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We present new mathematical models that include the impact of using selected preventative measures such as insecticide treated
nets (ITN) in controlling or ameliorating the spread of the Zika virus. For these models, we derive the basic reproduction number
and sharp estimates for the final size relation.We first present a single-stagemodel which is later extended to a newmultistagemodel
for Zika that incorporates more realistic incubation stages for both the humans and vectors. For each of these models, we derive
a basic reproduction number and a final size relation estimate. We observe that the basic reproduction number for the multistage
model converges to expected values for a standard Zika epidemic model with fixed incubation periods in both hosts and vectors.
Finally, we also perform several computational experiments to validate the theoretical results obtained in this work and study the
influence of various parameters on the models.

1. Introduction

Every year over one billion people are infected from vector-
borne diseases including malaria, Dengue, chikungunya,
schistosomiasis, leishmaniasis, Chagas disease, Zika, and
many more. These diseases affect urban as well as rural com-
munities but thrive primarily among communities with poor
living conditions. These vector-borne diseases also impose a
substantial economic burden on families and governments.
Hence understanding the spread of vector-borne diseases has
been a major priority for many countries.

Over the years, many factors have contributed to the
increase in the spread of vector-borne diseases including
the ability of the vectors to adapt to new habitats, abil-
ity of the vectors to become drug-resistant, rapid human
movement, and changes in policies on control measures.
Mathematical models have often been employed to quantify
such dynamics of the vector-borne diseases. These mod-
els are often described as compartmental model with the

populations under study divided into compartments and,
with appropriate assumptions, the different subpopulations
transfer between these compartments. One of the earliest
models was the formulation of a simple SIRmodel to describe
the epidemic [1–3], where the entire population being studied
was divided into a susceptible class 𝑆(𝑡)which consisted of the
number of individuals who are susceptible to the disease and
are not infected at time 𝑡, an infected class 𝐼(𝑡)which consists
of infected individuals who are assumed to be infectious
and are able to spread the disease by direct contact with
susceptibles, and 𝑅(𝑡) which denotes the number of infected
individuals who have been recovered and cannot spread the
disease again.Most vector-borne diseases include an exposed
phase 𝐸(𝑡) between being infected and becoming infective.
For a vector-borne disease this would mean a SEIR model
for humans interacting with an SEI model for vectors as the
vectors are not expected to recover in these models in the
time span these models are solved. Currently, most models
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in the literature employ a SEIR-SEI single-stage model where
the incubation periods are assumed to be fixed for both
humans and vectors. Relaxing this assumption one may also
employ a stage-progression model or the so-called linear
chain trick that has been used for modeling diseases like HIV
and Dengue [4–7] where the incubation may be modeled as
the progression ofmultiple substages for humans and vectors.
While these models have been considered for chikungunya
and Dengue ([8, 9] and references therein), they have not
been extended to Zika that also includes direct transmission
until recently [10, 11]. The single-stage model introduced
in [10] was extended by [11] to include symptomatic and
asymptomatic infectious stages for the human population
along with effect of preventative measures.

Two mathematical quantities that are often of interest in
these compartmentalmodels is the basic reproduction number
and the final size [12].The basic reproduction number denoted
by R0 is defined as the number of secondary disease cases
caused by introducing a single infective individual into a
wholly susceptible population of both hosts (humans) and
vectors (mosquitoes). Typically if R0 > 1 an epidemic
occurs while if R0 < 1, there will likely be no outbreak.
The value of R0 helps to quantify the level of control
intervention necessary to contain an outbreak. For example,
in the case of malaria, a mathematical model was introduced
in order to show that malaria can be greatly reduced by
reducing the mosquito population density below a certain
threshold [13]. There are multiple ways to mathematically
estimate the reproduction number for vector-borne diseases
[12]. However these estimates vary considerably that may
be because of different external factors such as severity of
disease, the level of public health surveillance, and local
climate condition that can possibly affect the number of
vectors and many other such external factors [14].

The final size of the epidemic refers to the number
of members of the population who are infected over the
course of the epidemic. While there are various approaches
to obtain the basic reproduction number corresponding
to the model being analyzed, there are no exact solutions
for obtaining final size relations for vector-borne diseases.
Recently, a final size relation for epidemic models of vector-
borne diseases (that also included direct transmission) was
obtained for an age of infection model that can be applied to
Zika [14]. Specifically, this work derived an upper and lower
bound for the final size relation. This model was formulated
and analyzed considering infectivity depending on age of
infection which allowed arbitrary periods of stay in each
compartment and also the inclusion of control measures
such as treatment, quarantine, or isolation. While this work
provides a new insight to understanding the epidemics of
vector-transmitted diseases through a final size estimate, the
authors are not aware of any other work that establishes
similar estimates with an upper bound and lower bound
for a traditional SEIR-SEI vector-borne disease model that
includes direct transmission.

For most vector-borne diseases such as Zika, there are
currently no vaccines available and resistance to drugs
is an increasing threat. Hence the CDC and WHO have
recommended vector control as one of the essential ways

to prevent disease outbreaks. One such intervention that
has shown a lot of promise in vector-borne diseases such
as malaria includes using insecticide treated bednets (ITN)
which has been proved to be simple, efficient, and cost-
effective [15–17]. Using ITN can help reduce contacts between
mosquitoes and humans at home by providing a physical
barrier. The insecticide used to treat the bed net also
repels mosquitoes (“excito-repellency”or “deterrence”) thus
increasing the personal protection offered by the net [18, 19].
Finally, mosquitoes which are not repelled will most probably
be killed as they come in contact with the insecticide as they
often rest on the bed net after biting. For Zika there is a need
to developmathematicalmodels that can help provide insight
into the relation between increased coverage of ITN and the
decrease of disease prevalence through a combination of the
personal protection given by the repellency of the insecticide
and the community protection given by its insecticidal action.

In this paper, we present the following new contributions
for enhancing our understanding of the spread of Zika.
First, we build on a single-stage model similar to what is
considered in [10] and generalize them by including the
impact of using selected preventativemeasures such as ITN in
controlling or ameliorating the spread of the Zika virus. For
this model, we derive the basic reproduction number and a
sharp estimate for the final size relation. The derivation for
the latter is a new alternative to the derivation of the age of
infection epidemic model [14]. Specifically, we show that our
result matches well with the results presented in [10, 14] in
the absence of any control measures. Next, we expand the
single-stage model to a new multistage model for Zika that
incorporates more realistic incubation stages for both the
humans and vectors. For this model also we derive a basic
reproduction number and a final size relation estimate for the
first time. We observe that the basic reproduction number
for the multistage model converges to expected values for a
standard Zika epidemic model with fixed incubation periods
in both hosts and vectors. This is because both the single-
stage and the multistage models would be included in an
age of infection model. The proof for the final size of the
multistagemodel builds on the derivation for the single-stage
model developed in the work and the result applies also to
diseases that can be transmitted directly as well as through
a vector. The work in this paper incorporates the multistage
progression in the intrinsic incubation periods and can be
extended to include extrinsic incubation periods as well.
Finally, we also perform several computational experiments
to validate the theoretical results obtained in this work and
study the influence of various parameters in the model.

The outline of the paper is as follows. In Section 2,
we present the mathematical framework used to study the
transmission dynamics and control of the Zika virus during a
single outbreak via a single-stage model. We derive the basic
reproduction number and a new upper and lower bound
estimate for the final size relation for the single-stage model
that incorporates preventative measures such as insecticide
treated bed nets. Section 3 carries out the basic analysis for
an expanded multistage progression model that incorporates
more incubation stages for the humans and the vectors.
Finally, we present numerical results in Section 4 for both the
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single-stage and multistage progression models considered
in the paper. Discussions and future work are presented in
Section 5.

2. A Single-Stage Zika Model

In this work we develop and analyze an epidemic model for
the spread of Zika through both a vector transmission and
direct transmission via sexual contact. We will consider a
constant total human population size 𝑁ℎ with 𝑆ℎ(𝑡) suscep-
tibles, 𝐸ℎ(𝑡) exposed, 𝐼ℎ(𝑡) infected, and 𝑅ℎ(𝑡) recovered.

