
Muggli et al. Algorithms Mol Biol (2019) 14:25
https://doi.org/10.1186/s13015-019-0160-9

SOFTWARE ARTICLE

Kohdista: an efficient method to index
and query possible Rmap alignments
Martin D. Muggli1, Simon J. Puglisi2 and Christina Boucher3* 

Abstract 

Background:  Genome-wide optical maps are ordered high-resolution restriction maps that give the position of
occurrence of restriction cut sites corresponding to one or more restriction enzymes. These genome-wide optical
maps are assembled using an overlap-layout-consensus approach using raw optical map data, which are referred to
as Rmaps. Due to the high error-rate of Rmap data, finding the overlap between Rmaps remains challenging.

Results:  We present Kohdista, which is an index-based algorithm for finding pairwise alignments between single
molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment problem as automaton path
matching, and the application of modern index-based data structures. In particular, we combine the use of the Gen-
eralized Compressed Suffix Array (GCSA) index with the wavelet tree in order to build Kohdista. We validate Kohdista on
simulated E. coli data, showing the approach successfully finds alignments between Rmaps simulated from overlap-
ping genomic regions.

Conclusion:  we demonstrate Kohdista is the only method that is capable of finding a significant number of high qual-
ity pairwise Rmap alignments for large eukaryote organisms in reasonable time.

Keywords:  Optical mapping, Index based data structures, FM-index, Graph algorithms

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
There is a current resurgence in generating diverse types
of data, to be used alone or in concert with short read
data, in order to overcome the limitations of short read
data. Data from an optical mapping system [1] is one
such example and has itself become more practical with
falling costs of high-throughput methods. For example,
the current BioNano Genomics Irys System requires
one week and $1000 USD to produce the Rmap data for
an average size eukaryote genome, whereas, it required
$100,000 and 6 months in 2009 [2]. These technological
advances and the demonstrated utility of optical mapping
in genome assembly [3–7] have driven several recent tool
development efforts [8–10].

Genome-wide optical maps are ordered high-reso-
lution restriction maps that give the position of occur-
rence of restriction cut sites corresponding to one or
more restriction enzymes. These genome-wide optical
maps are assembled using an overlap-layout-consensus
approach using raw optical map data, which are referred
to as Rmaps. Hence, Rmaps are akin to reads in genome
sequencing. In addition, to the the inaccuracies in the
fragment sizes, there is the possibility of cut sites being
spuriously added or deleted; which makes the problem of
finding pairwise alignments between Rmaps challenging.
To date, however, there is no efficient, non-proprietary
method for finding pairwise alignments between Rmaps,
which is the first step in assembling genome-wide maps.

Several existing methods are superficially applicable to
Rmap pairwise alignments but all programs either strug-
gle to scale to even moderate size genomes or require
significant further adaptation to the problem. Several
methods exhaustively evaluate all pairs of Rmaps using
dynamic programming. One of these is the method of

Open Access

Algorithms for
Molecular Biology

*Correspondence: christinaboucher@ufl.edu
3 Computer & Information Science & Engineering, University of Florida,
Gainesville, FL, USA
Full list of author information is available at the end of the article
A preliminary version appeared in the proceedings of WABI 2018

http://orcid.org/0000-0001-9509-9725
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0160-9&domain=pdf

Page 2 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

Valouev et al. [11], which is capable of solving the prob-
lem exactly but requires over 100,000 CPU hours to com-
pute the alignments for rice [12]. The others are SOMA
[13] and MalignerDP [10] which are designed only for
semi-global alignments instead of overlap alignments,
which are required for assembly.

Other methods reduce the number of map pairs to be
individually considered by initially finding seed matches
and then extending them through more intensive work.
These include OMBlast [9], OPTIMA [8], and Malign-
erIX [10]. These, along with MalignerDP, were designed
for a related alignment problem of aligning consensus
data but cannot consistently find high quality Rmap pair-
wise alignments in reasonable time as we show later. This
is unsurprising since these methods were designed for
either already assembled optical maps or in silico digested
sequence data for one of their inputs, both having a lower
error rate than Rmap data. In addition, Muggli et al. [14]
presented a method called Twin, which aligns assembled
contigs to a genome-wide optimal map. Twin varies from
these previous methods in that it is unable to robustly
find alignments between pairs of Rmaps due to the pres-
ence of added or missing cut-sites.

In this paper, we present a fast, error-tolerant method
for performing pairwise Rmap alignment that makes use
of a novel FM-index based data structure. Although the
FM-index can naturally be applied to short read align-
ment [15, 16], it is nontrivial to apply it to Rmap align-
ment. The difficulty arises from: (1) the abundance of
missing or false cut sites, (2) the fragment sizes require
inexact fragment-fragment matches (e.g. 1547 bp and
1503 bp represent the same fragment), (3) the Rmap
sequence alphabet consists of all unique fragment sizes
and is so extremely large (e.g., over 16,000 symbols for
the goat genome). The second two challenges render
inefficient the standard FM-index backward search algo-
rithm, which excels at exact matching over small alpha-
bets since each step of the algorithm extends the search
for a query string by a single character c. If the alphabet
is small (say DNA alphabet) then a search for other sym-
bols of the alphabet other than c can be incorporated
without much cost to the algorithm’s efficiency. Yet, if the
alphabet is large enough this exhaustive search becomes
impractical. The wavelet tree helps to remedy this prob-
lem. It allows efficiently answering queries of the form:
find all symbols that allow extension of the backward
search by a single character, where the symbol is within
the range [α1 . . . αk] and where α1 and αk are symbols in
the alphabet such that α1 ≤ αk [17]. In the case of opti-
cal mapping data, the alphabet is all fragment sizes. Thus,
Muggli et al. [14] showed that constructing the FM-index
and wavelet tree from this input can allow for sizing error
to be account for by replacing each query in the FM index

backward search algorithm with a range query supported
by the wavelet tree, i.e., if the fragment size in the query
string is x then the wavelet tree can support queries of
the form: find all fragment sizes that allow extension of
the backward search by a single fragment, where the frag-
ment size in the range [x − y, x + y] occur, where y is a
threshold on the error tolerance.

Muggli et al. [14] demonstrated that the addition of
the wavelet tree can remedy the first two problems, i.e.,
sizing error and alphabet size, but the first and most-
notable challenge requires a more complex index-based
data structure. The addition of the wavelet tree to the
FM-index is not enough to allow for searches that are
robust to inserted and deleted cut sites. To overcome the
challenge of having added or deleted cut sites while still
accommodating the other two challenges, we develop
Kohdista, an index-based Rmap alignment program
that is capable of finding all pairwise alignments in large
eukaryote organisms.

