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Abstract: This article provides an overview of both established and innovative applications of
femtosecond (fs)-laser-assisted surgical techniques in ophthalmology. Fs-laser technology is unique
because it allows cutting tissue at very high precision inside the eye. Fs lasers are mainly used for
surgery of the human cornea and lens. New areas of application in ophthalmology are on the horizon.
The latest improvement is the high pulse frequency, low-energy concept; by enlarging the numerical
aperture of the focusing optics, the pulse energy threshold for optical breakdown decreases, and
cutting with practically no side effects is enabled.

Keywords: femtosecond laser; fs-assisted cataract surgery; laser-assisted ophthalmic surgery; high
pulse frequency; low energy

1. Introduction

Laser technology and ophthalmic surgery have shaped each other over the past
40 years. The optically transparent structures of the eye, namely cornea, lens, and vitreous
body, allow for delivery of the laser energy at different focal depths, thereby giving access
to surgical interventions without having to open or mechanically enter the eye (Figure 1).
Other types of lasers, with various wavelengths, pulse durations, and power levels, interact
with eye tissues in a range of different ways. For continuous laser irradiation of low to
moderate average power (mW range), photochemical and thermal effects induced by the
absorbed light are the dominant laser–tissue interactions. Depending on the wavelengths
used, specific types of molecules can be optically excited to trigger chemical reactions, or
local heating of specific tissue can be achieved. If temperatures above 60 ◦C are reached,
tissue coagulation will occur. When pulsed laser light with intensities between 107 and
109 W/cm2 interacts with strongly absorbing tissue, near-surface material can be removed
explosively. This effect is called “photoablation”. In ophthalmology, it is applied to change
the curvature of the cornea with pulsed UV light from excimer lasers. For shorter pulse
durations in the ps to fs range and even higher intensities above 1011 W/cm2, more exotic
interactions can be achieved, as will be explained in detail below. A more comprehensive
general overview of laser–tissue interaction mechanisms can be found in excellent quality
in several text books [1,2].

The first reported ophthalmic use of short pulse lasers at near-infrared wavelengths
was in 1979 by Aron-Rosa, who treated posterior capsule opacification (PCO) after cataract
surgery [3]. In 1989, Stern et al. demonstrated that by decreasing pulse width of ultrashort-
pulsed lasers from nano- to femtoseconds (ns: 10−9 s, fs: 10−15 s), ablation profiles showed
higher precision and less collateral damage [4]. At the same time, optical coherence
tomography developed and provided noninvasive three-dimensional (3D) in vivo imaging
with fine resolution in both lateral and axial dimensions at a micrometer level [5]. These
developments offered ophthalmic surgeons a tool for high precision cutting and visual
control through imaging, and ultimately allowed a gamut of treatment applications for

Micromachines 2021, 12, 122. https://doi.org/10.3390/mi12020122 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8003-4547
https://doi.org/10.3390/mi12020122
https://doi.org/10.3390/mi12020122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12020122
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/12/2/122?type=check_update&version=1


Micromachines 2021, 12, 122 2 of 21

these lasers within the field of ophthalmology. Recent changes in the numerical aperture of
the laser focusing optics and the repetition rate of the laser sources have further decreased
collateral damage while increasing precision. This review article gives an overview of
the technical backgrounds of femtosecond lasers and OCT imaging as well as clinical
applications in ophthalmic surgery today.
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2. Laser Technology
2.1. Solid-State Lasers in Ophthalmology
2.1.1. Nd:YAG Laser with Ns Pulse Durations

The first type of short-pulsed laser at near-infrared wavelengths successfully used in
ophthalmology was the Q-switched Nd:YAG solid-state laser. Its wavelength of 1064 nm is
transmitted by all the visually transparent structures in the eye (cornea, lens, and vitreous
body). Their pulse durations are a few nanoseconds (ns), and for ophthalmic applications,
pulse energies in the range of 0.3–10 mJ are typically used [6].

When Nd:YAG laser pulses are strongly focused at a location inside the eye, to spot
sizes in the order of a few microns, the combination of short pulse duration focusing
to minimal spot sizes creates very high intensities at the laser focus, above 1011 W/cm2.
Under these conditions, a phenomenon called “optical breakdown” occurs. In the first
step, multiphoton absorption leads to ionization of some tissue molecules, creating free
electrons. In the subsequent second step, these “seed” electrons absorb photon energy and
are thus accelerated. After repeated photon absorptions, electrons reach a sufficiently high
kinetic energy to ionize themselves more molecules by impact ionization, creating more
free electrons. If the laser irradiation is intense enough to overcome electron losses, an
avalanche effect occurs [2].

When the extremely fast rising electron density exceeds values of approximately
1020/cm3, a “plasma state of matter” (cloud of ions and free electrons) is created at the laser
focus [2]. This plasma is highly absorbing for photons of all wavelengths. Therefore, the
rest of the laser pulse is directly absorbed by the plasma, increasing its temperature and
energy density (Figure 2).