Let the rate of Zika transmission through biting from
mosquito to human be given in terms of the biting rate 𝑏
which corresponds to the number of bites in unit time. The
effective mosquito bites in unit time that a susceptible human
receives may be defined as the product of the biting rate 𝑏
and the probability 𝛽𝑚ℎ that a bite transmits the infection
whichmay also be referred to as infectiousness of mosquitoes
to humans. Of this a fraction 𝐼𝑚/𝑁𝑚 is with an infective
mosquito from 𝐼𝑚(𝑡). Thus the number of new infective
humans in unit time is 𝑏𝛽𝑚ℎ𝑆ℎ(𝐼𝑚/𝑁𝑚). Defining the contact
rate to be 𝑏𝑚ℎ = 𝑏𝛽𝑚ℎ/𝑁𝑚, the number of new infective
humans in unit time is 𝑏𝑚ℎ𝑆ℎ𝐼𝑚.The rate of the spread of Zika
through direct sexual transmission from the infected human
subpopulation to the susceptible human population is given
by 𝑏ℎ = 𝑎ℎ/𝑁ℎ where 𝑎ℎ is the sexual transmission rate of
Zika. This adds to the number of new infective humans to be𝑏ℎ𝑆ℎ𝐼ℎ.

The vectors are assumed to move from the susceptible
class 𝑆𝑚(𝑡) to the exposed class 𝐸𝑚(𝑡) through biting of an
infected human. For the vectors, we consider a constant
birth rate contribution 𝜇𝑚𝑁𝑚 of vectors in unit time and a
proportional vector death rate 𝜇𝑚 in each of the susceptible𝑆𝑚(𝑡), exposed𝐸𝑚(𝑡), and infected 𝐼𝑚(𝑡) vector classes, so that
the total vector population size 𝑁𝑚 is constant. We will also
assume that the vectors do not recover from infection and
therefore there is no recovered class for the vectors. The total
number of contacts by vectors sufficient to transmit infection
therefore is 𝛽ℎ𝑚 and the corresponding vector transmission
rate from the infected human to the vector is given by𝑏ℎ𝑚 = 𝑏𝛽ℎ𝑚/𝑁ℎ where 𝛽ℎ𝑚 is the infectiousness of humans to
mosquitoes. Therefore, the number of new infective vectors
in unit time is 𝑏ℎ𝑚𝑆𝑚𝐼ℎ.

We assume that the members of the exposed class 𝐸ℎ
move to become infectious at a human incubation rate of
]ℎ which is intrinsic human latent period. Members of the
infectious human class recover with a rate of 𝛾ℎ. Also, we let
vectors of the exposed class 𝐸𝑚move to become infectious 𝐼𝑚
with a vector incubation rate ]𝑚.

To incorporate preventative measures into the model, the
effects of ITN are introduced in the rates of transmission
from the susceptible human class to the exposed human class
through a parameter measured as a percent 𝑓 = 1 − ITN.
Note that when ITN = 1 (or 𝑓 = 0), the only movement
from susceptible human class to the exposed class is through
sexual transmission and not through the vector. On the other
hand, if ITN = 0 (or 𝑓 = 1), the nets have no effect
and the disease can spread through both vector and sexual
transmission. As in the human model, we also incorporate

preventative measure ITN into the vector model. We also
introduce parameter for the removal of mosquitoes denoted
by ℎ associated with ITN. To account for a wide range of
behaviors, one can let the values of ITN from 0 to 1.

This leads to the following SEIR/SEI model for Zika
transmission:̇𝑆ℎ = −𝑓𝑏𝑚ℎ𝑆ℎ𝐼𝑚 − 𝑏ℎ𝐼ℎ𝑆ℎ, (1)̇𝐸ℎ = 𝑓𝑏𝑚ℎ𝑆ℎ𝐼𝑚 + 𝑏ℎ𝐼ℎ𝑆ℎ − ]ℎ𝐸ℎ, (2)̇𝐼ℎ = ]ℎ𝐸ℎ − 𝛾ℎ𝐼ℎ, (3)̇𝑅ℎ = 𝛾ℎ𝐼ℎ, (4)̇𝑆𝑚 = 𝜇𝑚𝑁𝑚 − 𝜇𝑚𝑆𝑚 − 𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ − 𝑝𝑆𝑚, (5)̇𝐸𝑚 = −]𝑚𝐸𝑚 − 𝜇𝑚𝐸𝑚 + 𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ − 𝑝𝐸𝑚, (6)̇𝐼𝑚 = ]𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚 − 𝑝𝐼𝑚, (7)
where 𝑝 = ℎ ⋅ ITN. Note that the total human population𝑁ℎ appears implicitly in the parameters and there are no
new births or deaths in the human population. Moreover,
we will assume that the Zika epidemic is started by a visitor
fromoutside the vector population𝑁𝑚. Hencewewill assume𝑆𝑚(0) = 𝑁𝑚 and the total population of the mosquitoes and𝐸𝑚(0) = 𝐼𝑚(0) = 0.
2.1. Derivation of the Basic Reproduction Number. Recall that
the basic reproduction number is defined as the number of sec-
ondary disease cases caused by introducing a single infective
into a wholly susceptible population of both hosts (humans)
and vectors (mosquitoes). Since the proposed mathematical
model for human-vector interaction includes subpopulations
with different susceptibility to infection, we will employ a
general approach called theNext GenerationMatrix approach
[23–25] to find the basic reproduction number R0 which is
given by the following theorem.

Theorem 1. The basic reproduction numberR0 is given by

R0 = 12 [𝑎ℎ𝛾ℎ + √(𝑎ℎ𝛾ℎ)2 + 4 𝑓2𝑏2𝛽ℎ𝑚𝛽𝑚ℎ]𝑚𝛾ℎ (𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝)] . (8)

Proof. Given the infectious stages 𝐸ℎ, 𝐸𝑚, 𝐼ℎ, 𝐼𝑚 in (1)–(7), we
can create a vectorF that represents the new infections flow-
ing only into the exposed compartments. The components of
the vectorF are obtained by considering the terms denoting
new infections from the susceptible equations (1) and (5)
entering the exposed equations (2) and (6) with 𝑆ℎ = 𝑁ℎ and𝑆𝑚 = N𝑚.

F = {𝑓𝑏𝑚ℎ𝐼𝑚𝑁ℎ + 𝑎ℎ𝐼ℎ, 𝑓𝑏ℎ𝑚𝑁𝑚𝐼ℎ, 0, 0} . (9)
Along withF, we will also considerV which denote the

outflow from the infectious compartments in (1)–(7) which is
given by

V = {]ℎ𝐸ℎ, (]𝑚 + 𝜇𝑚 + 𝑝) 𝐸𝑚, 𝛾ℎ𝐼ℎ − ]ℎ𝐸ℎ, −]𝑚𝐸𝑚+ (𝜇𝑚 + 𝑝) 𝐼𝑚} . (10)
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Next, we compute the Jacobian 𝐹 fromF given by

𝐹 =(0 0 𝑎ℎ 𝑓𝑏𝑚ℎ𝑁ℎ0 0 𝑓𝑏ℎ𝑚𝑁𝑚 00 0 0 00 0 0 0 ) (11)

and the Jacobian 𝑉 fromV given by

𝑉 =( ]ℎ 0 0 00 ]𝑚 + 𝜇𝑚 + 𝑝 0 0−]ℎ 0 𝛾ℎ 00 −]𝑚 0 𝜇𝑚 + 𝑝). (12)

Using matrices 𝐹 and 𝑉 one can then compute the Next
Generation Matrix 𝐹𝑉−1 given by

𝐹𝑉−1 =(((((((
(

𝑎ℎ𝛾ℎ 𝑓𝑏𝑚ℎ𝑁ℎ]𝑚(𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝) 𝑎ℎ𝛾ℎ 𝑓𝑏𝑚ℎ𝑁ℎ𝜇𝑚𝑓𝑏ℎ𝑚𝑁𝑚𝛾ℎ 0 𝑓𝑏ℎ𝑚𝑁𝑚𝛾ℎ 0
0 0 0 00 0 0 0

)))))))
)
. (13)