We first abstract the problem to that of approximate-
path matching in a directed acyclic graph (DAG). The
Kohdista method then indexes a set of Rmaps repre-
sented as a DAG, using a modified form of the general-
ized compressed suffix array (GCSA), which is a variant
of the FM-index developed by Sirén et al. [18]. Hence,
the constructed DAG, which is stored using the GCSA,
stores all Rmaps, along with all variations obtained by
considering all speculative added and deleted cut sites.
The GCSA stores the DAG in a manner such that paths
in DAG may be queried efficiently. If we contrast this to
naïve automaton implementations, the GCSA has two
advantages: it is space efficient, and it allows for efficient
queries. Lastly, we demonstrate that challenges posed by
the inexact fragment sizes and alphabet size can be over-
come, specifically in the context of the GCSA, via careful
use of a wavelet tree [17], and via using statistical criteria
to control the quality of the discovered alignments.

Next, we point out some practical considerations con-
cerning Kohdista. First, we note that Kohdista can be
easily parallelized since once the GCSA is constructed
from the Rmap data, it can be queried in parallel on as
many threads as there are Rmaps to be queried. Next, in
this paper, we focus on finding all pairwise alignments
that satisfy some statistical constraints—whether they
be global or local alignments. Partial alignments can be
easily obtained by considering the prefix or suffix of the
query Rmap and relaxing the statistical constraint.

We verify our approach on simulated E. coli Rmap data
by showing that Kohdista achieves similar sensitiv-
ity and specificity to the method of Valouev et al. [12],
and with more permissive alignment acceptance criteria
90% of Rmap pairs simulated from overlapping genomic
regions. We also show the utility of our approach on

Page 3 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

larger eukaryote genomes by demonstrating that existing
published methods require more than 151 h of CPU time
to find all pairwise alignments in the plum Rmap data;
whereas, Kohdista requires 31 h. Thus, we present the
first fully-indexed method capable of finding all match
patterns in the pairwise Rmap alignment problem.

Preliminaries and definitions
Throughout we consider a string (or sequence)
S = S[1 . . . n] = S[1]S[2] . . . S[n] of |S| = n symbols
drawn from the alphabet [1 . . . σ] . For i = 1, . . . , n we
write S[i…n] to denote the suffix of S of length n− i + 1 ,
that is S[i . . . n] = S[i]S[i + 1] . . . S[n] , and S[1…i] to
denote the prefix of S of length i. S[i…j] is the sub-
string S[i]S[i + 1] . . . S[j] of S that starts at position i
and ends at j. Given a sequence S[1, n] over an alpha-
bet � = {1, . . . , σ } , a character c ∈ � , and integers i,j,
rankc(S, i) is the number of times that c appears in S[1, i],
and selectc(S, j) is the position of the j-th occurrence of c
in S. We remove S from the functions when it is implicit
from the context.

Overview of optical mapping
From a computer science viewpoint, restriction map-
ping (by optical or other means) can be seen as a pro-
cess that takes in two sequences: a genome A[1, n] and
a restriction enzyme’s restriction sequence B[1, b] , and
produces an array (sequence) of integers C , the genome
restriction map, which we define as follows. First define
the array of integers C[1,m] where C[i] = j if and only
if A[j . . . j + b] = B is the ith occurrence of B in A .
Then R[i] = (C[i] − C[i − 1]) , with R[1] = C[1] − 1 .
In words, R contains the distance between occur-
rences of B in A . For example, if we let B be act and
A = atacttactggactactaaact then we would have
C = 3, 7, 12, 15, 20 and R = 2, 4, 5, 3, 5 . In reality, R is a
consensus sequence formed from millions of erroneous
Rmap sequences. The optical mapping system produces
millions of Rmaps for a single genome. It is performed
on many cells of an organism and for each cell there are
thousands of Rmaps (each at least 250 Kbp in length in
publicly available data). The Rmaps are then assembled
to produce a genome-wide optical map. Like the final R
sequence, each Rmap is an array of lengths—or fragment
sizes—between occurrences of B in A.

There are three types of errors that an Rmap (and
hence with lower magnitude and frequency, also the
consensus map) can contain: (1) missing and false cuts,
which are caused by an enzyme not cleaving at a specific
site, or by random breaks in the DNA molecule, respec-
tively; (2) missing fragments that are caused by desorp-
tion, where small ( < 1 Kbp) fragments are lost and so
not detected by the imaging system; and (3) inaccuracy

in the fragment size due to varying fluorescent dye adhe-
sion to the DNA and other limitations of the imaging
process. Continuing again with the example above where
R = 2, 4, 5, 3, 5 is the error-free Rmap: an example of an
Rmap with the first type of error could be R′ = 6, 5, 3, 5
(the first cut site is missing so the fragment sizes 2, and 4
are summed to become 6 in R′ ); an example of an Rmap
with the second type of error would be R′′ = 2, 4, 3, 5 (the
third fragment is missing); and lastly, the third type of
error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the size of
the third fragment is inaccurately given).

Frequency of errors
In the optical mapping system, there is a 20% probability
that a cut site is missed and a 0.15% probability of a false
break per Kbp, i.e., error type (1) occurs in a fragment.
Popular restriction enzymes in optical mapping experi-
ments recognize a 6 bp sequence giving an expected cut-
ting density of 1 per 4096 bp. At this cutting density, false
breaks are less common than missing restriction sites
(approx. 0.25 ∗ .2 = .05 for missing sites vs. 0.0015 for
false sites per bp). The error in the fragment size is nor-
mally distributed with a mean of 0 bp, and a variance of
ℓσ 2 , where ℓ is equal to the fragment length and σ = .58
kbp [11].

Suffix arrays, BWT and backward search
The suffix array [19] SAX (we drop subscripts when they are
clear from the context) of a sequence X is an array SA[1 . . . n]
which contains a permutation of the integers [1...n] such that
X[SA[1] . . . n] < X[SA[2] . . . n] < · · · < X[SA[n] . . . n].
In other words, SA[j] = i iff X[i . . . n] is the j th suffix of X
in lexicographic order. For a sequence Y , the Y-interval in
the suffix array SAX is the interval SA[s . . . e] that contains
all suffixes having Y as a prefix. The Y-interval is a represen-
tation of the occurrences of Y in X . For a character c and a
sequence Y , the computation of cY-interval from Y-interval
is called a left extension.