The hot plasma cloud rapidly recombines to a hot gas, with a thermalization time of
the energy initially carried by free electrons of a few picoseconds to tens of ps [7]. This time
is much shorter than the acoustic transit time from the center of the focus to the periphery
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of the plasma volume, leading to confinement of the thermoelastic stresses caused by the
temperature rise. Conservation of momentum requires that the stress wave emitted in
this geometrical configuration contains both compressive and tensile components [7]. If
sufficient pulse energy density is applied, the tensile stress wave becomes strong enough to
induce fracture of the tissue, causing the formation of a cavitation bubble [7]. Depending on
the pulse energy, the pressure wave can reach supersonic speed a (shock wave). The high
plasma temperature also leads to almost immediate evaporation of the tissue within the
focal volume, generating water vapor and gases such as H2, O2, methane, and ethane [8].
The resulting gas pressure pushes the surrounding tissue further away, adding to the
expansion of the short-lived bubble inside the tissue (Figure 2). The maximum volume
temporarily achieved by the bubble scales with the pulse energy above the threshold for
optical breakdown. During bubble expansion, the inside pressure ultimately drops below
atmospheric pressure due to the outward moving material’s inertia, resulting in the bubble
dynamically collapsing. The bubble collapse may create another shock wave [2]. This
combined process is called “photodisruption” of tissue.
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With typical ophthalmic Nd:YAG laser pulse energies, cavitation bubble radii are in
the range of 1000–2000 µm, and shock wave amplitudes at 1 mm distance from the focus
reach 100–500 bar [10]. These rather pronounced mechanical side effects restrict the use
of Nd:YAG lasers. When shorter pulse ps (10−12 s) lasers became available, their mechan-
ical side effects proved to be still too large for delicate tasks as required for ophthalmic
applications. This limits Nd:Yag laser application in today’s clinical ophthalmological use
to cutting isolated tissues, such as the lens capsule in posterior capsular opacification in
pseudophakes or small areas of iris tissue to improve aqueous dynamics within the eye.

2.1.2. Femtosecond Lasers

Femtosecond lasers are a more recent advance in solid-state laser technology. They
operate at near-infrared wavelengths similar to Nd:YAG lasers but at pulse durations of
less than 1 picosecond (ps). As the threshold radiant exposure (J/cm2) for inducing optical
breakdown in tissue is about two orders of magnitude lower in the fs pulse duration regime
than at 10 ns [11], much lower pulse energies can be applied to separate tissue. High pulse
repetition rates from 10 s of kHz to even MHz are then used to create continuous cut planes
inside the tissue by placing many pulses close to each other with three-dimensional beam
scanning systems.
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The lower pulse energies lead to a drastic reduction of the mechanical side effects of
optical breakdown. For 300 fs pulses of 0.75 µJ energy, the generated cavitation bubbles
have radii of only 45 µm, almost two orders of magnitude smaller than ns pulse with
energies in the mJ range [12]. In addition, the associated pressure waves are much weaker,
1–5 bar at 1 mm distance [13]. This process is referred to as “plasma-induced ablation”, as
the disruptive mechanical side effects of ns pulses described above are absent. Additionally,
the thermal side effects of fs pulses in tissue are almost negligible [7].

The first commercially available, USA Food and Drug Administration (FDA)-approved
fs-laser system for ophthalmology, the IntraLaseTM FS, was launched in 2001 [14]. It was
used for “flap” creation in LASIK refractive surgery (see Section 3.1.1 below), replacing
mechanical cutting devices called microkeratomes. Its first commercial version operated
at a 15 kHz repetition rate and pulse energies of several µJ [15]. Further fs-laser systems
for “flap” cutting and other corneal surgery were launched by several manufacturers in
the following years, including the Ziemer FEMTO LDV in 2005, which introduced a new
concept of low pulse energies and high repetition rates, and later the Wavelight FS200 and
the Zeiss VisuMaxTM.

In 2009, the LensXTM system was introduced, the first commercial fs laser designed for
cataract surgery, thus opening a new field of fs-laser application within ophthalmology [16].
Its early versions operated at 33 kHz repetition rate and pulse energies of 6–15 µJ [17]. LensX
became part of Alcon, and again, in the following years, multiple other manufacturers
launched similar products, including the Johnson & Johnson Optimedica CatalysTM, the
LENSAR® and the Bausch and Lomb VictusTM.

2.1.3. Modern Low Pulse Energy High Repetition Rate Fs Lasers

The pulse energy required to achieve optical breakdown can be reduced in two ways:
First, by shortening the pulse duration—the latest fs lasers can achieve pulse durations

of 200–300 fs, while earlier models had pulse durations of up to 800 fs.
Second, by reducing the focal spot size—the focal volume of a Gaussian laser beam

is dependent on the axial extension, the so-called Rayleigh range (zR = πw0
2/λ) and the

beam waist w0 = fλ/πwL, where f is the focal length of the lens, w0 the beam radius at
the focus, and wL the beam radius at the focusing lens. In other words, the focal volume
varies inversely with the cube of the numerical aperture NA = wL/f of the focusing optics
(Figure 3). The larger the numerical aperture NA, the smaller the focal spot and finally, the
smaller the energy threshold for optical breakdown [18].
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To practically achieve high NA focusing optics, either the lens diameter can be in-
creased, which quickly becomes bulky and expensive, or the focusing optics can be po-
sitioned closer to the eye. The latter approach was implemented by Ziemer Ophthalmic
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Systems, using a microscope lens with a short focal length as focusing optics and guiding
the laser beam via an articulated mirror arm to a handpiece containing the focusing optics,
which is docked to the eye at a short distance.

