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Abstract
Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all
eukaryotes as heterotrimeric complexes comprising catalytic α subunits and
regulatory β and γ subunits. The canonical role of AMPK is as an energy
sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind
competitively to the γ subunit. Once activated, AMPK acts to restore energy
homeostasis by switching on alternate ATP-generating catabolic pathways
while switching off ATP-consuming anabolic pathways. However, its ancestral
role in unicellular eukaryotes may have been in sensing of glucose rather than
energy. In this article, we discuss a few interesting recent developments in the
AMPK field. Firstly, we review recent findings on the canonical pathway by
which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now
known to be activated in mammalian cells by glucose starvation by a
mechanism that occurs in the absence of changes in adenine nucleotides,
involving the formation of complexes with Axin and LKB1 on the surface of the
lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ
subunits, AMPK heterotrimers contain a site for binding of allosteric activators
termed the allosteric drug and metabolite (ADaM) site. A large number of
synthetic activators, some of which show promise as hypoglycaemic agents in
pre-clinical studies, have now been shown to bind there. Fourthly, some kinase
inhibitors paradoxically activate AMPK, including one (SU6656) that binds in
the catalytic site. Finally, although downstream targets originally identified for
AMPK were mainly concerned with metabolism, recently identified targets have
roles in such diverse areas as mitochondrial fission, integrity of epithelial cell
layers, and angiogenesis.
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Introduction
The AMP-activated protein kinase (AMPK) is best known as a 
sensor of cellular energy status in vertebrate cells1,2. The catalytic 
subunits (for which there are genes encoding alternate α1 and α2 
isoforms in mammals) contain kinase domains (α-KDs) at their 
N-termini, and the small N-lobe and larger C-lobe (in yellow and
green in Figure 1) are typical of serine/threonine kinase domains.
The kinase domains are normally active only when phosphorylated
at a threonine residue within the activation loop (usually termed
Thr1723, although the exact numbering varies according to species
and isoform). Thr172 phosphorylation is brought about by one of
two principal upstream kinases: the tumour suppressor LKB1 or
the Ca2+/calmodulin-activated kinase CaMKK2 (CaMKK-β). The
α-KD is followed by an auto-inhibitory domain (α-AID, in orange)
that maintains the α-KD in an inactive conformation in the absence
of AMP4,5. The α-AID is connected to the globular C-terminal
domain (α-CTD, in red) by a region of more extended polypeptide
termed the α-linker5–8 (in dark blue). The β subunits (β1 or β2) con-
tain myristoylated N-terminal regions9 (not present in the structure
in Figure 1A), a central carbohydrate-binding module (β-CBM, in
mid-blue)10,11 and a C-terminal subunit interaction domain (β-SID,
in silver-grey). The latter forms the core of the complex by cross-
linking the α-CTD to the N-terminal region of the γ subunit5,6,8,12.
The γ subunits (γ1, γ2, or γ3) contain N-terminal regions of variable
length, followed by four tandem repeats of sequence motifs known

as cystathionine-beta-synthase (CBS) repeats that generate the 
binding sites for the regulatory nucleotides AMP, ADP, and ATP13. 
The two pairs of repeats (CBS1:CBS2 and CBS3:CBS4) assemble 
head-to-head to form a disc-like structure with one repeat in each 
quadrant14 (shown in various colours in Figure 1). This arrange-
ment generates four potential ligand-binding clefts in the centre, 
although only three are used (site 1, between CBS1 and CBS2, and 
sites 3 and 4, between CBS3 and CBS4). Although all three may 
have to be occupied for maximal activation by AMP9, the most 
critical appears to be site 3. Thus, mutations directly affecting AMP 
binding at this site (R531G13 and R531Q15) completely abolish  
activation by AMP, while in the active AMP-bound conformation 
the α-linker makes close contacts with residues that bind AMP in 
this site5–8,12 (Figure 1). Moreover, recent binding studies suggest 
that, as long as site 4 is occupied by AMP, site 3 binds AMP with 
higher affinity than ATP16, again compatible with this being the  
critical regulatory site. Intriguingly, the α-linker is also the prin-
cipal flexible “hinge” connecting two regions of the AMPK  
heterotrimer that are almost separate from each other: the  
“catalytic module” (containing the β-CBM, α-KD, and α-AID; 
top left in Figure 1A) and the “nucleotide-binding module”  
(containing the γ subunit, α-CTD, and β-SID; bottom right).  
Interactions between the α-linker and the γ subunit when AMP 
is bound at site 3 are thought to pull the two modules together,  
leading to the compact conformation shown in Figure 1A.  