The Burrows–Wheeler Transform BWT[1 . . . n] is a
permutation of X such that BWT[i] = X[SA[i] − 1] if
SA[i] > 1 and $ otherwise [20]. We also define LF[i] = j
iff SA[j] = SA[i] − 1 , except when SA[i] = 1 , in which
case LF[i] = I , where SA[I] = n . Ferragina and Man-
zini [21] linked BWT and SA in the following way. Let
C[c] , for symbol c, be the number of symbols in X lexi-
cographically smaller than c. The function rank(X, c, i) ,
for sequence X , symbol c, and integer i, returns the
number of occurrences of c in X[1 . . . i] . It is well known
that LF[i] = C[BWT[i]] + rank(BWT,BWT[i], i) .
Furthermore, we can compute the left extension
using C and rank . If SA[s . . . e] is the Y-interval, then
SA[C[c] + rank(BWT, c, s),C[c] + rank(BWT, c, e)] is

Page 4 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

the cY-interval. This is called backward search, and a data
structure supporting it is called an FM-index [21].

To support rank queries in backward search, a data
structure called a wavelet tree can be used [17]. It occupies
n log σ + o(n log σ) bits of space and supports rank que-
ries in O(log σ) time. Wavelet trees also support a variety
of more complex queries on the underlying string effi-
ciently. We refer the reader to Gagie et al. [17] for a more
thorough discussion of wavelet trees. One such query we
will use in this paper is to return the set X of distinct sym-
bols occurring in S[i, j], which takes O(|X | log σ) time.

The pairwise Rmap alignment problem
The pairwise Rmap alignment problem aims to align one
Rmap (the query) Rq against the set of all other Rmaps
in the dataset (the target). We denote the target database
as R1 . . .Rn , where each Ri is a sequence of mi fragment
sizes, i.e, Ri = [fi1, . . . , fimi] . An alignment between two
Rmaps is a relation between them comprising groups of
zero or more consecutive fragment sizes in one Rmap
associated with groups of zero or more consecutive frag-
ments in the other. For example, given Ri = [4, 5, 10, 9, 3]
and Rj = [10, 9, 11] one possible alignment is
{[4, 5], [10]}, {[10], [9]}, {[9], [11]}, {[3], []} . A group may
contain more than one fragment (e.g. [4, 5]) when the
restriction site delimiting the fragments is absent in the
corresponding group of the other Rmap (e.g [10]). This
can occur if there is a false restriction site in one Rmap,
or there is a missing restriction site in the other. Since we
cannot tell from only two Rmaps which of these scenarios
occurred, for the purpose of our remaining discussion it
will be sufficient to consider only the scenario of missed
(undigested) restriction sites.

Implementation
We now describe the algorithm behind Kohdista. Three
main insights enable our index-based aligner for Rmap
data: (1) abstraction of the alignment problem to a finite
automaton; (2) use of the GCSA for storing and querying
the automaton; and (3) modification of backward search
to use a wavelet tree in specific ways to account for the
Rmap error profile.

Finite automaton
Continuing with the example in the background section,
we want to align R′ = 6, 5, 3, 5 to R′′′ = 2, 4, 7, 3, 5 and
vice versa. To accomplish this we cast the Rmap alignment
problem to that of matching paths in a finite automaton. A
finite automaton is a directed, labeled graph that defines a
language, or a specific set of sequences composed of ver-
tex labels. A sequence is recognized by an automaton if it
contains a matching path: a consecutive sequence of vertex

labels equal to the sequence. We represent the target Rmaps
as an automaton and the query as a path in this context.

Backbone
The automaton for our target Rmaps can be constructed
as follows. First, we concatenate the R1 . . .Rn together
into a single sequence with each Rmap separated by a
special symbol which will not match any query sym-
bol. Let R∗ denote this concatenated sequence. Hence,
R
∗ = [f11, . . . , f1m1 , . . . , fn1, . . . , fnmn] . Then, construct an

initial finite automaton A = (V ,E) for R∗ by creating
a set of vertices vi1 . . . v

i
m , one vertex per fragment for

a total of |R∗| vertices and each vertex is labeled with
the length its corresponding fragment. Edges are then
added connecting vertices representing consecutive
pairs of elements in R∗ . Also, introduce to A a starting
vertex v1 labeled with # and a final vertex vf labeled with
the character $. All other vertices in A are labeled with
integral values. This initial set of vertices and edges
is called the backbone. The backbone by itself is only
sufficient for finding alignments with no missing cut
sites in the query. The backbone of an automaton con-
structed for a set containing R′ and R′′ would be #, 6, 5,
3, 5, 999, 2, 4, 3, 5$, using 999 as an unmatchable value.
Next, extra vertices (“skip vertices”) and extra edges
are added to A to allow for the automaton to accept all
valid queries. Figure 1a illustrates the construction of A
for a single Rmap with fragment sizes 2, 3, 4, 5, 6.

Skip vertices and skip edges
We introduce extra vertices labeled with compound
fragments to allow missing cut sites (first type of error)
to be taken into account in querying the target Rmaps.
We refer to these as skip vertices as they provide alter-
native path segments which skip past two or more
backbone vertices. Thus, we add a skip vertex to A for
every pair of consecutive vertices in the backbone, as
well as every triple of consecutive vertices in the back-
bone, and label these vertices as the sum of the corre-
sponding vertices. For example, vertex labeled with 7
connecting 2 and 5 in 1a is an example of a skip ver-
tex. Likewise, 5, 9, 11 are other skip vertices. Skip verti-
ces corresponding to a pair of vertices in the backbone
would correspond to a single missing cut-site and simi-
larly, skip vertices corresponding to a trip of vertices in
the backbone correspond to two consecutive missing
cut-sites. The probability of more than two consecutive
missing cut-sites is negligible [11], and thus, we do not
consider more than pairs or triples of vertices. Finally,
we add skip edges which provide paths around vertices
with small labels in the backbone. These allow allow for
desorption (the second type of error) to be taken into
account in querying R∗.