In 2014, the first low pulse energy fs-laser system for cataract and cornea surgery, the
Ziemer FEMTO LDV Z8TM, was CE-approved and commercially launched. It was more
compact and lightweight than its predecessors, enabling mobile use.

2.2. Femtosecond Laser–Tissue Interaction

Based on the above laser parameters, the nature of the cutting processes of the two
groups differs. In the high pulse energy laser group, the cutting process is driven by
mechanical forces applied by the expanding bubbles. The bubbles disrupt the tissue
at a larger radius than the plasma created at the laser focus (Figure 4a). On the other
hand, in the low pulse energy group, spot separations smaller than the spot sizes are
used for overlapping plasmas, which directly evaporate the tissue inside the plasma
volume, effectively separating tissue without a need for secondary mechanical tearing
effects (Figure 4b). Due to the high pulse repetition rates applied (MHz range), the cutting
speeds achieved are similar to the high energy laser group.
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The cuts achieved by overlapping plasma evaporation of tissue by low energy pulses,
however, have a uniquely smooth surface with virtually no damage to the adjacent tis-
sue [19]. This is important for the quality of corneal “flaps”, lenticules, or also smooth rims
of capsulotomy cuts (see Sections 3.1.1, 3.1.2 and 3.3.2 below). High energy pulses with low
repetition rate, on the other hand, rely on the mechanical tearing of tissue in between the
actual laser foci. This tearing is accompanied by more stress or potentially even damage to
the adjacent tissue [20], as shown by the levels of proinflammatory metabolics detected
after laser treatments [21,22].

Software arranges the laser spots in the tissue into geometrical patterns. The software
also uses scanning systems to position the laser foci in lines, planes, or even 3D geometries.
An example of a 3D cut pattern used for cataract lens fragmentation (see Section 3.3.2
below), which combines multiple planes and cylinders, is shown in Figure 5.
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The energy of fs lasers with wavelengths in the 1030–1060 nm range is transmitted
very well through all transparent structures of the eye. However, opaque material scatters
the laser radiation and thus reduces the amount of energy reaching the laser focus. For
example, laser cutting the cornea at locations with scars requires higher pulse energies than
in normal clear cornea. The energy losses depend on the thickness of the scattering material
that the laser light is traveling through before reaching the focus. Therefore, the energy
loss is more severe when cutting through a several mm thick nucleus of a cataractous lens
than through corneal scars, which are only fractions of a mm thick.

The initial fs-laser systems designed for cataract surgery overcame this by using much
higher pulse energies than fs lasers for cornea surgery. In the latest generation of versatile
multipurpose ophthalmic fs-laser systems, the pulse energy is adaptable over an extensive
range, so that for each situation, the adapted amount of pulse energy can be used, but not
more, to minimize side effects, such as excessive gas production.

2.3. Supporting Technology Needed in Ophthalmic Fs-Laser Systems

To make an fs-laser device practical for clinical use, some critical supporting technolo-
gies needed to be developed as well. Most notable is optical coherence tomography (OCT)
imaging of tissue structures, required for the precise positioning of laser cuts deep inside
the eye, and the patient interface system using sterile vacuum docking methods to reliably
connect the eye to the optical laser delivery system during treatment.

2.3.1. OCT Imaging

OCT is an optical technology that allows for scanning structures inside tissues, thus
generating images [23,24]. The images appear similar to ultrasound images but with higher
resolution.

The first application of OCT for biological purposes was described by Adolf Fercher
et al. for the in vitro measurement of the axial eye length in 1988 (FERCHER 1988). The
early clinical OCT systems used so-called time-domain (TD) OCT technology, where the
length of the reference arm of an interferometer is mechanically changed. Due to speed
limits of this process, these early devices were limited to one-dimensional scans (A-scans),
or later small time consuming 2D scans. The so-called frequency-domain OCT (FD-OCT)
technology meant a technological breakthrough—it used a fixed reference arm length but a
spectrometer with a linear detector array instead of a single detector. Optical path length
differences between the interferometer arms in this case produce a periodic modulation in
the interference spectrum. By Fourier transformation, an entire A-scan can be retrieved
from the measured spectrum [2]. FD-OCT enabled much higher scan speeds, making
2D-imaging and even 3D-imaging feasible in clinical ophthalmology. The first ophthalmic
application of FD-OCT, also known as “Fourier domain”, was published in 2002 [25].
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Later, a further improved variation of frequency-domain OCT technology was de-
veloped, “swept-source” (SS) OCT. In this case, a tunable light source with a frequency
sweep indicated by a “sawtooth” frequency profile over time is used in combination with a
fast single-pixel detector instead of a spectrometer. For further details of OCT technology,
and advantages and limitations of its different versions, Section 7.3 of the textbook by
Kaschke et al. [2] provides a comprehensive overview and additional literature references.