Figure 1.  (A) Crystal structure based on Protein Data Bank file 4RER5 and (B) domain layout of the human α1β2γ1 complex of AMPK. The 
colour coding of domains in (A) and (B) is similar. Note that the catalytic module (above and left of the dashed line), comprising the α-KD, 
β-CBM, and α-AID, is a rather independent entity from the nucleotide-binding module (below and right of the dashed line), comprising the γ 
subunit, α-CTD, and β-SID. The α-linker is the principal “hinge” that connects these two modules. In this active conformation, the two modules 
are close together because the close interaction of the α-linker with AMP bound in site 3 pulls them together. However, when ATP rather 
than AMP occupies site 3, the α-linker is thought to dissociate from the γ subunit, allowing the two modules to move apart. This is thought 
to allow the α-AID to rotate back into its inhibitory position behind the α-KD5 while also exposing phospho-Thr172 to protein phosphatases. 
In the active conformation in the picture, phospho-Thr172 is located around the back of the molecule in the cleft between the two modules.  
α-AID, alpha subunit auto-inhibitory domain; α-CTD, alpha C-terminal domain; α-KD, alpha subunit kinase domain; β-CBM, beta  
carbohydrate-binding module; β-SID, beta subunit interaction domain; AMPK, AMP-activated protein kinase; CBS, cystathionine-beta-
synthase.
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Conversely, release of the α-linker from the γ subunit on displace-
ment of AMP by ATP in site 3 is thought to allow the two modules 
to move apart, leading to a less compact conformation5,17.

Canonical regulation of AMPK by energy stress
Stresses that interfere with catabolic production of ATP (for  
example, hypoxia, ischaemia, inhibition of glycolysis or mito-
chondrial ATP production) or that stimulate ATP consumption 
(for example, contraction of skeletal muscle) increase the cellu-
lar ADP:ATP ratio, analogous to the “battery” of the cell running 
flat. This is invariably accompanied by even larger increases in 
the AMP:ATP ratio, which are due to displacement of the ade-
nylate kinase reaction (2ADP ↔ ATP + AMP)18. Under these 
circumstances, AMPK is activated by three complementary 
mechanisms: (i) binding of AMP or ADP promotes Thr172 phos-
phorylation by LKB1 (possibly also by CaMKK2, although that is  
disputed19,20), (ii) binding of AMP or ADP inhibits Thr172  
dephosphorylation by protein phosphatases6,18,19, and (iii) bind-
ing of AMP but not ADP causes an allosteric activation of up to 
10-fold18,19. The structural data suggest plausible mechanisms 
to explain mechanisms (ii) and (iii) since there is evidence that  
displacement of AMP by ATP at site 3 triggers dissociation of  
the α-linker from the γ subunit, causing the catalytic and  
nucleotide-binding modules to move apart5,6 (see previous sec-
tion). This may not only allow the α-AID to rotate back into its  
inhibitory position behind the kinase domain4,5 but also expose 
Thr172, which in the compact conformation is partly buried 
in a deep cleft between the two modules6 (Figure 1A), thus  
allowing more rapid dephosphorylation. However, this model  
does not explain why it is only AMP (and not ADP) that  
causes allosteric activation, nor why AMP binding promotes Thr172 
phosphorylation by LKB1.

Interestingly, AMPK complexes with different γ subunit isoforms 
(γ1, γ2, or γ3) display subtle variations in their responses to increases 
in AMP and ADP19, suggesting that complexes at different loca-
tions could be tuned to respond differently to changes in adenine  
nucleotides, depending on which γ subunit isoform is present.