Page 5 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

Generalized compressed suffix array
We index the automaton with the GCSA for efficient
storage and path querying. The GCSA is a generaliza-
tion of the FM-index for automata. We will explain the
GCSA by drawing on the definition of the more widely-
known FM-index. As stated in the background section,
the FM-index is based on the deep relationship between
the SA and the BWT data structures of the input string
X . The BWT of an input string is formed by sorting all
characters of the string by the lexicographic order of
the suffix immediately following each character. The

main properties the FM-index exploits in order to per-
form queries efficiently are (a) BWT[i] = X[SA[i] − 1] ;
and (b) given that SA[i] = j , and C[c] gives the position
of the first suffix in SA prefixed with character c, then
using small auxiliary data structures we can quickly
determine k = C[BWT[i]] + rank(BWT,BWT[i], i) ,
such that SA[k] = j − 1 . The first of these properties
is simply the definition of the BWT . The second is,
because the symbols of X occur in the same order in
both the single character prefixes in the suffix array and
in the BWT , given a set of sorted suffixes, prepending

5,6,$

5

4

4

3

3

2

2

#

#

6,$

6

$

$

7

7
11,$

11

5

5

9,6,#

9

5,6,$

5

4

4

3

3

2

2

#

#

6,$

6

$

$

7

7
11,$

11

5,4

5

9,6,#

9

5,9,6,$

5

a

b

a An example automaton for an Rmap with fragment
size sequence 2, 3, 4, 5, 6. The top half of vertices con-
tains the label, which models a fragment size in Kbp.
The backbone vertices run horizontally along the cen-
ter in this layout. The common prefixes of all suffixes
spellable from a vertex is written in the bottom half.
Note that there is no ordering of vertices such that all
their corresponding suffixes are in lexicographic order;
the leftmost vertex labelled with “5” spells suffixes
beginning “5,4,...” as well as the suffix “5,9,6,$” while
the rightmost 5 spells the suffix “5,6,$”. (b) shows the
prefix sorted automaton corresponding to the one in
(a). The leftmost vertex 5 has been duplicated and
the outgoing edges of the previous version have been
divided between the new replacement instances. This
also divides the suffixes spellable from the prior version.
Now the three 5 vertices can be ordered based on their
common prefixes as [“5,4,...”,“5,6,$”, “5,9,6, $”].

BWT M F
$ 6

11
1 1

0
2 # 1

0
1

3 2 1
0

1

4 3
5

1
0

1
0

5,4 # 1 1
5,6,$ 4

7
1 1

0
5,9,6,$ # 1 1
6,$ 5

9
1 1

0
7 2 1

0
1

9,6,$ 3
5

1 1
0

11,$ 4
7

1 1
0

$ 1
0
0

1

b Table listing the three
arrays storing the automa-
ton in memory: BWT, M,
and F. Each row in the ta-
ble delimits elements asso-
ciated with a particular ver-
tex.

Fig. 1  Example automata and corresponding memory representation

Page 6 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

the same character onto each suffix does not change
their order. Thus, if we consider all the suffixes in a
range of SA which are preceded by the same symbol c,
that subset will appear in the same relative order in SA :
as a contiguous subinterval of the interval that contains
all the suffixes beginning with c. Hence, by knowing
where the position of the internal in SA corresponding
to a symbol, and the rank of an instance of that symbol,
we can identify the SA position beginning with that
instance from its position in BWT . A rank data struc-
ture over the BWT constitutes a sufficient compressed
index of the suffix array needed for traversal.

To generalize the FM-index to automata from strings,
we need to efficiently store the vertices and edges in a
manner such that the FM-index properties still hold,
allowing the GCSA to support queries efficiently. An FM-
index’s compressed suffix array for a string S encodes a
relationship between each suffix S and its left extension.
Hence, this suffix array can be generalized to edges in
a graph that represent a relationship between vertices.
The compressed suffix array for a string is a special case
where the vertices are labeled with the string’s symbols in
a non-branching path.

Prefix‑sorted automata
Just as backward search for strings is linked to suffix sort-
ing, backward searching in the BWT of the automaton
requires us to be able to sort the vertices (and a set of the
paths) of the automaton in a particular way. This property
is called prefix-sorted by Sirén et al. [18]. Let A = (V ,E) be
a finite automaton, let v|V | denote its terminal vertex, and
let v ∈ V be a vertex. We say v is prefix-sorted by prefix p(v)
if the labels of all paths from v to v|V | share a common prefix
p(v), and no path from any other vertex u = v to v|V | has
p(v) as a prefix of its label. Automaton A is prefix-sorted if
all vertices are prefix-sorted. See Fig. 1a for an example of a
non-prefix sorted automaton and a prefix sorted automa-
ton. A non-prefix sorted automaton can be made prefix
sorted through a process of duplicating vertices and their
incoming edges but dividing their outgoing edges between
the new instances. We refer the reader to Sirén et al. [18])
for a more thorough explanation of how to transform a
non-prefix sorted automaton to a prefix-sorted one.

Clearly, the prefixes p(v) allow us to sort the vertices
of a prefix-sorted automaton into lexicographical order.
Moreover, if we consider the list of outgoing edges (u, v),
sorted by pairs (p(u), p(v)), they are also sorted by the
sequences ℓ(u)p(v) , where ℓ(u) denotes the label of ver-
tex u. This dual sortedness property allows backward
searching to work over the list of vertex labels (sorted
by p(v)) in the same way that is does for the symbols of a
string ordered by their following suffixes in normal back-
ward search for strings.

Each vertex has a set of one or more preceding vertices
and therefore, a set of predecessor labels in the automa-
ton. These predecessor label sets are concatenated to
form the BWT . The sets are concatenated in the order
defined by the above mentioned lexicographic ordering of
the vertices. Each element in BWT then denotes an edge
in the automaton. Another bit vector, F , marks a ‘1’ for the
first element of BWT corresponding to a vertex and a ‘0’
for all subsequent elements in that set. Thus, the prede-
cessor labels, and hence the associated edges, for a vertex
with rank r are BWT[select1(F, r) . . . select1(F, r + 1)] .
Another array, M , stores the outdegree of each vertex
and allows the set of vertex ranks associated with a BWT
interval to be found using rank() queries.

Exact matching: GCSA backward search
Exact matching with the GCSA is similar to the standard
FM-index backward search algorithm. As outlined in the
background section, FM-index backward search proceeds
by finding a succession of lexicographic ranges that match
progressively longer suffixes of the query string, start-
ing from the rightmost symbol of the query. The search
maintains two items—a lexicographic range and an index
into the query string—and the property that the path pre-
fix associated with the lexicographic range is equal to the
suffix of the query marked by the query index. Initially,
the query index is at the rightmost symbol and the range
is [1…n] since every path prefix matches the empty suf-
fix. The search continues using GCSA’s backward search
step function, which takes as parameters the next symbol
(to the left) in the query (i.e. fragment size in Rq ) and the
current range, and returns a new range. The query index
is advanced leftward after each backward search step. In
theory, since the current range corresponds to a consec-
utive range in the BWT , the backward search could use
select() queries on the bit vector F (see above) to deter-
mine all the edges adjacent to a given vertex and then
two FM-index LF() queries are applied to the limits of the
current range to obtain the new one. GCSA’s implemen-
tation uses one succinct bit vector per alphabet symbol to
encode which symbols precede a given vertex instead of
F . Finally, this new range, which corresponds to a set of
edges, is mapped back to a set of vertices using rank() on
the M bit vector.