Note that (𝑖, 𝑗) entry of the Next Generation Matrix𝐹𝑉−1 is the expected number of secondary infections in
compartment 𝑖 produced by individuals initially in com-
partment 𝑗 assuming that the environment seen by the
individual remains homogeneous for the duration of its
infection. Also, matrix 𝐹𝑉−1 is nonnegative and therefore has
a nonnegative eigenvalue. The basic reproduction number
can then be computed asR0 = 𝜌(𝐹𝑉−1)which is the spectral
radius of the matrix. This eigenvalue is associated with a
nonnegative eigenvector which represent the distribution of
infected individuals that produces the greatest numberR0 of
secondary infections per generation. In order to calculate the
eigenvalues of 𝐹𝑉−1, we consider the characteristic equation

det (𝐹𝑉−1 − 𝜆𝐼) = 0, (14)

where 𝜆 denotes the eigenvalues of the matrix and 𝐼 repre-
sents the Identity matrix. This can be simplified to yield

−𝜆2 
𝑎ℎ𝛾ℎ − 𝜆 𝑓𝑏𝑚ℎ𝑁ℎ]𝑚(𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝)𝑓𝑏ℎ𝑚𝑁𝑚𝛾ℎ −𝜆

 = 0. (15)

The characteristic polynomial therefore is the following
quadratic equation given by𝜆2 − 𝑎ℎ𝛾ℎ 𝜆 − 𝑓2𝑏ℎ𝑚𝑏𝑚ℎ𝑁ℎ𝑁𝑚]𝑚(𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝) 𝛾ℎ = 0. (16)

The basic reproduction numberR0 corresponds to the domi-
nant eigenvalue given by the root of the quadratic equation

R0 = 12 [𝑎ℎ𝛾ℎ + √(𝑎ℎ𝛾ℎ)2 + 4 𝑓2𝑏2𝛽ℎ𝑚𝛽𝑚ℎ]𝑚𝛾ℎ (𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝)] . (17)

Remark 2. Note that the infected human infects mosquitoes
at a rate of 𝑓𝑏ℎ𝑚𝑁ℎ/𝑁𝑚 over an average time 1/𝛾ℎ which
produces𝑓𝑏ℎ𝑚𝑁ℎ/𝛾ℎ𝑁𝑚 infectedmosquitoes. Now a fraction
]𝑚/(]𝑚 + 𝜇𝑚 + 𝑝) proceeds to become infectious. Next, the
infected vectors infect humans at a rate of 𝑓𝑏𝑚ℎ𝑁𝑚/𝑁ℎ for an
average time of 1/(𝜇𝑚 + 𝑝), producing 𝑓𝑏𝑚ℎ𝑁𝑚/𝑁ℎ(𝜇𝑚 + 𝑝)
infected humans per vector. The result is[𝑓𝑏ℎ𝑚𝑁ℎ𝛾ℎ𝑁𝑚 ] [ ]𝑚

]𝑚 + 𝜇𝑚 + 𝑝][ 𝑓𝑏𝑚ℎ𝑁𝑚𝑁ℎ (𝜇𝑚 + 𝑝)] =R𝑉. (18)

Also, sexual transmission produces 𝑎ℎ cases in average time1/𝛾ℎ which then yields the additional reproductive number

R𝑆 = 𝑎ℎ𝛾ℎ . (19)

The basic reproduction number R0 for system (1)–(7) can
be written in terms of the basic reproduction numbers
corresponding to the vector transmission R𝑉 and direct
transmissionR𝑆 as

R0 = 12 [R𝑆 + √R2𝑆 + 4R𝑉] . (20)

Note that Theorem 1 yields a general result for the basic
reproduction number R0 corresponding to the human-
vector model given by equations (1)–(7) that include both
sexual transmission and vector transmission. In the absence
of one of these, the derived R0 simplifies to physically
meaningful mathematical quantities which are given in the
next two corollaries.

Corollary 3. In the absence of sexual transmission (𝑎ℎ = 0),
the basic reproduction number R0 only corresponds to the
vector transmission, that is,

R0 = √R𝑉 = √ 𝑓2𝑏2𝛽ℎ𝑚𝛽𝑚ℎ]𝑚𝛾ℎ (𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝) . (21)
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Corollary 4. In the absence of vector transmission (𝑏 = 0), the
basic reproduction number R0 only corresponds to the direct
(sexual) transmission given by

R0 =R𝑆 = 𝑎ℎ𝛾ℎ . (22)

Note that in Corollary 3 (in the absence of sexual
transmission), the next generation approach employed yields
a square root in the reproduction number because it views
the transition from humans to vector to humans as two
generations.

2.2. Final Size for the Single-Stage Model. In this section we
will derive a relation between the basic reproduction number
corresponding to the model equations (1)–(7) and the size
of the epidemic. Note that the final size of the epidemic, the
number of members of the population who are infected over
the course of the epidemic, is 𝑁 − 𝑆ℎ(∞) which is often
described in terms of the attack rate (1 − 𝑆ℎ(∞)/𝑁ℎ). We will
first prove a lemma that will be used to derive the final size
relation.

Lemma 5. For system (1)–(7), the total number of infected
vectors depends on the dynamics of the epidemic and the total
number of human infections as follows:∫∞

0
𝐼𝑚𝑑𝑡 = 𝑓𝑏ℎ𝑚]𝑚𝑆∗𝑚(𝜇𝑚 + 𝑝) (]𝑚 + 𝜇𝑚 + 𝑝) ∫∞0 𝐼ℎ𝑑𝑡, (23)

wheremin 𝑆𝑚 ≤ 𝑆∗𝑚 ≤ max 𝑆𝑚 ≤ 𝑁𝑚.
Proof. Integrating (7), we get𝐼𝑚 (∞) − 𝐼𝑚 (0) = ∫∞

0
]𝑚𝐸𝑚𝑑𝑡 − ∫∞

0
(𝜇𝑚 + 𝑝) 𝐼𝑚𝑑𝑡. (24)

Letting 𝐼𝑚(∞) − 𝐼𝑚(0) = 0, we have∫∞
0
𝐼𝑚𝑑𝑡 = ]𝑚𝜇𝑚 + 𝑝 ∫∞0 𝐸𝑚𝑑𝑡. (25)

Now integrating (6), we get𝐸𝑚 (∞) − 𝐸𝑚 (0) = −∫∞
0
(]𝑚 + 𝜇𝑚 + 𝑝) 𝐸𝑚𝑑𝑡+ ∫∞
0
𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ𝑑𝑡. (26)

Again, noting that 𝐸𝑚(∞) = 𝐸𝑚(0) = 0, this reduces to∫∞
0
𝐸𝑚𝑑𝑡 = 𝑓𝑏ℎ𝑚

]𝑚 + 𝜇𝑚 + 𝑝 ∫∞0 𝑆𝑚𝐼ℎ𝑑𝑡. (27)

Since 𝐼ℎ ≥ 0 on the interval [0,∞), one can use the integral
mean value theorem and we have∫∞

0
𝑆𝑚𝐼ℎ𝑑𝑡 = 𝑆∗𝑚 ∫∞

0
𝐼ℎ𝑑𝑡, (28)

where min 𝑆𝑚 ≤ 𝑆∗𝑚 ≤ max 𝑆𝑚 ≤ 𝑁𝑚. Substituting (28) into
(27), we have∫∞

0
𝐸𝑚𝑑𝑡 = 𝑓𝑏ℎ𝑚𝑆∗𝑚]𝑚 + 𝜇𝑚 + 𝑝 ∫∞0 𝐼ℎ𝑑𝑡. (29)

Finally, substituting (29) in (25) completes the proof of the
lemma.

Next, we prove the following theorem that provides an
upper bound for the final size for system (1)–(7) in terms of
a basic reproduction number R̂0 that is closely related toR0
that was derived in the previous section.

Theorem 6. For equations (1)–(7) the final size relation can be
bounded above as follows:

log
𝑆ℎ (0)𝑆ℎ (∞) ≤ R̂0 [1 − 𝑆ℎ (∞)𝑁ℎ ] , (30)

where the basic reproduction number R̂0 is the sum of the
sexual transmission reproduction number R𝑆 and the vector
transmission reproduction number R𝑉 given by R̂0 = R𝑆 +
R𝑉.