The LKB1 complex (comprising LKB1 and two accessory  
subunits, STRAD and MO2521) normally appears to be consti-
tutively active22, and the regulation of AMPK phosphorylation 
appears to be modulated instead by binding of adenine nucleotides 
to AMPK. However, AMPK activation by energy stress does 
not occur in many tumour cells that lack LKB1 (for example, 
HeLa cells) because the basal activity of CaMKK2 is too low to  
trigger significant Thr172 phosphorylation23. The CaMKK2-AMPK  
pathway represents instead an alternate Ca2+-activated pathway that 
mediates AMPK activation by hormones that release Ca2+ from 
intracellular stores, such as thrombin24 or ghrelin25.

Non-canonical activation by glucose starvation
When the yeast Saccharomyces cerevisiae is grown in high  
glucose, it uses fermentation (glycolysis to ethanol) almost exclu-
sively to generate ATP. When glucose runs low, yeast needs to 
switch on (i) genes required for metabolism of other fermenta-
ble carbon sources such as sucrose or (ii) genes of mitochondrial  
oxidative metabolism, which are required for growth on low  
concentrations of glucose or on non-fermentable carbon sources 
such as ethanol. None of these metabolic adaptations occurs in the 

absence of genes encoding the α, β, or γ subunits of the AMPK 
orthologue, termed the SNF1 complex26. The SNF1 complex is 
activated upon glucose starvation27,28 by phosphorylation of the  
threonine residue equivalent to Thr172 (Thr210)29. Although  
glucose starvation is accompanied by large changes in the cellu-
lar ratios of AMP:ATP and ADP:ATP, the yeast SNF1 complex 
is not allosterically activated by AMP28. Neither phosphorylation 
nor dephosphorylation of Thr210 appears to be sensitive to AMP  
either, although dephosphorylation may be inhibited by ADP30. 
Thus, the ancestral role of the AMPK orthologue in unicellular 
fungi appears to have been in response to glucose starvation, but 
it remains unclear whether changes in adenine nucleotides are the 
crucial signals or whether there is instead some mechanism by 
which the SNF1 complex responds more directly to the availability 
of glucose.

It has been known for many years that glucose deprivation activates 
AMPK in mammalian cells31, but it had generally been assumed 
that this effect was mediated by the canonical energy stress mecha-
nism (that is, by increases in AMP:ATP or ADP:ATP ratios or 
both). However, recent studies suggest that the mammalian kinase 
may be able to sense glucose by a non-canonical mechanism inde-
pendently of changes in adenine nucleotides. The first clue came 
with unexpected findings that Axin (a large adapter protein better 
known for its role in the Wnt signalling pathway) forms a ternary 
complex with LKB1 and AMPK in response to glucose starvation, 
thus bringing the upstream and downstream kinases together and 
promoting Thr172 phosphorylation32. AMPK activation, both in  
mouse embryo fibroblasts (MEFs) starved of glucose in vitro and 
in livers of mice starved in vivo, was subsequently found to require 
not only Axin32 but also Lamtor133, a resident lysosomal protein 
that associates with the vacuolar ATPase (v-ATPase). Lamtor1 is 
a component of the pentameric Ragulator complex, which acts as 
a guanine nucleotide exchange factor (GEF) for RagA or RagB, 
whose GTP-bound forms trigger translocation of mTORC1 to the 
lysosome where it is activated34. Axin, along with bound LKB1, was 
found to translocate to the surface of the lysosome upon glucose 
starvation, and these results suggested a model in which glucose 
deprivation led to the formation of a lysosomal complex involving 
v-ATPase, the Ragulator, Axin, LKB1, and AMPK, thus trigger-
ing AMPK activation33. AMPK is known to phosphorylate Raptor  
(a key component of mTORC1) as well as the upstream regula-
tor TSC2, thus causing rapid inhibition of mTORC135,36. However, 
glucose starvation still suppresses mTORC1 even in TSC2- and 
AMPK-null MEFs by causing dissociation of mTORC1 from the 
lysosome in a Rag GTPase-dependent manner37,38. Importantly, 
knockout of Axin in MEFs led to prolonged activation and much 
slower dissociation of mTORC1 from the lysosome after glucose 
starvation, most likely due to the ability of Axin to inhibit the 
GEF activity of the Ragulator complex33. The ability of Axin to  
negatively regulate mTORC1 may also account for some of 
the beneficial roles of metformin39. Taken together, these new  
findings suggest that the regulation of the AMPK and mTORC1 
signalling pathways is much more closely intertwined than  
previously realised.