Inexact matching: modified GCSA backward search
We modified GCSA backward search in the follow-
ing ways. First, we modified the search process to com-
bine consecutive fragments into compound fragments
in the query Rmap in order to account for erroneous
cut-sites. Secondly, we added and used a wavelet tree in
order to allow efficient retrieval of substitution candi-
dates to account for sizing error. Lastly, we introduced

Page 7 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

backtracking to allow aligning Rmaps in the presence of
multiple alternative size substitutions candidates as well
as alternative compound fragments for each point in the
query. We now discuss these modifications in further
detail below.

To accommodate possible false restriction sites that are
present in the query Rmap, we generate compound frag-
ments by summing pairs and triples of consecutive query
fragment sizes. This summing of multiple consecutive
query fragments is complementary to the skip vertices in
the target automaton which accommodate false restric-
tion sites in the target. We note for each query Rmap
there will be multiple combinations of compound frag-
ments generated.

Next, in order to accommodate possible sizing error in
the Rmap data, we modified the backward search by add-
ing and using a wavelet tree in our query of the GCSA.
The original implementation of the GCSA does not con-
struct or use the wavelet tree. Although it does consider
alignments containing mismatches, it is limited to small
alphabets (e.g., DNA alphabet), which do not necessitate
the use of the wavelet tree. Here, the alphabet size is all
possible fragment sizes. Thus, we construct the wavelet
tree in addition to the GCSA. Then when aligning frag-
ment f in the query Rmap, we determine the set of candi-
date fragment sizes that are within some error tolerance
of f by enumerating the distinct symbols in the currently
active backward search range of the BWT using the wave-
let tree algorithm of Gagie et al. [17]. As previously men-
tioned, this use of the wavelet tree also exists in the Twin
[14] but is constructed and used in conjunction with an
FM-index. We used the SDSL-Lite library by Gog et al.
[22] to construct and store the GCSA.

Finally, since there may be multiple alternative size
compatible candidates in the BWT interval of R∗ for
a compound fragment and multiple alternative com-
pound fragments generated at a given position in query
Rmap, we add backtracking to backward search so each
candidate alignment is evaluated. We note that this is
akin to the use of backtracking algorithms in short read
alignment [15, 16]. Thus, for a given compound frag-
ment size f generated from Rq , every possible candidate
fragment size, f ′ , that can be found in R∗ in the range
f − t . . . f + t and in the interval s . . . e (of the BWT of
R
∗ ) for some tolerance t is considered as a possible sub-

stitute in the backward search.
Thus, to recap, when attempting to align each query

Rmap, we consider every possible combination of com-
pound fragments and use the wavelet tree to determine
possible candidate matches during the backward search.
There are potentially a large number of possible can-
didate alignments—for efficiency, these candidates are
pruned by evaluating the alignment during each step of

the search relative to statistical models of the expected
error in the data. We discuss this pruning in the next
subsection.

Pruning the search
Alignments are found by incrementally extending can-
didate partial alignments (paths in the automaton) to
longer partial alignments by choosing one of several
compatible extension matches (adjacent vertices to the
end of a path in the automaton). To perform this search
efficiently, we prune the search by computing the Chi-
squared CDF and binomial CDF statistics of the partial
matches and use thresholds to ensure reasonable size
agreement of the matched compound fragments, and the
frequency of putative missing cut sites. We conclude this
section by giving an example of the backward search.

Size agreement
We use the Chi-squared CDF statistic to assess size
agreement. This assumes the fragment size errors are
independent, normally distributed events. For each pair
of matched compound fragments in a partial alignment,
we take the mean between the two as the assumed true
length and compute the expected standard deviation
using this mean. Each compound fragment deviates from
the assumed true value by half the distance between
them. These two values contribute two degrees of free-
dom to the Chi-squared calculation. Thus, each devia-
tion is normalized by dividing by the expected standard
deviation, these are squared, and summed across all
compound fragments to generate the Chi-squared sta-
tistic. We use the standard Chi-squared CDF function
to compute the area under the curve of the probability
mass function up to this Chi-squared statistic, which
gives the probability two Rmap segments from common
genomic origin would have a Chi-squared statistic no
more extreme than observed. This probability is com-
pared to Kohdista’s chi-squared-cdf-thresh and
if smaller, the candidate compound fragment is assumed
to be a reasonable match and the search continues.

Cut site error frequency
We use the Binomial CDF statistic to assess the probabil-
ity of the number of cut site errors in a partial alignment.
This assumes missing cut site errors are independent,
Bernoulli processes events. We account for all the puta-
tively conserved cut sites on the boundaries and those
delimiting compound fragments in both partially aligned
Rmaps plus twice the number of missed sites as the num-
ber of Bernoulli trials. We use the standard binomial
CDF function to compute the sum of the probability den-
sity function up to the number of non-conserved cut sites
in a candidate match. Like the size agreement calculation

Page 8 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

above, this gives the probability two Rmaps of common
genomic origin would have the number of non-conserved
sites seen or fewer in the candidate partial alignment
under consideration. This is compared to the binom-cdf-
thresh to decide whether to consider extensions to the
given candidate partial alignment. Thus, given a set of
Rmaps and input parameters binom-cdf-thresh and
chi-squared-cdf-thresh, we produce the set of all
Rmap alignments that have a Chi-squared CDF statistic
less than chi-squared-cdf-thresh and a binomial
CDF statistic less than binom-cdf-thresh. Both of
these are subject to the additional constraint of a maxi-
mum consecutive missed restriction site run between
aligned sites of two and a minimum aligned site set car-
dinality of 16.

Example traversal
A partial search for a query Rmap [3 kb, 7 kb, 6 kb] in
Fig. 1a and Table (b) given an error model with a constant
1 kb sizing error would proceed with steps:

1.	 Start with the semi-open interval matching the
empty string [0…12).

2.	 A wavelet tree query on BWT would indicate the set
of symbols {5, 6, 7} is the intersection of two sets: (a)
the set of symbols that would all be valid left exten-
sions of the (currently empty) match string and (b)
the set of size appropriate symbols that match our
next query symbol (i.e. 6 kb, working from the right
end of our query) in light of the expected sizing error
(i.e. 6kb +/− 1 kb).

3.	 We would then do a GCSA backward search step on
the first value in the set (5) which would yield the
new interval [4…7). This new interval denotes only
nodes where each node’s common prefix is compat-
ible with the spelling of our current backward tra-
versal path through the automaton (i.e. our short
path of just [5] does not contradict any path spella-
ble from any of the three nodes denoted in the match
interval).