Proof. Adding equations (1)–(3) yields the following:(𝑆ℎ (𝑡) + 𝐸ℎ (𝑡) + 𝐼ℎ (𝑡)) = −𝛾ℎ𝐼ℎ. (31)

This implies that 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) is a positive decreasing
function and therefore the limit exists. The derivative of
positive decreasing function tends to zero, and this yields that−𝛾ℎ𝐼ℎ → 0 and since 𝛾ℎ > 0, this implies that 𝐼ℎ → 0.

Integrating (31) we get(𝑆ℎ (𝑡) + 𝐸ℎ (𝑡) + 𝐼ℎ (𝑡))∞0 = −𝛾ℎ ∫∞
0
𝐼ℎ𝑑𝑡. (32)

Noting that 𝐸ℎ(∞) = 𝐼ℎ(∞) = 0 and 𝑆ℎ(0) + 𝐸ℎ(0) +𝐼ℎ(0) = 𝑁ℎ, (32) simplifies to the following:𝛾ℎ ∫∞
0
𝐼ℎ𝑑𝑡 = 𝑁ℎ − 𝑆ℎ (∞) . (33)

Employing the technique of Separation of Variables on
(1): ∫∞

0

𝑑𝑆ℎ𝑆ℎ 𝑑𝑡 = −𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡 − 𝑏ℎ ∫∞0 𝐼ℎ𝑑𝑡. (34)

Substituting (33) and simplifying yields∫∞
0

𝑑𝑆ℎ𝑆ℎ 𝑑𝑡 = −𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡 − 𝑏ℎ [𝑁ℎ − 𝑆ℎ (∞)𝛾ℎ ] . (35)

Integrating the left hand side and using the definition of the
rate of sexual transmission 𝑎ℎ = 𝑏ℎ𝑁ℎ we get

log
𝑆ℎ (0)𝑆ℎ (∞) = 𝑎ℎ𝛾ℎ [1 − 𝑆ℎ (∞)𝑁ℎ ] + 𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡. (36)



6 Computational and Mathematical Methods in Medicine

Using Lemma 5, we can substitute (23) into (36) to yield

log
𝑆ℎ (0)𝑆ℎ (∞) = 𝑎ℎ𝛾ℎ [1 − 𝑆ℎ (∞)𝑁ℎ ]+ 𝑓2𝑏ℎ𝑚𝑏𝑚ℎ]𝑚𝑆∗𝑚(𝜇𝑚 + 𝑝) (]𝑚 + 𝜇𝑚 + 𝑝) ∫∞0 𝐼ℎ𝑑𝑡, (37)

where min 𝑆𝑚 ≤ 𝑆∗𝑚 ≤ max 𝑆𝑚 ≤ 𝑁𝑚. Using (33) this reduces
to

log
𝑆ℎ (0)𝑆ℎ (∞)= (𝑎ℎ𝛾ℎ + 𝑓2𝑏2𝛽ℎ𝑚𝛽𝑚ℎ]𝑚𝑆∗𝑚𝛾ℎ (𝜇𝑚 + 𝑝) (𝜇𝑚 + ]𝑚 + 𝑝)𝑁𝑚)⋅ [1 − 𝑆ℎ (∞)𝑁ℎ ] = (R𝑆 + 𝑆∗𝑚𝑁𝑚R𝑉)[1 − 𝑆ℎ (∞)𝑁ℎ ]≤ (R𝑆 +R𝑉) [1 − 𝑆ℎ (∞)𝑁ℎ ] = R̂0 [1 − 𝑆ℎ (∞)𝑁ℎ ] ,

(38)

where we have used the fact that 𝑆∗𝑚 ≤ 𝑁𝑚.
Remark 7. Note that integrating (1) and adding (1), (2), and
(3) from 0 to 𝑡, we get

log
𝑆ℎ (0)𝑆ℎ (𝑡) = 𝑏𝑚ℎ ∫∞0 𝐼𝑚 (𝑡) 𝑑𝑡 + 𝑏ℎ ∫∞0 𝐼ℎ (𝑡) 𝑑𝑡= R̂0𝑁ℎ [𝑁ℎ − 𝑆ℎ (𝑡) − 𝐸ℎ (𝑡) − 𝐼ℎ (𝑡)] . (39)

This leads to the form𝑆ℎ (𝑡) + 𝐸ℎ (𝑡) + 𝐼ℎ (𝑡) − 𝑁ℎ
R̂0

log 𝑆ℎ (𝑡)= 𝑁ℎ − 𝑁ℎ
R̂0

log 𝑆ℎ (0) . (40)

One can use this implicit relation between 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), and𝐼ℎ(𝑡) to describe the orbit of solutions. In addition since the
right hand side of (30) is finite, the left hand side is also finite
and this shows 𝑆ℎ(∞) > 0.

Next, we prove an estimate that provides a lower bound
for the final size relation. The proof relies on the assumption
that the vector population has a much faster time scale than
the host population and therefore the vector population is at
a quasi-steady-stage equilibrium, given by solutions to the
equations for 𝑆𝑚, 𝐸𝑚, and 𝐼𝑚 in (1)–(7) that are constant
functions of 𝑡, but may depend on 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), and 𝐼ℎ(𝑡).
Theorem 8. Let the vector population be at a quasi-steady-
stage equilibrium. The final size relation for (1)–(7) can then
be bounded below as follows:

log
𝑆ℎ (0)𝑆ℎ (∞) ≥R∗0 [1 − 𝑆ℎ (∞)𝑁ℎ ] , (41)

whereR∗0 is given by

R
∗
0 = [R𝑆 + 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚R𝑉] . (42)

Proof. To determine the lower bound for log(𝑆ℎ(0)/𝑆ℎ(∞)),
we will first obtain a minimum for the Susceptible vector
population 𝑆𝑚. Since the vector population is assumed to be
at a quasi-steady-stage equilibrium, we let ̇𝑆𝑚(𝑡) = 0 in (5)
which yields𝜇𝑚𝑁𝑚 − (𝜇𝑚 + 𝑝) 𝑆𝑚 − 𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ = 0. (43)
This can be rewritten to give𝑆𝑚 = 𝜇𝑚𝑁𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏ℎ𝑚𝐼ℎ ≥ 𝜇𝑚𝑁𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚 (44)

since 𝑏ℎ𝑚 = 𝑏𝛽ℎ𝑚/𝑁ℎ and 𝐼ℎ ≤ 𝑁ℎ. Therefore,

log
𝑆ℎ (0)𝑆ℎ (∞) = (R𝑆 + 𝑆∗𝑚𝑁𝑚R𝑉)[1 − 𝑆ℎ (∞)𝑁ℎ ]≥ [R𝑆 + 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚R𝑉] [1 − 𝑆ℎ (∞)𝑁ℎ ]=R∗0 [1 − 𝑆ℎ (∞)𝑁ℎ ] .

(45)

Remark 9. Theorems 6 and 8 provide an upper and lower
bound estimate for the final size relation, respectively, to yield

R
∗
0 [1 − 𝑆ℎ (∞)𝑁ℎ ] ≤ log 𝑆ℎ (0)𝑆ℎ (∞)≤ R̂0 [1 − 𝑆ℎ (∞)𝑁ℎ ] . (46)

Note that for 𝑓 = 1 and 𝑝 = 0, we are able to recover
similar estimates that were derived for an age of infection
epidemic model that included both vector transmission and
direct (sexual) transmission [14].

To summarize, we have introduced the following varia-
tions of basic reproduction number in the description for the
single-stage model:

R0 = Basic Reproduction Number,
R𝑆 = Basic Reproduction Number for Direct Transmission,
R𝑉 = Basic Reproduction Number for Vector Transmission,
R̂0 =R𝑆 +R𝑉,
R
∗
0 = [R𝑆 + 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚R𝑉] .

