdista uses Chi-squared and binomial 
CDF thresholds to prune the backtracking search when 
deciding whether to extend alignments to progres-
sively longer alignments. More permissive match crite-
ria, using higher thresholds, allows more Rmaps to be 
reached in the search and thus to be considered aligned, 
but it also results in less aggressive pruning in the search, 
thus lengthening runtime. As an example, note that 
when Kohdista was configured with a much relaxed 
Chi-squared CDF threshold of .5 and a binomial CDF 
threshold of .7, it found 3925 of the 4305 (91%) ground 
truth alignments, but slowed down considerably. This 

illustrates the index and algorithm’s capability in han-
dling all error types and achieving high recall.

Performance on plum Rmap data
The Beijing Forestry University and other institutes 
assembled the first plum (Prunus mume) genome using 
short reads and optical mapping data from OpGen Inc. 
We test the various available alignment methods on the 
139,281 plum Rmaps from June 2011 available in the 
GigaScience repository. These Rmaps were created with 
the BamHI enzyme and have a coverage depth of 135x of 
the 280 Mbp genome. For the plum dataset, we ran all the 
methods which approach the statistical performance of 
the method of Valouev et al. [12] when measured on E. 
coli. Thus, we omitted MalignerIX and OPTIMA because 
they had 0% recall and precision on E. coli. Our results on 
this plum dataset are summarized in Table 2.

Kohdista was the fastest and obtained more align-
ments than the competing methods. When configured 
with the Chi-squared CDF threshold of .02 and binomial 
CDF threshold of .5, it took 31 h of CPU time to test all 
Rmaps for pairwise alignments in the plum Rmap data. 
This represents a 21× speed-up over the 678 h taken by 
the dynamic programming method of Valouev et al. [12]. 
MalignerDP and OMBlast took 214 h and 151 h, respec-
tively. Hence, Kohdista has a 6.9× and 4.8× speed-up 
over MalignerDP and OMBlast. All methods used less 

Fig. 2  Precision-recall plot of successful methods on simulated E. coli 

Fig. 3  ROC plot of successful methods on simulated E. coli 

Table 2  Performance on plum

Method Time (h) Memory Alignments

Kohdista 31 7.4 GB 16,109,151

Valouev et al. 678 60 MB 6387

MalignerDP 214 784 MB 1,258,328

OMBlast 151 12.3 GB 424,730

RefAligner 90 374 MB 10,039
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than 13 GB of RAM and thus, were considered practical 
from a memory perspective. Kohdista took 11 min to 
build its data structures for Plum.

To measure the quality of the alignments, we scored 
each pairwise alignment using Valouev et  al. [12] and 
presented histograms of these alignment scores in Fig. 4. 

a b

c d

e f

Fig. 4  A comparison between the quality of the scores of the alignments found by the various methods on the plum data. All alignments were 
realigned using the dynamic programming method of Valouev et al. [12] in order to acquire a score for each alignment. Hence, the method finds 
the optimal alignment using a function balancing size agreement and cut site agreement known as a S-score. The following alignments were 
considered: a those obtained from aligning random pairs of Rmaps; b those obtained from the method of Valouev et al. [12]; c those obtained from 
Kohdista; d those obtained from MalignerDP; e those obtained from OMBlast; and lastly, f those obtained from BioNano’s commercial RefAligner
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For comparison, we also scored and present the histo-
gram for random pairs of Rmaps. The method of Valouev 
et al. [12] produces very few but high-scoring alignments 
and although it could theoretically be altered to pro-
duce a larger number of alignments, the running time 
makes this prospect impractical (678 h). Although Koh-
dista and RefAligner produce high-quality alignments, 
RefAligner produced very few alignments (10,039) and 
required almost 5x more time to do so. OMBlast and 
Maligner required significantly more time and produced 
significantly lower quality alignments.

Conclusions
In this paper, we demonstrate how finding pairwise align-
ments in Rmap data can be modelled as approximate-
path matching in a directed acyclic graph, and combining 
the GCSA with the wavelet tree results in an index-based 
data structure for solving this problem. We implement 
this method and present results comparing Kohdista 
with competing methods. By demonstrating results on 
both simulated E. coli Rmap data and real plum Rmaps, 
we show that Kohdista is capable of detecting high 
scoring alignments in efficient time. In particular, Koh-
dista detected the largest number of alignments in 31 
h. RefAligner, a proprietary method, produced very few 
high scoring alignments (10,039) and requires almost 
5× more time to do so. OMBlast and Maligner required 
significantly more time and produced significantly lower 
quality alignments. The method of Valouev et  al. [12] 
produced high scoring alignments but required more 
than 21× time to do.
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