4.	 A wavelet tree query on the BWT for this interval for
values 7 kb +/− 1 kb would return the set of symbols
{7}.

5.	 Another backward search step would yield the new
interval [8…9). At this point our traversal path would
be [7, 5] (denoted as a left extension of a forward
path that we are building by traversing the graph
backward). The common prefix of each node (only
one node here) in our match interval (i.e. [7 kb]) is
compatible with the path [7, 5]. This process would
continue until backward search returns no match

interval or our scoring model indicates our repeat-
edly left extended path has grown too divergent from
our query. At this point backtracking would occur
to find other matches (e.g. at some point we would
backward search using the value 6 kb instead of the 5
kb obtained in step 2.)

Practical considerations
In this section we describe some of the practical consid-
erations that were made in the implementation.

Memoization
One side effect of summing consecutive fragments in
both the search algorithm and the target data structure
is that several successive search steps with agreeing frag-
ment sizes will also have agreeing sums of those succes-
sive fragments. In this scenario, proceeding deeper in
the search space will result in wasted effort. To reduce
this risk, we maintain a table of scores obtained when
reaching a particular lexicographic range and query cur-
sor pair. We only proceed with the search past this point
when either the point has never been reached before, or
has only been reached before with inferior scores.

Wavelet tree threshold
The wavelet tree allows efficiently finding the set of ver-
tex labels that are predecessors of the vertices in the
current match interval intersected with the set of vertex
labels that would be compatible with the next compound
fragment to be matched in the query. However, when the
match interval is sufficiently small ( < 750 ) it is faster to
scan the vertices in BWT directly.

Quantization
The alphabet of fragment sizes can be large considering
all the measured fragments from multiple copies of the
genome. This can cause an extremely large branching
factor for the initial symbol and first few extensions in
the search. To improve the efficiency of the search, the
fragment sizes are initially quantized, thus reducing the
size of the effective alphabet and the number of substitu-
tion candidates under consideration at each point in the
search. Quantization also increases the number of identi-
cal path segments across the indexed graph which allows
a greater amount of candidate matches to be evaluated in
parallel because they all fall into the same BWT interval
during the search. This does, however, introduce some
quantization error into the fragment sizes, but the bin
size is chosen to keep this small in comparison to the siz-
ing error.

Page 9 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

Results
We evaluated Kohdista against the other available opti-
cal map alignment software. Our experiments measured
runtime, peak memory, and alignment quality on simu-
lated E. coli Rmaps and experimentally generated plum
Rmaps. All experiments were performed on Intel Xeon
computers with ≥ 16 GB RAM running 64-bit Linux.

Parameters used We tried OPTIMA with both
“p-value” and “score” scoring and the allMaps option and
report the higher sensitivity “score” setting. We followed
the OPTIMA-Overlap protocol of splitting Rmaps into
k-mers, each containing 12 fragments as suggested in [8].
For OMBlast, we adjusted parameters maxclusteritem,
match, fpp, fnp, meas, minclusterscore, and minconf. For
MalignerDP, we adjusted parameters max-misses, miss-
penalty, sd-rate, min-sd, and max-miss-rate and addi-
tionally filtered the results by alignment score. Though
unpublished, for comparison we also include the propri-
etary RefAligner software from BioNano. For RefAligner
we adjusted parameters FP, FN, sd, sf, A, and S. For Koh-
dista, we adjusted parameters chi-squared-cdf-
thresh and binom-cdf-thresh. For the method of
Valouev et al. [12], we adjusted score_thresh and t_score_
thresh variables in the source. In Table 1 we report sta-
tistical and computational performance for each method.

OMBlast was configured with parameters meas =
3000, minconf = 0.09, minmatch = 15 and the rest left at
defaults. RefAligner was run with parameters FP = 0.15,
sd = 0.6, sf = 0.2, sr = 0.0, se = 0.0, A = 15, S = 22 and
the rest left at defaults. MalignerDP was configured with
parameters ref-max-misses = 2, query-miss-penalty = 3,
query-max-miss-rate = 0.5, min-sd = 1500, and the rest
left at defaults.

The method of Valouev et al. [12] was run with default
parameters except we reduced the maximum compound
fragment length (their δ parameter) from 6 fragments to
3. We observed this method rarely included alignments
containing more than two missed restriction sites in a
compound fragment.

Performance on simulated E. coli Rmap data
To verify the correctness of our method, we simulated a
read set from a 4.6 Mbp E. coli reference genome as fol-
lows: we started with 1,400 copies of the genome, and
then generated 40 random loci within each. These loci
form the ends of molecules that would undergo digestion.
Molecules smaller than 250 Kbp were discarded, leav-
ing 272 Rmaps with a combined length equating to 35x
coverage depth. The cleavage sites for the XhoI enzyme
were then identified within each of these simulated mol-
ecules. We removed 20% of these at random from each
simulated molecule to model partial digestion. Finally,
normally distributed noise was added to each fragment
with a standard deviation of .58 kb per 1 kb of the frag-
ment. This simulation resulted in 272 Rmaps. Simulated
molecule pairs having 16 common conserved digestion
sites become the set of “ground truth” alignments, which
our method and other methods should successfully iden-
tify. Our simulation resulted in 4,305 ground truth align-
ments matching this criteria. Although a molecule would
align to itself, these are not included in the ground truth
set. This method of simulation was based on the E. coli
statistics given by Valouev et al. [12] and resulting in
a molecule length distribution as observed in publicly
available Rmap data from OpGen, Inc.

Most methods were designed for less noisy data but
in theory could address all the data error types required.
For methods with tunable parameters, we tried aligning
the E. coli Rmaps with combinations of parameters for
each method related to its alignment score thresholds
and error model parameters. We used parameterization
giving results similar to those for the default parameters
of the method of Valouev et al. [12] to the extent such
parameters did not significantly increase the running
time of each method. These same parameterization were
used in the next section on plum data.