The initial ophthalmic use of OCT was exclusively for retinal imaging. Starting in
1994, the technology was also developed for imaging the anterior segment of the eye [26].
The possibility of quickly creating high-resolution cross-section images of the cornea,
anterior chamber, and lens was a prerequisite for practical cataract surgery laser systems.
Imaging and OCT guided surgery was first envisioned by Zeiss and first demonstrated for
femtosecond laser surgery by H. Lubatschowski et al. [27].

In most modern cataract fs-laser systems, three-dimensional OCT scans are performed
after docking the laser interface to the eye. The LensAR system uses a different tech-
nology, a proprietary 3D confocal structured illumination combined with Scheimpflug
imaging [28]. In both cases, the resulting images are then analyzed by image processing
software, identifying the tissue boundaries of interest [29]. These are notably the anterior
and posterior sides of the cornea, the anterior and posterior surfaces of the lens, and the
iris (see Figure 6).
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pattern (blue: corneal anterior and posterior surface; pink and purple: lens anterior and posterior
surface; green: iris plane).

This information is used to automatically propose the suitable positions inside the
eye for the planned laser cuts, which are also displayed on screens for checking and
confirmation by the eye surgeon (Figure 6).

2.3.2. Vacuum Docking Interfaces

For some laser systems, the patient’s head is placed under a gantry containing focusing
optics at a sufficiently long distance to allow the patient’s head to move in and out. In other
systems, an articulated arm with a handpiece with focusing optics at its end is used. Due
to the flexible arm, the optics can be moved very close to the eye (Figure 7).
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Figure 7. Typical eye docking methods of fs lasers: (a) head under fixed laser housing, (b) articulated
arm with handpiece placed onto the eye; green: distance of eye surface to laser optics.

The eye’s actual contact is established via sterile, single-use parts, so-called “patient
interfaces”. Two different types are in use: (a) applanating interface with a curved or
flat interface directly touching the cornea, and (b) liquid-filled interface, where a vacuum
ring creates contact to the sclera or the outer cornea, and the center is filled with liquid.
The liquid-filled interface allows laser energy transmission while leaving the cornea in its
natural shape (Figure 8) [30]. Although contact interfaces temporarily change the shape of
the cornea [31], the mechanical contact stabilizes the cornea during surgery to a high degree.
This is of particular importance in refractive surgery where precise cuts are required and
tissue displacement on a micrometer level has to be avoided. With the absence of clear
clinical drawbacks in refractive surgery [32–34], contact interfaces will play a dominant
role in the future in corneal surgery. Liquid-filled interfaces with little disturbance of the
eye might turn out to be the preferred solution in cataract surgery.
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The stability of the vacuum docking contact during laser emission is of primordial
importance. Loss of contact harbors the risk of cutting in wrong planes. Therefore, all
lasers are designed to automatically monitor vacuum levels, sometimes complemented
with imaging of the eye position (eye tracking), and to immediately stop laser emission
upon loss of contact. Of course, the eye surgeons also monitor their patients during the
procedure and can manually interrupt or temporarily pause the treatment when they
anticipate problems. In case of laser systems with an articulated arm, the surgeons can
also use their substantial manual skills to actively stabilize the laser handpiece while in
contact with the eye. In any case, after a vacuum loss, the treatment can usually be resumed
immediately after a new docking.
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3. Clinical Applications
3.1. Refractive Surgery

The human eye functions like the lens of a camera. Images are focused on the retina
through a converging system composed mainly of the cornea. If the corneal curvature and
thus its refractive power does not precisely match the axial length of the eye, refractive
problems like near-sightedness (myopia) or far-sightedness (hyperopia) ensue (Figure 9).
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Refractive surgery consists of either reducing the refractive power of the cornea (by
flattening) or by increasing its power (by steepening) or by modifying its curvature on a
determined meridian to correct astigmatism (cylindrical correction).

3.1.1. Fs Flap Creation for Refractive Surgery

• LASIK

In the laser in situ keratomileusis (LASIK) procedure, a corneal flap is created. The
flap is lifted and then excimer- or solid-state UV-laser energy is used to change the cornea’s
refractive power by flattening or steepening the stromal bed. Later, the flap is repositioned.
Before the advent of fs-laser technology, the flap was created using mechanical devices
called microkeratomes. With fs-laser technology, the flap can be completed in various
patterns (Figure 10). Kezirian et al. compared fs-(IntraLase) created flaps to flaps with
two different microkeratomes. They found in the fs group more predictable flap thickness,
better astigmatic neutrality, and decreased epithelial injury [35]. Chen et al. confirmed the
superiority of fs-laser-created flaps over those cut by microkeratomes. Therefore, in recent
years, fs technology has superseded microkeratomes in preparing flaps for LASIK [36].

• Stromal keratophakia (additive refractive surgery)

Keratophakia as a means to sculpt corneal curvature by adding tissue has been
studied since 1949 by Barraquer [37]. Because the quality of the cuts was inconsistent and
reactive wound healing along the edges of the cut created additional scarring, it was largely
abandoned. With advancements in femtosecond technology, new steps are being taken in
the direction of keratophakia. For one, it is now possible to prepare an intrastromal pocket
or stromal bed with greater precision. Secondly, new inlay materials are being developed.
Current research is focusing on decellularizing and preserving extracted lenticules from
lenticule extraction surgeries [38].
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3.1.2. Intrastromal Pockets

Multiple refractive surgery methods use fs-laser cuts to create “pocket”-shaped open-
ings in the cornea, from which either material can be removed or implanted. In both cases,
the refractive power of the cornea changes.