Although AMP can promote the formation of the complex between 
Axin and AMPK in reconstituted cell-free assays32, it now appears 
that AMPK can sense glucose starvation independently of changes 
in adenine nucleotides40. In MEFs, removing glucose from the 
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medium (as long as glutamine and pyruvate were still present) 
caused rapid AMPK activation without any changes in AMP:ATP 
or ADP:ATP ratios. The AMPK activation that occurred upon  
glucose removal, but not the larger activation that occurred fol-
lowing energy stress (for example, on removal of both glucose and 
glutamine), was dependent on Axin, Lamtor1, and also N-termi-
nal myristoylation of the AMPK-β subunits, and the last of these  
was required for lysosomal localisation of AMPK. The ability of 
glucose to repress AMPK activation required its metabolism by  

glycolysis as far as fructose-1,6-bisphosphate (FBP), and the sen-
sor for glucose availability appears to be the glycolytic enzyme  
that metabolises FBP, i.e. aldolase40. Intriguingly, aldolase has pre-
viously been shown to associate with the lysosomal v-ATPase in 
both yeast and mammalian cells41–43. These findings led to a model 
in which the lack of availability of glucose, and hence FBP, causes 
changes in the interaction between aldolase and the v-ATPase,  
promoting the formation of a complex between the Ragulator,  
Axin, LKB1, and AMPK (Figure 2). Given that the association  

Figure 2. Working model for sensing of glucose availability by AMPK and its potential interactions with the mTORC1 signalling 
pathway at the lysosome. (A) When glucose is present, it is metabolised by glycolysis to FBP, which binds to aldolase and the v-ATPase 
at the lysosomal surface41–43, preventing the interaction of LKB1, AXIN, and AMPK on the lysosome. If amino acids are present (most likely 
within the lysosomal lumen78), they activate the Ragulator complex, converting the RagA or RagB partner of the Rag heterodimer into its active 
GTP-bound form and recruiting mTORC1 to the lysosome because of the interaction between Raptor and RagA/B:GTP. If growth factors are 
also present, they activate the Akt pathway, inactivating the TSC1:TSC2 complex and promoting conversion of the small G protein Rheb into 
its active GTP-bound form. This further activates mTORC1, promoting biosynthesis and cell growth. Under these conditions, LKB1 is present 
as a complex with Axin in the cytoplasm, whereas AMPK may be partly cytoplasmic and partly lysosomal, and the latter location requires the 
N-terminal myristoylation of the β subunit. (B) When glucose is absent, FBP is no longer bound to aldolase and the latter may dissociate from 
the v-ATPase, at least in budding yeast. This allows a ternary complex of LKB1, AXIN, and AMPK to bind to the v-ATPase and the Ragulator 
complex, preventing activation of mTORC1. The proximity of LKB1 and AMPK also causes phosphorylation and activation of the latter. AMPK 
then phosphorylates Raptor (triggering 14-3-3 binding and preventing re-activation of mTORC1) and also TSC2, antagonising activation of 
mTORC1 by growth factors. AMPK also phosphorylates other targets that promote alternate catabolic pathways while inhibiting anabolic 
pathways. AMPK, AMP-activated protein kinase; FBP, fructose-1,6-bisphosphate; v-ATPase, vacuolar ATPase.
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between aldolase and the v-ATPase is enhanced by glucose 
availability in yeast42, it seems possible that elements of this  
mechanism are conserved between mammals and yeast and that 
glucose sensing by an AMP/ADP-independent mechanism is an 
evolutionarily ancient role of AMPK.