Even with tuning, we were unable to obtain pair-
wise alignments on E. coli for two methods. We found
OPTIMA only produced self alignments with its

Table 1  Performance on simulated E. coli dataset

Kohdista (lax) demonstrates that our indexing and search method is capable of finding the majority of ground truth alignments when the search is pruned to the more
relaxed thresholds for chi-squared-cdf-thresh and binom-cdf-thresh, i.e., chi-squared-cdf-thresh = 0.02 and binom-cdf-thresh = 0.5

Method Time (s) Memory (MB) Align-ments Recall Precision

Kohdista 20 19.0 907 702/4305 (16%) 702/771 (91%)

Kohdista (lax) 373 18.3 8545 3925/4305 (91%) 3925/8545 (46%)

Valouev et al. 148 4.0 742 699/4305 (16%) 699/742 (94%)

MalignerDP 47 6.0 1959 1296/4305 (30%) 1296/1959 (66%)

OMBlast 116 2078 1008 806/4305 (19%) 806/1008 (80%)

RefAligner 31 81.2 992 958/4305 (22%) 948/992 (97%)

MalignerIX 4 6.0 0 0/4305 (0%) 0/0 (N/A)

OPTIMA 455 10756.5 0 0/4305 (0%) 0/0 (N/A)

Page 10 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

recommended overlap protocol and report its resource
use in Table 1. For MalignerIX, even when we relaxed
the parameters to account for the greater sizing error
and mismatch cut site frequency, it was also only able
to find self alignments. This is expected as by design
it only allows missing sites in one sequence in order to
run faster. Thus no further testing was performed with
MalignerIX or OPTIMA. We did not test SOMA [13] as
earlier investigation indicate it would not scale to larger
genomes [14]. We omitted TWIN [14] as it needs all cut
sites to match. With tuning, Kohdista, MAligner, the
method of Valouev et al. [12], RefAligner and OMBlast
produced reasonable results on the E.coli data. Results
for the best combinations of parameters encountered
during tuning can be seen in Figs. 2 and 3. We observed
that most methods could find more ground truth align-
ments as their parameters were relaxed at the expense of
additional false positives, as illustrated in these figures.
However, only the method of Valouev et al. and Koh-
dista approached recall of all ground truth alignments.

Table 1 illustrates the results for Kohdista and the
competing methods with parameters optimized to try
to match those of Valouev et al. [12], as well as results
using Kohdista with a more permissive parameter set-
ting. All results include both indexing as well as search
time. Kohdista took two seconds to build its data struc-
tures. Again, Kohdista uses Chi-squared and binomial
CDF thresholds to prune the backtracking search when
deciding whether to extend alignments to progres-
sively longer alignments. More permissive match crite-
ria, using higher thresholds, allows more Rmaps to be
reached in the search and thus to be considered aligned,
but it also results in less aggressive pruning in the search,
thus lengthening runtime. As an example, note that
when Kohdista was configured with a much relaxed
Chi-squared CDF threshold of .5 and a binomial CDF
threshold of .7, it found 3925 of the 4305 (91%) ground
truth alignments, but slowed down considerably. This

illustrates the index and algorithm’s capability in han-
dling all error types and achieving high recall.

Performance on plum Rmap data
The Beijing Forestry University and other institutes
assembled the first plum (Prunus mume) genome using
short reads and optical mapping data from OpGen Inc.
We test the various available alignment methods on the
139,281 plum Rmaps from June 2011 available in the
GigaScience repository. These Rmaps were created with
the BamHI enzyme and have a coverage depth of 135x of
the 280 Mbp genome. For the plum dataset, we ran all the
methods which approach the statistical performance of
the method of Valouev et al. [12] when measured on E.
coli. Thus, we omitted MalignerIX and OPTIMA because
they had 0% recall and precision on E. coli. Our results on
this plum dataset are summarized in Table 2.

Kohdista was the fastest and obtained more align-
ments than the competing methods. When configured
with the Chi-squared CDF threshold of .02 and binomial
CDF threshold of .5, it took 31 h of CPU time to test all
Rmaps for pairwise alignments in the plum Rmap data.
This represents a 21× speed-up over the 678 h taken by
the dynamic programming method of Valouev et al. [12].
MalignerDP and OMBlast took 214 h and 151 h, respec-
tively. Hence, Kohdista has a 6.9× and 4.8× speed-up
over MalignerDP and OMBlast. All methods used less

Fig. 2  Precision-recall plot of successful methods on simulated E. coli 

Fig. 3  ROC plot of successful methods on simulated E. coli 

Table 2  Performance on plum

Method Time (h) Memory Alignments

Kohdista 31 7.4 GB 16,109,151

Valouev et al. 678 60 MB 6387

MalignerDP 214 784 MB 1,258,328

OMBlast 151 12.3 GB 424,730

RefAligner 90 374 MB 10,039

Page 11 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

than 13 GB of RAM and thus, were considered practical
from a memory perspective. Kohdista took 11 min to
build its data structures for Plum.

To measure the quality of the alignments, we scored
each pairwise alignment using Valouev et al. [12] and
presented histograms of these alignment scores in Fig. 4.

a b

c d

e f

Fig. 4  A comparison between the quality of the scores of the alignments found by the various methods on the plum data. All alignments were
realigned using the dynamic programming method of Valouev et al. [12] in order to acquire a score for each alignment. Hence, the method finds
the optimal alignment using a function balancing size agreement and cut site agreement known as a S-score. The following alignments were
considered: a those obtained from aligning random pairs of Rmaps; b those obtained from the method of Valouev et al. [12]; c those obtained from
Kohdista; d those obtained from MalignerDP; e those obtained from OMBlast; and lastly, f those obtained from BioNano’s commercial RefAligner

Page 12 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

For comparison, we also scored and present the histo-
gram for random pairs of Rmaps. The method of Valouev
et al. [12] produces very few but high-scoring alignments
and although it could theoretically be altered to pro-
duce a larger number of alignments, the running time
makes this prospect impractical (678 h). Although Koh-
dista and RefAligner produce high-quality alignments,
RefAligner produced very few alignments (10,039) and
required almost 5x more time to do so. OMBlast and
Maligner required significantly more time and produced
significantly lower quality alignments.

Conclusions
In this paper, we demonstrate how finding pairwise align-
ments in Rmap data can be modelled as approximate-
path matching in a directed acyclic graph, and combining
the GCSA with the wavelet tree results in an index-based
data structure for solving this problem. We implement
this method and present results comparing Kohdista
with competing methods. By demonstrating results on
both simulated E. coli Rmap data and real plum Rmaps,
we show that Kohdista is capable of detecting high
scoring alignments in efficient time. In particular, Koh-
dista detected the largest number of alignments in 31
h. RefAligner, a proprietary method, produced very few
high scoring alignments (10,039) and requires almost
5× more time to do so. OMBlast and Maligner required
significantly more time and produced significantly lower
quality alignments. The method of Valouev et al. [12]
produced high scoring alignments but required more
than 21× time to do.

Availability and requirements
Project name: Kohdista.

Project home page: https​://githu​b.com/mmugg​li/KOHDI​
STA.

Operating system(s): Developed for 32-bit and 64-bit
Linux/Unix environments.

Programming language: C/C++.
Other requirements: GCC 4.2 or newer.
License: MIT license.
Any restrictions to use by non-academics: Non-needed.

Abbreviations
DAG: directed acyclic graph (DAG); SA: suffix array; GCSA: generalized com-
pressed suffix array; BWT: Burrows–Wheeler Transform.