• Corneal stromal lenticule extraction

While many fs-associated surgical interventions in ophthalmology are merely im-
provements of pre-existing techniques, lenticule extraction is unique to fs-laser technology:
the procedure was introduced in 2011 to treat myopia, and later also myopic astigmatism.
It became known under the brand name “SMILE” (small incision lenticule extraction) of
the Carl Zeiss Meditec AG. Later, other companies introduced their own laser systems
for similar lenticule procedures under different brand names, including “SmartSight” by
Schwind and “CLEAR” (corneal lenticule extraction for advanced refractive correction) by
Ziemer Ophthalmic Systems AG.

The procedure is a “flapless” laser refractive technique that uses a single femtosecond
laser system to create a pocket. The content of the pocket—the lenticule—is removed via a
small access tunnel incision, and as a result, the cornea is flattened (see Figure 11). Instead
of an almost 360-degree side cut, as in Lasik, lenticule extraction requires only a small
arcuate cut of 50 degrees. Thereby more of the corneal nerves and Bowman layer remain
untouched. In addition, sculpting the lenticule instead of ablating the same amount of tissue
requires less laser energy. Therefore, the potential advantages of the lenticule technique
over traditional laser in situ keratomileusis (LASIK) include reduced iatrogenic dry eye, a
biomechanically stronger postoperative cornea with a smaller incision, and reduced laser
energy required for refractive corrections [33,39–43]. However, the lenticule procedures
have a steeper learning curve for surgeons, with potential complications related to lenticule
dissection and removal, limitations with enhancements, and slower visual recovery in the
initial phase (three months) [41]. Today, laser-refractive correction of hyperopia is not yet
possible with lenticule extraction, but research in this field is ongoing. In a prospective,
randomized paired-eye study, SMILE demonstrated good refractive outcomes in terms
of predictability, efficacy, and safety. Since LASIK is reportedly an extremely safe and
predictable procedure, it is unlikely to prove superiority with alternative methods, such as
SMILE [44].
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Figure 11. Schematic view of intrastromal lenticule cuts performed by an fs laser. The lenticule
created between the anterior (blue) and posterior (yellow line) cut planes is extracted by the surgeon
via an incision (green line). Optionally there is a second incision created to help mobilize the lenticule.

• Intrastromal corneal ring segments

Fs technology allows creating stromal pockets of specific size and shape at specific
positions. Corneal ring segments (Figure 12) are placed into these pockets to change the
curvature of the cornea, specifically in patients with thin and malleable corneas such as in
keratoconus, a disease in which the central cornea becomes progressively deformed. Com-
bining this procedure with a tissue strengthening intervention such as corneal crosslinking
has been shown to improve uncorrected visual acuity in those keratoconus patients who
do not tolerate contact lens correction [45].
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3.1.3. Intrastromal and Trans-Stromal Cuts for Astigmatic Correction

The concept of corneal cuts for astigmatic correction was established more than
100 years ago [46] and underwent standardization in the late 1980s and 1990s [47,48]. De-
spite nomograms, there remained a significant level of unpredictability of the manually
performed surgery. Astigmatic correction through toric intraocular lenses or corneal ab-
lative surgery largely replaced correction through corneal stromal cuts. Fs-technology
offers new opportunities to correct corneal astigmatism by means of corneal cuts: position,
length, depth, curvature and the keratotomy angle can be put into practice with unprece-
dented precision and control. In addition, the fs-specific option of purely intrastromal
keratotomies, decreases the potential risk of infection through gaping wounds. Although
the general belief is that intrastromal cuts have less effect than transepithelial cuts, there
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are not enough data published for this relatively young technology to give evidence on
significant differences in effectiveness between intrastromal and transepithelial cuts [49]. In
general, fs-laser astigmatic correction is possible for both: smaller degrees of astigmatism
in healthy corneas and larger astigmatic error in eyes with corneal pathology [50,51].

3.2. Corneal Surgery
3.2.1. Penetrating Keratoplasty

• Background

Keratoplasty (cornea transplantation) ranks among the oldest and most commonly
performed human tissue transplantation types worldwide [52]. A corneal button from
a deceased donor is sutured into the recipient cornea. Astigmatism is the leading cause
of poor visual outcome after keratoplasty. The better the trephination (cut to separate
the corneal button from the cornea) of donor and recipient, the better the fit between the
transplant and the recipient and the least the astigmatism.

• Trephination

A perfect trephination system produces a congruent recipient bed and donor buttons
and thereby allows well-centered tension-free fitting, and efficiently waterproof-adapting
incision edges [53]. Different trephination systems are currently available: handheld, motor-
trephine, excimer-laser, or fs-laser based. Comparison of motor-trephine and excimer-based
trephination has shown better alignment of the graft in the recipient bed after excimer laser
trephination [54].

It is often problematic to ensure proper centration with trephination in the recipient
eye. Fs technology allows for perfect limbal oriented centration through OCT-visualization.