As well as these findings of binding of LKB1 to lysosomes, it 
has recently been reported that LKB1 can associate with specific 
plasma membrane compartments in cells from humans and  
Drosophila melanogaster. This appears to be due to basic  
regions in the C-terminal tail of LKB1 that cause its bind-
ing to phosphatidic acid and other phospholipids; mutation of 
these regions interferes with AMPK activation when LKB1 is  
expressed in HeLa cells44.

Role of ligands that bind the ADaM site
The β-CBM is a member of the CBM20 family of carbohydrate-
binding modules, which are non-catalytic domains that usually 
occur in proteins that metabolise starch or glycogen. The β-CBM 
causes a proportion of mammalian AMPK to associate with  
glycogen particles in intact cells10,11, but the exact role of that  
remains unclear. However, another function of the β-CBM is that 
the cleft between it and the N-lobe of the α-KD forms a unique  
binding site accessible to various AMPK activators8,12. These 
compounds—including A-76966245, 99112, MT 63–7846, PF-
0640957747, PF-739, PF-24948, and MK-872249—all emerged from 
high-throughput screens that searched for allosteric activators 
of AMPK. They show varying selectivity for AMPK complexes 
containing the β1 rather than the β2 isoforms and are primarily 
allosteric activators, although they can also enhance net Thr172 
phosphorylation by inhibiting dephosphorylation50,51. The extent 
of allosteric activation by A-769662 is particularly dramatic for 
AMPK that is not phosphorylated on Thr172. This effect requires 
prior autophosphorylation of Ser108 on the β subunit52, although 
this is not required for activation by 99153. PF-739, which acti-
vates both β1- and β2-containing complexes, increased glucose 
uptake and lowered plasma glucose in diet-induced obese mice  
and healthy Cynomolgus monkeys, and in mice this was depend-
ent on the expression of AMPK in muscle but not in liver. Thus, 
its effects appeared to be mediated by enhancing muscle glucose 
uptake rather than inhibiting hepatic glucose output48. By contrast, 
the activator PF-249, which is β1-selective and therefore activates 
AMP in rodent liver but not in muscle, failed to lower plasma 
glucose or promote muscle glucose uptake, although PF-249 and 
another β1-selective activator, PF-06409577, showed promise in 
pre-clinical studies for treatment of diabetic nephropathy47. Like 
PF-739, a similar “pan-β” activator, MK-8722, has shown promise 
in lowering blood glucose in both rodent and non-human primate 
models of type 2 diabetes49. However, none of these compounds has 
yet progressed into clinical trials. The plant hormone salicylate also 
activates AMPK by binding at this site8,54. In the form of willow 
bark extract, salicylate has been used as a medicine since ancient 
times. It is also an in vivo breakdown product of aspirin (acetyl 
salicylate) and may exert some of the therapeutic effects of that 
drug. Salicylate is currently the only natural product known to bind 
this site on AMPK, but there is much speculation in the field that 
there may be a naturally occurring metabolite from animal cells that 
binds there, which is why it has been termed the allosteric drug and 
metabolite (ADaM) site55.

Paradoxical activation of AMPK by kinase inhibitors
It has recently been reported that AMPK is paradoxically activated 
by two kinase inhibitors: SU665656 and sorafenib57,58. SU6656 was 
developed as an inhibitor of Src family kinases such as Src, Yes, 
and Fyn and was proposed to activate AMPK by inhibiting phos-
phorylation of tyrosine residues on LKB156 or AMPK59 by Fyn. 
However, activation of AMPK by SU6656 does not require phos-
phorylation of these tyrosine residues or even the presence of an 
Src family kinase in the cells60. SU6656 is in fact a potent inhibi-
tor of AMPK that binds at the catalytic site in competition with 
ATP, but this paradoxically causes a conformational change that  
promotes Thr172 phosphorylation by LKB1. This mechanism  
would still promote phosphorylation of downstream targets of 
AMPK as long as the lifetime of Thr172 phosphorylation was  
sufficient for SU6656 to dissociate and for one or more cata-
lytic events to occur prior to Thr172 dephosphorylation. Indeed,  
SU6656 promotes the phosphorylation of the downstream target 
acetyl-CoA carboxylase in intact cells60.