Acknowledgements
The authors would like to thank Jouni Sirén for many insightful conversations
concerning the GCSA.

Authors’ contributions
SJP, MDM, and CB conceived of the concept and designed the algorithm
and data structures for the methods described in this paper. MDM and CB
designed the experiments. MDM implemented the method, and performed
all experiments and software testing. MDM and CB drafted the manuscript. All
authors read and edited the manuscript. All authors read and approved the
final manuscript.

Funding
MDM, SJP, and CB were funded by the National Science Foundation (1618814).
SJP was also supported in part by the Academy of Finland via Grant Number
294143.

Availability of data and materials
Kohdista is available at https​://githu​b.com/mmugg​li/KOHDI​STA/. No original
data was acquired for this research. The simulated E.coli data generated and
analysed during the current study are available at https​://githu​b.com/mmugg​
li/KOHDI​STA. The plum (Prunus mume) dataset used in this research was
acquired from the GigaScience repository http://gigad​b.org/datas​et/view/
id/10008​4/File_sort/size.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, Colorado State University, Fort Collins,
CO, USA. 2 Department of Computer Science, University of Helsinki, Helsinki,
Finland. 3 Computer & Information Science & Engineering, University of Florida,
Gainesville, FL, USA.

Received: 1 November 2018 Accepted: 19 November 2019

References
	1.	 Dimalanta ET, Lim A, Runnheim R, Lamers C, Churas C, Forrest DK,

de Pablo JJ, Graham MD, Coppersmith SN, Goldstein S, Schwartz DC.
A microfluidic system for large DNA molecule arrays. Anal Chem.
2004;76(18):5293–301.

	2.	 Bionano Genomics Ilc. Bionano Genomics Launches Irys, a novel platform
for complex human genome analysis; 2012. https​://biona​nogen​omics​
.com/press​-relea​ses/biona​no-genom​ics-launc​hes-irys-a-novel​-platf​orm-
for-compl​ex-human​-genom​e-analy​sis/.

	3.	 Reslewic S, et al. Whole-genome shotgun optical mapping of Rhodospiril-
lum rubrum. Appl Environ Microbiol. 2005;71(9):5511–22.

	4.	 Zhou S, et al. A whole-genome shotgun optical map of Yersinia pestis
strain KIM. Appl Environ Microbiol. 2002;68(12):6321–31.

	5.	 Zhou S, et al. Shotgun optical mapping of the entire Leishmania major
Friedlin genome. Mol Biochem Parasitol. 2004;138(1):97–106.

	6.	 Chamala S, et al. Assembly and validation of the genome of the non-
model basal angiosperm amborella. Science. 2013;342(6165):1516–7.

	7.	 Dong Y, et al. Sequencing and automated whole-genome optical map-
ping of the genome of a domestic goat (capra hircus). Nat Biotechnol.
2013;31(2):136–41.

	8.	 Verzotto D, et al. Optima: sensitive and accurate whole-genome align-
ment of error-prone genomic maps by combinatorial indexing and
technology-agnostic statistical analysis. GigaScience. 2016;5(1):2.

	9.	 Leung AK, Kwok T-P, Wan R, Xiao M, Kwok P-Y, Yip KY, Chan T-F. OMBlast:
alignment tool for optical mapping using a seed-and-extend approach.
Bioinformatics. 2017;33(3):311–9.

	10.	 Mendelowitz LM, Schwartz DC, Pop M. Maligner: a fast ordered restriction
map aligner. Bioinformatics. 2016;32(7):1016–22.

	11.	 Valouev A, o Li L, Liu Y-C, Schwartz DC, Yang Y, Zhang Y, Waterman MS.
Alignment of optical maps. J Comput Biol. 2006;13(2):442–62.

https://github.com/mmuggli/KOHDISTA
https://github.com/mmuggli/KOHDISTA
https://github.com/mmuggli/KOHDISTA/
https://github.com/mmuggli/KOHDISTA
https://github.com/mmuggli/KOHDISTA
http://gigadb.org/dataset/view/id/100084/File_sort/size
http://gigadb.org/dataset/view/id/100084/File_sort/size
https://bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-platform-for-complex-human-genome-analysis/
https://bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-platform-for-complex-human-genome-analysis/
https://bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-platform-for-complex-human-genome-analysis/

Page 13 of 13Muggli et al. Algorithms Mol Biol (2019) 14:25

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	12.	 Valouev A, et al. An algorithm for assembly of ordered restriction maps
from single DNA molecules. Proc Natl Acad Sci. 2006;103(43):15770–5.

	13.	 Nagarajan N, Read TD, Pop M. Scaffolding and validation of bacterial
genome assemblies using optical restriction maps. Bioinformatics.
2008;24(10):1229–35.

	14.	 Muggli MD, Puglisi SJ, Boucher C. Efficient indexed alignment of contigs
to optical maps. In: Proceedings of the 14th workshop on algorithms in
bioinformatics (WABI). Berlin: Springer; 2014. p. 68–81.

	15.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

	16.	 Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol. 2009;10(3):25.

	17.	 Gagie T, Navarro G, Puglisi SJ. New algorithms on wavelet trees and appli-
cations to information retrieval. Theor Comput Sci. 2012;426/427:25–41.

	18.	 Sirén J, Välimäki N, Mäkinen V. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Trans Comput Biol Bioinfor-
matics. 2014;11(2):375–88.

	19.	 Manber U, Myers GW. Suffix arrays: a new method for on-line string
searches. SIAM J Sci Comput. 1993;22(5):935–48.

	20.	 Burrows M, Wheeler DJ. A block sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, Palo Alto,
California. 1994.

	21.	 Ferragina P, Manzini G. Indexing compressed text. J ACM.
2005;52(4):552–81.

	22.	 Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and play
with succinct data structures. In: Proceedings of the 13th international
symposium on experimental algorithms, (SEA). 2014. p. 326–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Kohdista: an efficient method to index and query possible Rmap alignments
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Preliminaries and definitions
	Overview of optical mapping
	Frequency of errors
	Suffix arrays, BWT and backward search

	The pairwise Rmap alignment problem

	Implementation
	Finite automaton
	Backbone
	Skip vertices and skip edges

	Generalized compressed suffix array
	Prefix-sorted automata

	Exact matching: GCSA backward search
	Inexact matching: modified GCSA backward search
	Pruning the search
	Size agreement
	Cut site error frequency

	Example traversal
	Practical considerations
	Memoization
	Wavelet tree threshold
	Quantization

	Results
	Performance on simulated E. coli Rmap data
	Performance on plum Rmap data

	Conclusions
	Availability and requirements
	Acknowledgements
	References