Another problem with trephination is the mechanism by which the recipient eye
and donor button are fixated and stabilized; any mechanical impact on the tissue during
trephination causes compression and distortion and will decrease the fit of recipient and
donor (Figure 13). Common fixation mechanisms include vacuum and applanation and
a combination of both (vacuum suction with applanation). While fs technology avoids
some of the trephination pitfalls of mechanical trephination, comparison of fs- and excimer-
assisted trephination showed nevertheless superiority of alignment in all sutures-out
keratoplasty patients in the excimer group [55].
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interface.

Different stabilization systems could explain this superiority. While the excimer-
assisted keratoplasty does not require applanation of the cornea, it is needed for the fs laser
used in the cited studies. The new liquid optics interface assisted fs-Keratoplasty method
could solve this problem: Here, cutting both recipient and donor is achieved within a
liquid interface, which leaves the curvature of the cornea undisturbed. This reduces shear-
and compression artifacts in the tissue and improves congruent fitting of the recipient and
donor [56]. It will therefore be interesting to compare liquid optics interface fs-trephinations
with excimer laser-assisted trephinations in the future.

• Sidecuts

In femtolaser-assisted keratoplasty (FLAK), different side-cut profiles can be chosen
(Figure 14). Theoretical advantages include increased wound surface and thereby acceler-
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ated healing and wound stability, better vertical and horizontal alignment of the recipient
and donor [57], preservation of healthy recipient corneal endothelium (mushroom), or
transplantation of proportionally more endothelial cells with the top hat profile [58,59].
It remains to be seen if other factors, such as suture techniques, have to be modified to
transmit these theoretical advantages into true clinical benefits [59].
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3.2.2. Lamellar Keratoplasty

• Background

The cornea is structured in five parallel layers. Often, not all layers of the cornea are
diseased. Scars from trauma or infection commonly involve the anterior layers (Bowman
layer, anterior stroma). In contrast, some inherited corneal dystrophies (i.e., inborn pro-
gressing tissue degeneration) affect only the inner most layers (Descemet’s membrane and
endothelium, see Figure 15). Selectively transplanting the pathological layers has several
advantages: less tissue is transplanted, and thereby rejection is limited. With the scarcity of
donor material, a donor button can theoretically be divided between two recipients. The
integrity of the eye is less constrained. Since there is little adhesion between the interfaces
of the corneal layers, manipulation at these levels is possible and visual results are excellent.
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• Deep anterior lamellar keratoplasty (DALK)

In deep anterior lamellar keratoplasty (DALK), approximately 95% of the anterior
corneal layers are removed, and only the innermost layers, Descemet’s membrane, and
endothelial cell layer stay behind [60]. It is possible to separate Descemet’s membrane (DM)
from the anterior stromal layers by air injection [61]. The surgical difficulty consists of
finding the right entry-level for the air injection to initiate separation: too deep and DM is
perforated, and the surgery has to be converted to a penetrating full thickness keratoplasty;
too high and the air injection will not separate the layers, because only at the true interface
is there minimal adhesion and the layers can be separated. Trials to create an fs-assisted
cut in the pre-Descemet’s stroma instead of separating the two layers led to lower visual
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clarity in comparison to true “layer separation” [62]. A new approach in fs technology
resolves this dilemma—using OCT visualization, an fs-prepared channel is created that
guides the cannula to the desired position and depth of the cornea (Figure 16). The surgeon
can control the depth of the injection site individually adjusted to the thinnest point of
the patient’s cornea [63]. Buzzonetti et al. compared fs-DALK to mechanical DALK in
20 pediatric patients [64] and concluded that fs-assisted trephination could reduce the
postoperative spherical equivalent amount. In conclusion, fs-assisted DALK can improve
the success rate of big-bubble creation. By improving donor/recipient fit through fs-created
sidecuts, the postoperative spherical equivalent is reduced, and healing accelerated.
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• Posterior lamellar keratoplasty

Posterior lamellar keratoplasty has revolutionized corneal transplant surgery in the
past two decades: the cornea’s clarity depends on healthy endothelial cells. These cells
are thought of as non-regenerating highly specialized cells. In a disease called “Fuchs
endothelial dystrophy”, but also after traumatic or multiple surgical interventions, these
cells cease to do their job in maintaining corneal clarity and patients eventually become
blind. Transplanting these cells, be it with a small amount of corneal stroma, so-called
Descemet stripping endothelial keratoplasty “DSEK”, or with Descemet’s membrane alone
as the carrier, so-called Descemet’s membrane endothelial keratoplasty “DMEK”, reverses
the process of corneal opacification and especially in the case of DMEK causes perfect
visual acuity [60,65]. Part of the surgery consists of removing the old, nonfunctioning
Descemet’s membrane from the recipient cornea. This process is usually done by scraping
and pulling the membrane manually. Sorkin et al. have published several papers on
creating the descemetorhexis (cutting out of a part of the Descemet’s membrane) with
femtosecond laser assistance. The advantage is the perfect centration, shape, and size of
the removed area [66–68]. It remains unclear if this advantage can solely be attributed
to the fs-assisted descemetorhexis or if other causes, such as a better fit of transplanted
and remaining Descemet’s membrane, can explain these results. Nevertheless, it shows
the immense versatility and breadth of applications that fs-laser technology provides in
corneal surgery.