(47)

Remark 10. Note that in the derivation of the final size for the
single-stage model we have assumed that 𝐼𝑚(∞) − 𝐼𝑚(0) = 0.
In general, however, one can expect 𝐼𝑚(∞) − 𝐼𝑚(0) = 𝐶 < 0
(as we expect the infections to die out). In this case, one can
prove the upper bound estimate (30) as before; however, the
lower bound estimate (41) is not a sharp estimate. This is not
considered in this paper.
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3. A Multistage Progression Zika Model

In this section we extend the single-stage Zika epidemic
model to a multistage model by incorporating more realistic
incubation period distributions. Specifically, we relax the
assumption of fixed incubation period by using a stage-
progression model or the so-called linear chain trick [4–
7]. This Zika model incorporates incubation periods as
the progression in 𝑒ℎ incubation substages in humans(𝐸ℎ1 , 𝐸ℎ2 , . . . , 𝐸ℎ𝑒ℎ ) and 𝑒𝑚 incubation substages in vectors(𝐸𝑚1 , 𝐸𝑚2 , . . . , 𝐸𝑚𝑒𝑚 ). This idea of a stage-progression model
has been used for Dengue [7] which is caused by the
same species of mosquito that causes Zika. The reason for
introducing incubation substages is to model (for the first
time for Zika) the time between a human is infected and
the onset of symptoms due to the infection. These periods
are important determinants of the temporal dynamics of the
ZIKV transmission and are therefore critical for clinical diag-
nosis, outbreak investigation, implementation of prevention,
programming control measures, and mathematical model-
ing. Under this formulation, the resulting incubation periods
follow a gamma distribution with integer parameters 𝑒ℎ and𝑒𝑚, respectively. When the rates of progression between
substages are given by 𝑒ℎ𝑘ℎ and 𝑒𝑚𝑘𝑚 for the incubation
periods, the resulting gamma distribution has means 1/𝑘ℎ
and 1/𝑘𝑚 for the incubation periods, respectively, and the
corresponding variances are given by 1/𝑒ℎ𝑘2ℎ and 1/𝑒𝑚𝑘2𝑚,
respectively [7]. In this model we incorporate this stage-
progression only in the intrinsic incubation period in humans
and vectors. The analysis will be similar if one were to also
incorporate stage-progression in the infectious period for the
humans also.

We then have the following system of nonlinear differ-
ential equations describing the dynamics of Zika through a
human-vector interaction aṡ𝑆ℎ = −𝑓𝑏𝑚ℎ𝑆ℎ𝐼𝑚 − 𝑏ℎ𝐼ℎ𝑆ℎ, (48)̇𝐸ℎ1 = 𝑓𝑏𝑚ℎ𝑆ℎ𝐼𝑚 + 𝑏ℎ𝐼ℎ𝑆ℎ − 𝑒ℎ]ℎ𝐸ℎ1 , (49)̇𝐸ℎ𝑗 = 𝑒ℎ]ℎ𝐸ℎ𝑗−1 − 𝑒ℎ]ℎ𝐸ℎ𝑗 , 2 ⩽ 𝑗 ⩽ 𝑒ℎ, (50)̇𝐼ℎ = 𝑒ℎ]ℎ𝐸ℎ𝑒ℎ − 𝛾ℎ𝐼ℎ, (51)̇𝑅ℎ = 𝛾ℎ𝐼ℎ, (52)̇𝑆𝑚 = 𝜇𝑚𝑁𝑚 − 𝜇𝑚𝑆𝑚 − 𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ − 𝑝𝑆𝑚, (53)̇𝐸𝑚1 = −𝑒𝑚]𝑚𝐸𝑚1 − 𝜇𝑚𝐸𝑚1 + 𝑓𝑏ℎ𝑚𝑆𝑚𝐼ℎ − 𝑝𝐸𝑚1 , (54)̇𝐸𝑚𝑗 = 𝑒𝑚]𝑚𝐸𝑚𝑗−1 − 𝑒𝑚]𝑚𝐸𝑚𝑗 − 𝜇𝑚𝐸𝑚𝑗 − 𝑝𝐸𝑚𝑗 ,2 ⩽ 𝑗 ⩽ 𝑒𝑚, (55)̇𝐼𝑚 = 𝑒𝑚]𝑚𝐸𝑚𝑒𝑚 − 𝜇𝑚𝐼𝑚 − 𝑝𝐼𝑚. (56)

In this sectionwe prove a theorem that provides estimates
for the final size for the system (48)–(56). First, we will
first prove a lemma that will be used to derive the final size
relation.

Lemma 11. For system (48)–(56), the total number of infected
vectors depends on the dynamics of the epidemic and the total
number of human infections as follows:∫∞

0
𝐼𝑚𝑑𝑡= 𝑓𝑏ℎ𝑚(𝜇𝑚 + 𝑝) ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ∫∞0 𝑆𝑚𝐼ℎ𝑑𝑡. (57)

Proof. Integrating (56), we get𝐼𝑚 (∞) − 𝐼𝑚 (0) = ∫∞
0
𝑒𝑚]𝑚𝐸𝑚𝑒𝑚𝑑𝑡− ∫∞
0
(𝜇𝑚 + 𝑝) 𝐼𝑚𝑑𝑡. (58)

Letting 𝐼𝑚(∞) − 𝐼𝑚(0) = 0, we have∫∞
0
𝐼𝑚𝑑𝑡 = 𝑒𝑚]𝑚(𝜇𝑚 + 𝑝) ∫∞0 𝐸𝑚𝑒𝑚𝑑𝑡. (59)

Note that, for 𝑗 = 𝑒𝑚, (55) can be written aṡ𝐸𝑚𝑒𝑚 = 𝑒𝑚]𝑚𝐸𝑚𝑒𝑚−1 − 𝑒𝑚]𝑚𝐸𝑚𝑒𝑚 − 𝜇𝑚𝐸𝑚𝑒𝑚 − 𝑝𝐸𝑚𝑒𝑚 . (60)

Integrating this equation we get𝐸𝑚𝑒𝑚 (∞) − 𝐸𝑚𝑒𝑚 (0)= ∫∞
0
𝑒𝑚]𝑚𝐸𝑚𝑒𝑚−1𝑑𝑡− ∫∞
0
(𝜇𝑚 + 𝑒𝑚]𝑚 + 𝑝) 𝐸𝑚𝑒𝑚𝑑𝑡. (61)

Noting that 𝐸𝑚𝑒𝑚 (∞) = 𝐸𝑚𝑒𝑚 (0) = 0, this reduces to∫∞
0
𝐸𝑚𝑒𝑚𝑑𝑡 = 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝 ∫∞0 𝐸𝑚𝑒𝑚−1𝑑𝑡. (62)

Substituting, (62) into (59), we get∫∞
0
𝐼𝑚𝑑𝑡 = (𝑒𝑚]𝑚)2(𝜇𝑚 + 𝑝) (𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝) ∫∞0 𝐸𝑚𝑒𝑚−1𝑑𝑡. (63)

Next for 𝑗 = 𝑒𝑚 − 1, (55) can be written aṡ𝐸𝑚𝑒𝑚−1 = 𝑒𝑚]𝑚𝐸𝑚𝑒𝑚−2 − 𝑒𝑚]𝑚𝐸𝑚𝑒𝑚−1 − 𝜇𝑚𝐸𝑚𝑒𝑚−1− 𝑝𝐸𝑚𝑒𝑚−1 . (64)

Integrating this equation we get𝐸𝑚𝑒𝑚−1 (∞) − 𝐸𝑚𝑒𝑚−1 (0)= ∫∞
0
𝑒𝑚]𝑚𝐸𝑚𝑒𝑚−2𝑑𝑡− ∫∞
0
(𝜇𝑚 + 𝑒𝑚]𝑚 + 𝑝) 𝐸𝑚𝑒𝑚−1𝑑𝑡. (65)
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Substituting 𝐸𝑚𝑒𝑚−1(∞) = 𝐸𝑚𝑒𝑚−1(0) = 0 this reduces to∫∞
0
𝐸𝑚𝑒𝑚−1𝑑𝑡 = 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝 ∫∞0 𝐸𝑚𝑒𝑚−2𝑑𝑡. (66)

Substituting (66) into (63), we get∫∞
0
𝐼𝑚𝑑𝑡
= (𝑒𝑚]𝑚)3(𝜇𝑚 + 𝑝) (𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)2 ∫∞0 𝐸𝑚𝑒𝑚−2𝑑𝑡. (67)

Repeating this process inductively one can easily show that∫∞
0
𝐼𝑚𝑑𝑡= (𝑒𝑚]𝑚)𝑒𝑚(𝜇𝑚 + 𝑝) (𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚−1 ∫∞0 𝐸𝑚1𝑑𝑡. (68)

Integrating (54) we get𝐸𝑚1 (∞) − 𝐸𝑚1 (0) = − (𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)∫∞
0
𝐸𝑚1+ 𝑓𝑏ℎ𝑚 ∫∞

0
𝑆𝑚𝐼ℎ𝑑𝑡. (69)

Again, noting 𝐸𝑚1(∞) − 𝐸𝑚1(0) = 0, this can be simplified to
yield ∫∞

0
𝐸𝑚1𝑑𝑡 = 𝑓𝑏ℎ𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝 ∫∞0 𝑆𝑚𝐼ℎ𝑑𝑡. (70)

Substituting (70) into (68) finally yields∫∞
0
𝐼𝑚𝑑𝑡= 𝑓𝑏ℎ𝑚(𝜇𝑚 + 𝑝) ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ∫∞0 𝑆𝑚𝐼ℎ𝑑𝑡 (71)

which completes the proof of the lemma.