Sorafenib was originally developed as an inhibitor of tyrosine 
kinases and is used clinically for the treatment of hepatocellular 
carcinoma as well as advanced renal cell or thyroid carcinoma61.  
Sorafenib also paradoxically activates AMPK57,58, but this is  
because sorafenib, in contrast to SU6656, is an inhibitor of the  
mitochondrial respiratory chain, so that it activates AMPK indi-
rectly by increasing cellular AMP:ATP ratios60.

New targets: mitochondrial fission, maintaining the 
integrity of epithelial layers, and angiogenesis
AMPK phosphorylates serine or threonine residues within the 
recognition motif βΦ(X,β)XXS/TXXXΦ62 (Figure 3), where Φ  
represents bulky hydrophobic residues (M, L, I, F, or V) and β  
represents basic residues (R>K>H). The hydrophobic residue at 
the N-terminal (-5) position and at least one basic residue at either 
the -4 or the -3 position appear to be particularly critical. A recent 
review63 listed over 60 well-validated targets of AMPK, and it is 
now clear that it phosphorylates many targets involved in cellular 
processes other than metabolism. A full review of these lies outside 
the scope of this article, but some recent interesting discoveries are 
mentioned below.

Mitochondria are now known to be extremely dynamic  
structures64. Thus, respiratory chain inhibitors cause mitochon-
drial fission, possibly as a means of segregating regions of mito-
chondria that have undergone oxidative damage for subsequent  
autophagy and recycling. Mitochondria also become more frag-
mented in mitotic cells, perhaps to ensure even distribution to 
daughter cells. On the other hand, mitochondrial fusion into  
larger networks tends to occur in quiescent cells, which are 
more reliant on oxidative metabolism for ATP generation. Since  
mitochondria are the major suppliers of ATP in most quiescent 
cells and since AMPK knockout cells are known to accumu-
late abnormal mitochondria65–67, it is perhaps not surprising that  
AMPK should have a key role in mitochondrial dynamics.  
Indeed, in either U2OS cells or MEFs that lack both catalytic  
subunits of AMPK, the effects of mitochondrial inhibitors to  
trigger mitochondrial fission were attenuated68. Moreover, com-
pounds such as A-769662 (which activate AMPK by binding at the 
ADaM site) caused mitochondrial fission in the absence of energy 
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stress. Fission is triggered by the GTPase dynamin-related pro-
tein-1 (DRP1), which is recruited to mitochondria in part by the 
mitochondrial fission factor (MFF). The latter is phosphorylated 
at two sites—Ser155 and Ser172—by AMPK (Figure 3), and a  
phosphospecific antibody revealed that Ser172 was phosphorylated 
in intact cells treated with mitochondrial inhibitors or AMPK  
activators. Finally, localisation of DRP1 at mitochondria in  
response to mitochondrial inhibitors or AMPK activators was 
restored in MFF-/- cells reconstituted with wild-type MFF but not 
an S155A/S172A mutant68. These results suggest that, as well as 
being involved in mitochondrial biogenesis69 and mitophagy67, 

AMPK may trigger mitochondrial fission. Thus, AMPK appears  
to be involved in the maintenance of mitochondrial function 
throughout the life cycle of these ATP-generating organelles.

The integrity and polarity of epithelial cell layers are other factors 
that are crucial to survival in vertebrates. Tight junctions between 
epithelial cells maintain a permeability barrier that helps to ensure 
that solutes and other materials such as pathogens cannot pass 
between cells but instead have to pass through them, where their 
uptake and onward transport can be monitored and regulated. 
Several years ago, it was shown that AMPK was activated during  
Ca2+-induced tight-junction assembly in Madin-Darby canine 
kidney (MDCK) epithelial cells and that AMPK activators also 
protected tight junctions from disassembly induced by Ca2+  
depletion70,71. However, the direct target(s) of AMPK responsible 
for these effects remained unclear. One candidate to explain these 
effects is Gα-interacting vesicle-associated protein (GIV), also 
known as Girdin. AMPK phosphorylates Ser245, a good fit to the 
AMPK consensus motif that is located in the junction between 
the N-terminal and coiled-coil domains of Girdin (Figure 3). This 
was observed both in cell-free assays and in MEFs subjected to 
glucose starvation, and the signal in the latter case disappeared 
in AMPK knockout cells72. In MDCK cells, AMPK and Girdin  
phosphorylated at Ser245 did not co-localise with tight junctions in 
cells that were fully polarised under basal conditions but did so in 
cells subject to stress (glucose starvation or Ca2+ depletion), when 
tight junctions are known to be turning over. Evidence was obtained 
by expressing non-phosphorylatable (S245A) and phosphomi-
metic (S245D) mutants in type II MDCK cells (which have low 
Girdin expression), suggesting that Ser245 phosphorylation was 
responsible for maintaining tight-junction integrity during glucose  
starvation. Ser245 phosphorylation also appeared to be responsi-
ble for interaction of Girdin with microtubules that are associated  
with tight junctions.