3.3. Cataract Surgery

Ophthalmic surgeons have been trying to implement laser in cataract surgery for
decades. Bille and Schanzlin proposed ultrashort laser pulses for ablation of the cataractous
lens in 1992 [69]. Nagy was the first reporting on the use of fs laser for cataract surgery [16].
There has been a quick evolution of the technology and platform ability since then by
several manufacturers. Femtosecond laser technology reduces energy and precise laser
application at a certain depth in tissue with minimal damage to adjacent areas. Currently,
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modern and commercially available fs systems allow the following steps to be taken over by
the machine: (a) imaging and measurement of the anterior segment of the eye (incl. cornea,
anterior chamber, iris, lens), (b) planning of fs-laser cut application to the tissue (including
location depth, pattern, and size), (c) corneal incisions (full thickness for the introduction of
instruments to the eye or partial thickness for treatment of corneal astigmatism), (d) circular
incision to the anterior lens capsule (capsulotomy), and (e) fragmentation of the cataractous
lens nucleus. For all of the abovementioned purposes, the eye must be fixed to laser
optics by vacuum docking for precise laser application to the intended area and depth.
While some systems use liquid optics interfaces (Ziemer Femto LDV), others have a curved
applanation lens and suction system (LenSx, Alcon and Victus, Bausch and Lomb) or a fluid
filled suction ring (Catalys, Johnson and Johnson and LensAR) [70]. The systems mentioned
have all been CE marked and approved by the USA Food and Drug Administration for
cataract surgery (Table 1).

Table 1. Overview of five commercially available femtosecond lasers for eye surgery.

IntraLase
(AMO,
USA)

Wavelight
FS200

(Alcon,
USA)

LenSx
(Alcon,
USA)

LensAR
(LensAR,
Topcon,
USA)

Catalys
(Johnson

and
Johnson,

USA)

Victus
(Bausch

and
Lomb,
Ger-

many)

VisuMax
(Zeiss

Meditec,
Ger-

many)

LDV Z8
(Ziemer,
Switzer-

land)

Atos *
(Schwind,

Ger-
many)

Pulse
repetition
rate (kHz)

30–150 200 60 80 120 80/160 500 10,000 <to 4000

Pulse
duration

(fs)
>500 350 600–800 500 <600 290–550 220–580 250 <295

Pulse
energy

(µJ)
Ca. 1 <1.5 >15 7–15 3–10 6–10 <1 <1 <1

Applications:

LASIK
flaps x x x x x x x

Refractive
Lentic-

ules
x x x

Cornea
Surgery x x x x

Cataract
Surgery x x x x x

Patient
interface

Flat
applan.

interface

Flat
applan.

interface

Curved
softfit

interface

Fluid
filled

interface

Liquid
interface

Semiliquid
curved

interface

Curved
interface

Liquid
and flat

interfaces

Curved
interface

*: according to manufacturer.

The main advantages of fs-assisted cataract surgeries are the precision and repeatabil-
ity of laser incisions to the tissue; reduction in ultrasound energy used for emulsification
(liquification) of the lens nucleus by precutting it into small pieces; perfect sizing of corneal
incision with regards to position, length and depth; and predictability in capsulotomy
size and position. Despite the aforementioned obvious advantages and numerous studies
showing superiority in performing the single surgical steps over the ones manually per-
formed by surgeons, meta-analysis studies could not prove overall outcome advantages
of fs-laser-assisted surgery versus the conventional phacoemulsification manual opera-
tion [71,72]. A randomized multicenter clinical trial including 1476 eyes of 907 patients
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could not prove superiority of fs-assisted cataract surgery over the traditional phacoemulsi-
fication method [73]. Nevertheless, the authors report no severe adverse events during the
fs-laser procedure. Similarly, review articles emphasize usefulness of fs-assisted cataract
surgery in some patient groups, i.e., those with low corneal endothelial cell counts, but
a clear advantage of the fs method over manual phacoemulsification is not reported in
routine cases [74,75]. Furthermore, the authors question the cost-effectiveness of fs-assisted
surgery.

The question remains: Why should a high-precision system not be superior to the
manual? Two answers merit consideration. (1) Several studies were done using the first-
generation femtosecond laser systems comparing those to the conventional phacoemulsifi-
cation surgery that has undergone evolution and perfection for several decades. Results of
comparative studies using the newest laser devices could give a better comparison. (2) In
most comparative studies, the conventional surgery has been performed by outstanding,
high-volume, and exceptionally talented cataract surgeons. Comparing the visual out-
comes of such surgeons to the machine results is like assessing the abilities and outcomes
of first-generation autonomous driving systems to those of Formula-1 drivers. In the
following, we describe each step of the cataract surgery taken over by the fs machine.