Theorem 12. For (48)–(52) the final size relation satisfies the
following upper bound estimate:

log
𝑆ℎ (0)𝑆ℎ (∞) ≤R0 [1 − 𝑆ℎ (∞)𝑁ℎ ] , (72)

whereR0, the basic reproduction number corresponding to the
system, is the sum of the reproduction numbers corresponding
to direct (sexual) transmissionR𝑆 and vector transmission R̂𝑉
which are given by

R𝑆 = 𝑎ℎ𝛾ℎ ,
R̂𝑉 = 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 . (73)

Proof. Adding (48)–(51) yields the following:

(𝑆ℎ (𝑡) + 𝑒ℎ∑
𝑗=1

𝐸ℎ𝑗 (𝑡) + 𝐼ℎ (𝑡)) = −𝛾ℎ𝐼ℎ (𝑡) . (74)

This implies that 𝑆ℎ(𝑡)+∑𝑒ℎ𝑗=1 𝐸ℎ𝑗(𝑡)+𝐼ℎ(𝑡) is a positive decreas-
ing function and therefore the limit exists. The derivative of
positive decreasing function tends to zero, and this yields that−𝛾ℎ𝐼ℎ → 0 and since 𝛾ℎ > 0, this implies that 𝐼ℎ → 0.

Integrating (74) we get

(𝑆ℎ (𝑡) + 𝑒ℎ∑
𝑗=1

𝐸ℎ𝑗 (𝑡) + 𝐼ℎ (𝑡))∞0 = −𝛾ℎ ∫∞0 𝐼ℎ𝑑𝑡. (75)

Noting that𝐸ℎ𝑗(∞) = 𝐼ℎ(∞) = 0 and 𝑆ℎ(0)+∑𝑒ℎ𝑗=1 𝐸ℎ𝑗(0)+𝐼ℎ(0) = 𝑁ℎ, (75) simplifies to the following:

𝛾ℎ ∫∞
0
𝐼ℎ𝑑𝑡 = 𝑁ℎ − 𝑆ℎ (∞) . (76)

Employing (48):

∫∞
0

𝑑𝑆ℎ𝑆ℎ 𝑑𝑡 = −𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡 − 𝑏ℎ ∫∞0 𝐼ℎ𝑑𝑡. (77)

Substituting (76) and simplifying yields

∫∞
0

𝑑𝑆ℎ𝑆ℎ 𝑑𝑡 = −𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡 − 𝑏ℎ [𝑁ℎ − 𝑆ℎ (∞)𝛾ℎ ] . (78)

Integrating the left hand side and since the rate of sexual
transmission 𝑎ℎ = 𝑏ℎ𝑁ℎ we get

log
𝑆ℎ (0)𝑆ℎ (∞) = 𝑎ℎ𝛾ℎ [1 − 𝑆ℎ (∞)𝑁ℎ ] + 𝑓𝑏𝑚ℎ ∫∞0 𝐼𝑚𝑑𝑡. (79)

Substituting (57) from Lemma 11 into (79) gives us

log
𝑆ℎ (0)𝑆ℎ (∞)= 𝑎ℎ𝛾ℎ [1 − 𝑆ℎ (∞)𝑁ℎ ]+ 𝑓2𝑏𝑚ℎ𝑏ℎ𝑚(𝜇𝑚 + 𝑝) ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ∫∞0 𝑆𝑚𝐼ℎ𝑑𝑡≤ 𝑎ℎ𝛾ℎ [1 − 𝑆ℎ (∞)𝑁ℎ ]+ 𝑓2𝑏𝑚ℎ𝑏ℎ𝑚𝑆∗𝑚(𝜇𝑚 + 𝑝) ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ∫∞0 𝐼ℎ𝑑𝑡,

(80)
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wherewe have used the integralmean value theorem as 𝐼ℎ ≥ 0
on the interval [0,∞) with min 𝑆𝑚 ≤ 𝑆∗𝑚 ≤ max 𝑆𝑚 ≤ 𝑁𝑚.
Using (76) we can finally conclude that

log
𝑆ℎ (0)𝑆ℎ (∞)= [𝑎ℎ𝛾ℎ + 𝑓2𝑏𝑚ℎ𝑏ℎ𝑚𝑆∗𝑚(𝜇𝑚 + 𝑝) ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚]⋅ [1 − 𝑆ℎ (∞)𝑁ℎ ]= [𝑎ℎ𝛾ℎ + 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚𝑆∗𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ𝑁𝑚 ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇m + 𝑝)𝑒𝑚]⋅ [1 − 𝑆ℎ (∞)𝑁ℎ ]≤ [𝑎ℎ𝛾ℎ + 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚]⋅ [1 − 𝑆ℎ (∞)𝑁ℎ ] ,

(81)

where we have used the fact that 𝑆∗𝑚 ≤ 𝑁𝑚. Define
the reproduction numbers corresponding to direct (sexual)
transmission R𝑆 and vector transmission R̂𝑉, respectively,
to be

R𝑆 = 𝑎ℎ𝛾ℎ ,
R̂𝑉 = 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ; (82)

we can now get the following upper bound estimate satisfied
by the final size given by

log
𝑆ℎ (0)𝑆ℎ (∞) ≤R0 [1 − 𝑆ℎ (∞)𝑁ℎ ] , (83)

whereR0 =R𝑆 + R̂𝑉. This proves the upper bound.

Corollary 13. As the number of stages 𝑒𝑚 → ∞, the
basic reproduction number R̂𝑉 corresponding to only vector
transmission converges to the basic reproduction number R̂∗𝑉
corresponding to a model that incorporates infected mosquitoes
experiencing a fixed incubation period 1/]𝑚 that is followed
by an infectious state from which vectors do not recover. In
particular,

R̂
∗
𝑉 = lim
𝑒𝑚→∞

R̂𝑉 = 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ 𝑒−(𝜇𝑚+𝑝)/]𝑚 . (84)

Proof. Using the definition of R̂𝑉 we have

R̂
∗
𝑉 = lim
𝑒𝑚→∞

R̂𝑉= lim
𝑒𝑚→∞

𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚= 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ lim
𝑒𝑚→∞
( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚= 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 1

lim𝑒𝑚→∞ (1 + (𝜇𝑚 + 𝑝) /𝑒𝑚]𝑚))𝑒𝑚= 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 1
lim𝑥→∞ (1 + 1/𝑥)𝑥)(𝜇𝑚+𝑝)/]𝑚= 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ 𝑒−(𝜇𝑚+𝑝)/]𝑚 ,

(85)

where 𝑥 = 𝑒𝑚]𝑚/(𝜇𝑚 + 𝑝).
Next, we prove an estimate that provides a lower bound

for the final size relation. As in the single-stage model, the
proof relies on the assumption that the vector population
has a much faster time scale than the host population and
therefore the vector population is at a quasi-steady-stage
equilibrium, given by solutions to (48)–(56) that are constant
functions of 𝑡.
Theorem 14. Let the vector population be at a quasi-
steady-stage equilibrium. The final size relation for equations
(48)–(56) can then be bounded below as follows:

log
𝑆ℎ (0)𝑆ℎ (∞) ≥R∗0 [1 − 𝑆ℎ (∞)𝑁ℎ ] , (86)

whereR
∗

0 is given by

R
∗

0 = [ 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚 R̂𝑉 +R𝑆] . (87)

Proof. To prove the lower bound, recall that

log
𝑆ℎ (0)𝑆ℎ (∞) = (R𝑆 + 𝑆∗𝑚𝑁𝑚 R̂𝑉)[1 − 𝑆ℎ (∞)𝑁ℎ ] . (88)

Also, since the vector population is assumed to be at a quasi-
steady-stage equilibrium, setting ̇𝑆𝑚 = 0 in (53) yields𝑆𝑚 = 𝜇𝑚𝑁𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏ℎ𝑚𝐼ℎ ≥ 𝜇𝑚𝑁𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚 (89)

since 𝑏ℎ𝑚 = 𝑏𝛽ℎ𝑚/𝑁ℎ and 𝐼ℎ ≤ 𝑁ℎ. Substituting (89) in (88)
then gives

log
𝑆ℎ (0)𝑆ℎ (∞)≥ [R𝑆 + 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚R𝑉] [1 − 𝑆ℎ (∞)𝑁ℎ ]=R∗0 [1 − 𝑆ℎ (∞)𝑁ℎ ] .