A recent phosphoproteomic screen in wild-type and AMPK-null  
MEFs treated with the ADaM site ligand A-769662 identified 
Ser-243 on glutamine:fructose-6-phosphate amidotransferase-
1 (GFAT1) as an AMPK target73 (Figure 3). GFAT1 catalyses  
the formation of glucosamine-6-phosphate, the first and  
possibly rate-limiting step in the pathway of formation of UDP-
N-acetylglucosamine, which is used to modify serine/threonine  
residues on numerous proteins with N-acetylglucosamine.  
Although Ser-243 had been suggested previously to be an 
AMPK site74–76, the effects on GFAT activity were unclear. In 
the new study, evidence was obtained that AMPK is a negative 
regulator of this pathway. Thus, AMPK inhibits the synthesis  
of N-acetylglucosamine as well as many other biosynthetic  
pathways. In endothelial cells, the hexosamine biosynthesis  
pathway, which is enhanced by high glucose availability, is a  
negative regulator of angiogenesis, while phosphorylation of  
GFAT1 by AMPK (for example, after activation by vascular  
endothelial growth factor mediated by the CaMKK2 pathway77) 
promotes angiogenesis73. Thus, AMPK appears to be critical in 
enhancing angiogenesis, a process that would be beneficial in  
nutrient-deprived cells.

Figure 3. Alignment of consensus recognition motif for 
AMPK, classic sites phosphorylated by AMPK on acetyl-CoA 
carboxylase-1 (ACC1) and HMG-CoA reductase (HMGR), and 
novel sites recently identified on MFF, Girdin, and GFAT1. Basic 
residues at the -6, -4, and -3 positions are indicated in blue by the 
symbol “β” in the recognition motif and otherwise by the single-
letter code in bold type. Hydrophobic residues at the -5 and +4 
positions are indicated in brown by the symbol “Φ” in the recognition 
motif and otherwise by the single-letter code in bold type. Serine 
residues directly phosphorylated by AMPK are indicated in red bold 
type. In most cases, the sites were identified by using the human 
or mouse sequence, but the alignments show conservation of the 
sequences in other vertebrates. AMPK, AMP-activated protein 
kinase; GFAT1, glutamine:fructose-6-phosphate amidotransferase-
1; MFF, mitochondrial fission factor.
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Conclusions and perspectives
Although important questions remain, good progress has been  
made in obtaining structural data that provide insights into the 
molecular mechanisms by which the AMPK heterotrimer is acti-
vated by the canonical energy-sensing mechanism involving 
changes in AMP, ADP, and ATP. At the same time, it has become 
clear that AMPK is activated by glucose starvation by a lysosomal 
mechanism that is independent of changes in adenine nucleotides; 
this may even have evolved before the energy-sensing mecha-
nism and may represent the ancestral role of the AMPK system. 
The number of pharmacological agents that activate AMPK has  
continued to increase, including several that bind in the so-called 
“ADaM” site and at least one (SU6656) that binds in the cata-
lytic site yet causes paradoxical activation. Finally, the number 
of well-validated downstream targets for AMPK has continued to 
increase, including targets involved in mitochondrial fission, in the  
maintenance of tight junctions, and in the N-acetylglucosamine 
synthesis pathway.
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