3.3.1. Capsulotomy

Traditionally, cataract surgeons access the cataractous lens by manually opening the
anterior lens capsule by pulling in a continuous curvilinear manner. This maneuver is
performed using a needle or forceps and is called capsulorhexis. While the hard inner
part of the lens is removed, the outer capsular bag is maintained. This bag is used as a
mounting plate to fixate an implanted acrylic intraocular lens at the same position from
where the cataractous lens was removed. Size, position, and shape of the capsulorhexis are
related to the effective lens position, a determinant of the intraocular lens (IOL) power. The
IOL power determines the postoperative refractive error of the eye. Inappropriate sizing
of the capsular opening may result in IOL tilt, decentration, and increased posterior lens
capsule opacification [76–78]. Perfect lens position is of particular importance to the IOLs
with complex optical properties, e.g., multifocal, toric (for astigmatism correction), or those
with extended depth of focus [79,80].

While a perfect capsular opening is of the highest significance for surgical success, it is
one of the most challenging maneuvers in cataract surgery. The learning curve of surgeons
in training can be quite flat. At the same time, even in the hands of the most experienced
surgeons, the capsulorhexis can be unpredictable and perfect sizing at the submillimeter
precision appears only possible with machines performing the step. Furthermore, the
manual outcome is dependent on the axial length of the eye, pupil size, image enlargement
by the cornea [81], and inherent features of the individual eye, for example, true exfoliation
of the lens capsule (an eye disease) [82]. Femtosecond lasers overcome all these challenges
by creating precise, predictable, repeatable, well-centered capsular opening, called laser
capsulotomy, even in challenging cases with loose zonules (tissue fibers holding the lens in
place), pediatric or mature cataracts, shallow anterior chamber, etc. Machine superiority
has been demonstrated in several studies [78,83]. Another potential advantage of laser
capsulotomy is centration of the opening on the eye’s true optical axis or the lens apex
instead of centration on the pupil, as is usually done in manual capsulorhexis. Furthermore,
innovative IOLs are available that are dependent on perfect capsulotomy sizing at a
submillimeter level. Those designs allow IOL centration based on the capsulotomy rather
than on the capsular bag [84].

3.3.2. Nucleus Fragmentation

The human lens loses transparency and flexibility throughout life. A cataractous lens
cannot be removed through a small incision by suction alone; rather, emulsification or
fragmentation of the hard lens nucleus is necessary. Conventional cataract surgery uses
ultrasound energy within the eye to liquefy the lens nucleus. Femtosecond laser technology
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allows precutting the nucleus in almost any imaginable shape and reduces the ultrasound
energy needed for emulsification. This is an advantage as the ultrasound energy is a
cause of oxidative stress, heat, and inflammation, and damage to the tissue [85]. The most
susceptible tissue is the one-layer cell sheet of the corneal endothelium, which is of utmost
importance to corneal transparency. Studies have shown less endothelial cell loss and
decreased corneal swelling when using fs technology [86–88]. The importance of protection
to the corneal endothelium becomes clear when we consider that corneal endothelial cells
do not multiply after injury. The only way to repair the damage once clinically relevant is
lamellar corneal grafting (transplantation). Several lens fragmentation patterns have been
introduced, and currently, it is not yet clear which design to prefer in a particular clinical
setting. Future studies should focus on the optimal fs lens nucleus fragmentation pattern
to reduce effective ultrasound energy used intraoperatively.

3.3.3. Corneal Incisions

• Full-thickness incisions

Full-thickness incisions through the cornea are necessary for the introduction of
instruments into the eye. Traditionally, a metal scalpel or diamonds are used for creating
them in different sizes. Fs technology allows predictable sizing (width, length, and depth)
of full-thickness corneal incisions. Since these incisions need to be self-sealing, a perfect
wound architecture incision is mandatory to prevent wound leakage postoperatively.
Incorrect positioning of the wound induces astigmatism and can provoke prolapse of the
iris during the surgery. Studies have shown increased repeatability and safety of wound
construction using fs technology, resulting in higher stability and water tightness [89–91].

• Partial-thickness incisions

Partial-thickness incisions into the cornea help to reduce preoperatively existing
corneal astigmatism. Several nomograms have been developed, addressing length, position,
and depth of the incisions for different amounts of astigmatism. Fs technology allows
higher predictability and repeatability of partial thickness incisions, or even completely
intrastromal corneal incisions [50]. Since the incision depths are up to 90% of the corneal
thickness, laser precision helps prevent inadvertent penetration, as reported in manually
performed antiastigmatic keratotomies. Fs-laser-assisted corneal incision could be as safe
and effective as toric IOLs to reduce astigmatism [92]. Future studies will show whether
predictability, safety, and efficacy of fs-laser-assisted keratotomies can be further improved
by implementing nonperpendicular incision directions.

3.3.4. Future Applications

Probably the most important evolutionary step in ophthalmic fs-laser devices will
be miniaturization, mobility, and versatility. Tools available soon are fs laser-assisted
primary posterior capsulotomy and lens capsule marking for positioning of toric IOL. On
the horizon, another technology involves changing the IOL power postoperatively through
fs-laser energy to achieve emmetropia in all eyes [93].

4. Summary

In summary, fs-laser technology has evolved over the past decades into a precise
and reliable tool in ophthalmic surgery. While some of the applications have not finished
evolving and require further research and development, fs-laser-assisted cataract and
corneal surgery have reached highly standardized levels worldwide. For these surgeries, fs-
laser technology has improved patient safety and clinical outcomes and opened gateways
to new surgical approaches.
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