(90)
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Table 1: Parameter definitions, values, references, and units.

Param. Description Value Ref. Units𝑏 Biting rate of vector .5 [20] Day−1𝑎ℎ Sexual transmission rate of Zika 0–4.13 [14] Day−1

]ℎ Human incubation rate .14 [14] Day−1

]𝑚 Vector incubation rate .077 [14] Day−1𝛾ℎ Human recovery rate .2 [14] Day−1𝜇𝑚 Natural death rate of vector .11 [14] Day−1𝛽ℎ𝑚 Human to vector infection rate .5 [21] Day−1𝛽𝑚ℎ Vector to human infection rate .4 [20] Day−1ℎ Parameter for ITN rate .003 [22] Day−1

Remark 15. Theorems 12 and 14 together provide an upper
and lower bound estimate, respectively, for the final size
relation for the model (48)–(56) given by

R
∗

0 [1 − 𝑆ℎ (∞)𝑁ℎ ] ≤ log 𝑆ℎ (0)𝑆ℎ (∞)≤R0 [1 − 𝑆ℎ (∞)𝑁ℎ ] . (91)

Remark 16. Note that in the derivation of the final size for the
multistage model we have assumed that 𝐼𝑚(∞) − 𝐼𝑚(0) = 0.
In general, however, one can expect 𝐼𝑚(∞) − 𝐼𝑚(0) = 𝐶 < 0
(as we expect the infections to die out). In this case, one can
prove the upper bound estimate (72) as before; however, the
lower bound estimate (86) is not a sharp estimate. This is not
considered in this paper.

To summarize, we have introduced the following varia-
tions of basic reproduction number in the description for the
multistage model:

R𝑆 = Basic Reproduction Number for Direct Transmission,
R̂𝑉 = 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ ( 𝑒𝑚]𝑚𝑒𝑚]𝑚 + 𝜇𝑚 + 𝑝)𝑒𝑚 ,
R0 =R𝑆 + R̂𝑉,
R̂
∗
𝑉 = lim
𝑒𝑚→∞

R̂𝑉 = 𝑓2𝑏2𝛽𝑚ℎ𝛽ℎ𝑚(𝜇𝑚 + 𝑝) 𝛾ℎ 𝑒−(𝜇𝑚+𝑝)/]𝑚 ,
R
∗

0 = [ 𝜇𝑚𝜇𝑚 + 𝑝 + 𝑓𝑏𝛽ℎ𝑚 R̂𝑉 +R𝑆] .
(92)

4. Computational Experiments

In this section, we validate our theoretical results developed
in this work and perform simulations to predict the dynamics
and estimate the basic reproduction numbers and final size
relations. We implement the solution to the single-stage
system (1)–(7) and the multistage system (48)–(56) in MAT-
LAB using a fourth order Runge-Kutta method for solving
ordinary differential equations. Specifically, the single-stage
system of differential equations is solved using the script
ode45 fromMATLAB [26].

For our simulations, we considered the total human and
vector populations to be 𝑁ℎ = 1000 and 𝑁𝑚 = 4000,
respectively, as in [14]. We considered one infective human
initially and that the Zika epidemic is started by a visiting
vector from outside the vector population𝑁𝑚.

For the parameters in the models, we refer mainly to
the data used in [10, 14] that corresponded to the 2015 Zika
outbreak in Barranquilla, Colombia. With the values for the
parameters in Table 1, a linear relation was proposed in [14]
given by 11𝑏ℎ𝑚𝑏𝑚ℎ + 6.48𝑎ℎ = 2.676. (93)

This relation restricted the value of rate of sexual transmission
as 0 ≤ 𝑎ℎ ≤ 0.413. The dynamics of all the subpopulations
both for the humans and the vector are computed for varying
values of 𝑎ℎ and varying values of control measures ITN for
both the single-stage andmultistagemodels. For the latter, we
also consider the effect of the number of incubation stages in
the model dynamics.

First, we consider the dynamics of the single-stage model
(1)–(7) in the absence of insecticide treated nets (ITN = 0)
and as a function of the rate of sexual transmission 𝑎ℎ. Figures
1–3 illustrate the dynamics of the various states in the human
(a) and vector (b) for a pure vector transmission (𝑎ℎ = 0),
a combination of both direct and vector transmission (𝑎ℎ =0.2), and a pure direct (sexual) transmission (𝑎ℎ = 0.413).
We note that as the value of 𝑎ℎ increases, the nature of the
graphs also change. Specifically note that the final value of the
number of susceptible humans 𝑆ℎ(𝑡) decreases as 𝑎ℎ increases.

Next, we consider the effect of the insecticide treated nets
with no sexual transmission. So we let 𝑎ℎ = 0 and let ITN =0.1, 0.2, 0.3. The results are illustrated in Figures 4, 5, and 6,
respectively.We clearly note that as the value of ITN increases
in percentage (10%, 20%, 30%) of protection because of the
nets, it takes more time for humans to get infected. Clearly
this shows the effect of using nets.

Next, we consider the influence on the rate of sexual
transmission 𝑎ℎ on the various basic reproduction numbers
that were obtained for the single-stage model. These include
R0 derived using the Next Generation Matrix approach
in (20), the basic reproduction number corresponding to
purely direct (sexual) transmission R𝑆 defined in (19), the
basic reproduction number corresponding to purely vector
transmissionR𝑉 defined in (18), and the basic reproduction
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Figure 1: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0 and ITN = 0.
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Figure 2: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0.2 and ITN = 0.
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Figure 3: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0.413 and ITN = 0.
Dynamics of human population

Sℎ

Eℎ

Iℎ

Rℎ

50 100 150 200 250 3000
0

200
400
600
800

1000

H
um

an
 p

op
ul

at
io

n

Time (days)

(a)

Dynamics of vector population

Sm

Em

Im

50 100 150 200 250 3000
0

1000

2000

3000

4000

V
ec

to
r p

op
ul

at
io

n

Time (days)

(b)

Figure 4: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0 and ITN = 0.1.



Computational and Mathematical Methods in Medicine 13

Dynamics of human population

Sℎ

Eℎ

Iℎ

Rℎ

50 100 150 200 250 3000
0

200
400
600
800

1000

H
um

an
 p

op
ul

at
io

n

Time (days)

(a)

Dynamics of vector population

Sm

Em

Im

50 100 150 200 250 3000
0

1000

2000

3000

4000

V
ec

to
r p

op
ul

at
io

n

Time (days)

(b)

Figure 5: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0 and ITN = 0.2.
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Figure 6: Dynamics of human (a) and vector (b) subpopulations for 𝑎ℎ = 0 and ITN = 0.3.
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Comparison of basic reproduction numbers
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Figure 7: Comparison of the basic reproduction numbers for ITN =0 and increasing values of 𝑎ℎ = 0, 0.1, 0.2, 0, 3, 0.4, 0.413.
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Figure 8: Comparison of the basic reproduction numbers for ITN =0 and increasing values of 𝑎ℎ = 0, 0.1, 0.2, 0, 3, 0.4, 0.413.
number R̂0 obtained in Theorem 6 which is the sum of R𝑆
and R𝑉. Figure 7 compares these reproduction numbers as𝑎ℎ increases from 0 to 0.413. Next, we perform numerical
experiments to validate the upper bound and lower bound
estimate for the final size relation obtained in (46). This is
illustrated in Figure 8 which clearly demonstrates the validity
of the estimate. One may also note that log(𝑆ℎ(0)/𝑆ℎ(∞))
is closer to the upper bound as pointed out in [14]. Also,
for a purely direct (sexual) transmission, R̂0 = R̂∗0 and
therefore we get equality in the estimate that is denoted by
the convergence at 𝑎ℎ = 0.413 in Figure 8.
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Figure 9: Comparison of the values of 𝑆ℎ(∞) for ITN = 0 and
increasing values of 𝑎ℎ = 0, 0.1, 0.2, 0, 3, 0.4, 0.413.

Next, we considered the sharpness of the upper bound
estimate by solving for 𝑆ℎ(∞) in

log
𝑆ℎ (0)𝑆ℎ (∞) − R̂0 [1 − 𝑆ℎ (∞)𝑁ℎ ] = 0 (94)

for given values of R̂0 corresponding to the values of𝑎ℎ = 0, 0.1, 0.2, 0.3, 0.4, 0.413. (95)

Specifically, we used Newton’s method for solving nonlinear
equations. The comparison of the results obtained from
the simulations of the dynamics of (1)–(7) with the results
obtained via Newton’s method is illustrated in Figure 9. Note
that the 𝑦-axis values are normalized.

Since it is well known that increased coverage of ITN
decreases vector prevalence, we performed our next com-
putational experiment to explore the influence of using
increasing values of ITNon the dynamics.The range of values
included the absence of nets (ITN = 0) to completely protec-
tive nets (ITN = 1). The results are illustrated in Figure 10
which plots the final number of susceptible humans 𝑆ℎ(∞),
the basic reproduction number R̂0, and the attack rate 1 −𝑆ℎ(0)/𝑆ℎ(∞) for increasing values of ITN.The value of 𝑎ℎ was
chosen to be 0.2 for this simulation that corresponds to the
inclusion of both vector and direct transmission in themodel.
As expected, Figure 10 illustrates the usefulness of insecticide
treated bed nets to control the epidemic. The figure also can
potentially help government officials to decide the level of
control measures through insecticide treated bed nets that is
needed in a certain area to contain the spread of the epidemic.

Next, the effect of employing a multistage model on
the value of the basic reproduction number R0 derived in
Theorem 12 is illustrated in Figure 11 for increasing values
of 𝑎ℎ = 0, 0.1, 0.2, 0.3, 0.4, 0.413. As the number of stage-
progression increases the value ofR0 converges for different
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Figure 10: Influence of employing insecticide treated nets on final susceptible human population size (a), basic reproduction number (b),
and attack rate (c).
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Figure 11: Comparison of the basic reproduction numbers for
multiple incubation stages 𝑒𝑚 = 𝑒ℎ = 1, . . . , 300 for increasing values
of 𝑎ℎ = 0, 0.1, 0.2, 0, 3, 0.4, 0.413 with ITN = 0.
values of 𝑎ℎ. Finally, a convergence study was performed for
the full multistage system (48)–(56) for increasing number of
stages doubling each time, to demonstrate that the multistage
model parallels the single-stage model. Figure 12 illustrates
this convergence for fixed value of 𝑎ℎ = 0.2. Note that the𝑦-axis values of the human population are normalized.
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Figure 12: Convergence of the basic reproduction number and final
size for multiple incubation stages 𝑒𝑚 = 𝑒ℎ = 1, 2, 4, 8, 16, 32 for𝑎ℎ = 0.2 with ITN = 0.
5. Discussion and Future Work

Over the last several decades, there has been an explosion
in the development of mathematical models for outbreaks
of infectious diseases that has become part of assessing
epidemiological phenomena and making health policy deci-
sions [1, 12, 27, 28]. The outbreak of any new disease has
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always provided both an opportunity and a challenge for
mathematicians and scientists. The opportunity leads to
the development of improved models and the challenge
is to make sure that these models represent reality. Zika
is a great example of such as disease [29]. While there
is a lot of published work and information available on
models, methods, and simulations on infectious diseases
that are purely vector-transmitted such as malaria, Dengue,
and chikungunya and diseases that spread through direct
transmission only such as influenza and AIDS, new diseases
such as Zika that includes both vector transmission and direct
transmission has provided a challenge for new mathematical
models. For example, one of the essential mathematical tools
in understanding disease dynamics is the calculation of the
basic reproduction number that can help make informed
decisions on whether there will be an epidemic or not.
Another important quantity is the final size relation that
provides a useful relation between the basic reproduction
number and the size of the epidemic. While there has been
a lot of progress made in computing these for various types
of diseases, there is still a lack of complete understanding of
these quantities for vector-borne diseases such as Zika that
also includes direct (sexual) transmission.

Based on the approach we take, one can obtain different
measures of the basic reproduction number for vector-borne
diseases. However, there are no exact analytical solutions
for the final size relation for such diseases. Nevertheless,
one can obtain sharp estimates with an upper and lower
bound for the epidemic size [14]. The latter formulated
and analyzed a model with infectivity depending on age of
infection.Thework provided a useful upper bound and lower
bound estimate for this age of infection model that applies to
vector-borne diseases such as Zika that also includes direct
transmission. In this work, we provide an alternate approach
to determining similar estimates for the final size relation for
enhanced SEIR-SEI single-stage and multistage progression
models. The multistage model for Zika considered herein
includes multiple incubation substates and was motivated
by similar models for Dengue that did not account for the
direct (sexual) transmission. Towards this end, we are able
to successfully derive a new upper bound and lower bound
estimate for the final size relation for the models considered.
Moreover, we are able to show that the basic reproduction
number for the multistage model proposed converges to the
basic reproduction number corresponding to an equivalent
nonlinear system of delay differential equations with fixed
incubation periods in the humans and vectors.

Another contribution in this work is the inclusion of
insecticide treated nets (ITN) that offer a mix of personal
protection—blocking the bites of mosquitoes, thereby reduc-
ing the transmission frommosquitoes to humans—and com-
munity protection—reducing the longevity of mosquitoes
and therefore the prevalence of the infectious stage of the
disease, in mosquitoes. All the results developed in this work
including the basic reproduction number and the final size
relation estimate incorporate the influence of the ITN which
are recommended by both the CDC and WHO as effective
control measures.

We hope that the models, methods, and result from this
work can help provide more insight into the propagation of a
disease like Zika. The work also provides some opportunities
for new avenues for future research. The multistage progres-
sion model in this work only considers multiple substates for
the incubation for humans and vectors. However, one may
also extend this work to also incorporate multiple infectious
states in humans and compare such models against standard
epidemic models with fixed incubation periods in both
hosts and vectors and an exponentially distributed infectious
period in hosts. One may also consider including indoor
residual spraying (IRS) that can provide a coating of the
walls and other parts of a house with a residual insecticide
that can kill the vectors when they come in contact. One of
the assumptions in this work involves employing a removal
rate 𝑝𝐼𝑚 of vectors, and we need to assume vectors are in a
quasi-steady state equilibrium depending on 𝑝 in order to
continue to assume a balance relation for the host and vector
contact rates. The parameter 𝑝 indicates the dependence of
the model on bednets; it could also include a rate of killing
of vectors by spraying, or we might wish to include separate
control parameters for the effect of bed nets and the effect
of spraying. Then an interesting question would be how the
basic reproduction number and the final size of the epidemic
depend on these control parameters. Finally, to model the
effect of bednets, one may need some terms in the host
equations that could resemble those in vaccination models.
For example, this can include two susceptible compartments,
with a rate of transfer from susceptibles without bednets to
susceptibles with bednets who would have a smaller contact
rate. In this case the rate of using bednets would be a control
parameter. Finally, the derivations presented herein assumed
that the initial population and the steady state population of
the mosquito are the same. One can relax this assumption
and as pointed earlier one can rederive the estimates. While
the upper bound estimate can be derived in a similar fashion
as in this paper, obtaining a sharp lower bound estimate will
require some work. All these features and extensions will be
considered in a forthcoming paper.
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