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Abstract: FePt nanoparticles (NPs) were embedded into a single-crystal MgO host by pulsed laser
deposition (PLD). It was found that its phase, microstructures and physical properties were strongly
dependent on annealing conditions. Annealing induced a remarkable morphology variation in order
to decrease its total free energy. H2/Ar (95% Ar + 5% H2) significantly improved the L10 ordering of
FePt NPs, making magnetic coercivity reach 37 KOe at room temperature. However, the samples
annealing at H2/Ar, O2, and vacuum all showed the presence of iron oxide even with the coverage
of MgO. MgO matrix could restrain the particles’ coalescence effectively but can hardly avoid the
oxidation of Fe since it is extremely sensitive to oxygen under the high-temperature annealing process.
This study demonstrated that it is essential to anneal FePt in a high-purity reducing or ultra-high
vacuum atmosphere in order to eliminate the influence of oxygen.

Keywords: L10 phase; FePt; phase transformation; annealing condition

1. Introduction

The FePt alloy attracts great research interest because of its potential in the ultra-
high-density data magnetic storage [1–4], biological imaging [5], and enhanced catalyst for
oxygen reduction reaction [6]. FePt can be produced with two phases (A1 and L10 phase)
when their atom ratio is close to 1:1. In A1 phase (with face-centered-cubic, fcc structure),
Fe and Pt randomly occupy the site of its fcc lattice, which results in super para-magnetism
in FePt at room temperature. In contrast, its L10 phase with face-centered tetragonal (fct)
structure presents alternating layers of Fe and Pt atoms in the (002) planes and tetragonal
distortion (c/a = 0.96). The ordered L10-FePt has a large uni-axial magneto crystalline
anisotropy (Ku = 7 × 106 J/m3), which contributes to the thermal stability and excellent
ferromagnetic properties in FePt even with size down to ~3 nm [7]. Since the synthesized
FePt nanoparticles always show chemically disordered A1 phase, a thermal annealing
process is necessary to convert this disordered fcc structure to an ordered fct structure.
Thus, the post-annealing procedure is a key step for FePt to obtain good ferromagnetism
properties. However, a high-temperature post-annealing process will lead to coalescence
of NPs and result in magnetic coupling between those ferromagnetic clusters. One way
of solving this problem is to embed FePt NPs in a nonmagnetic oxide matrix such as
SiO2 [8–11], Al2O3 [7], MgO [12,13], and NaCl [14–17]. Matrix material could offer a
homogenous single crystal environment to FePt, and control the orientation of its easily
magnetized axis.

Further, many works have been done to investigate the effect of annealing conditions
on the structure and magnetic properties of FePt. Most of them just focused on annealing
temperature, time, and heating rate [4,18–23]. The annealing atmosphere (i.e., vacuum,
Ar, N2, or forming gases, etc.) has a pronounced impact on the structural transition and
related magnetic properties for FePt. In previous contributions, it has been shown that
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highly coercive FePt films can be obtained by annealing in hydrogen rather than in a
vacuum [24–27]. It has also been reported that nitrogen corporation forming FeN enhances
the diffusivity of Fe and Pt during annealing and thus improves the L10 ordering [28].
Moreover, some previous studies claimed that MgO matrix can act as protection of FePt
NPs from external oxidation [29,30]. Hsiao et al. report that no oxidation of Fe occurred
after annealing at 800 ◦C under a poor vacuum condition (~10−4 Pa) [31], while some other
researchers reported severe oxidation of FePt which was covered with Al2O3 [32,33] or
MgO [34]. In order to figure out the conflict, it is essential to study the annealing reaction
under different conditions to further understand the annealing process of FePt NPs with
the coverage of matrix materials.

In this work, FePt NPs were embedded into single-crystal MgO by pulsed laser depo-
sition (PLD). The samples were annealed at different temperatures and gas environment.
The annealing mechanisms and micro-structural features of those samples with different
annealing conditions were discussed, together with their magnetic properties.

2. Experimental Details

The FePt-MgO nanocomposite films were grown by PLD on MgO (001) single-crystal
substrates. The background pressure and deposition pressure are ~3.0 × 10−6 Pa and
~5.0 × 10−5 Pa, respectively. During the growth process, the pulsed laser with the wave-
length 248 nm, pulsed frequency 2 Hz, and energy density 2.5 J/cm2 irradiated the Fe50Pt50
alloy target and pure MgO target alternatively, and the substrate temperature is maintained
at 650 ◦C. Firstly, an MgO buffer layer was grown prior to the growth of the FePt layer in
order to improve the surface quality of MgO substrate. After the deposition of the FePt
layer, a continuing MgO cover layer with a thickness around 10 nm was deposited further
in order to prevent FePt NPs from exposure to air. After the completion of every MgO layer,
the sample was exposed to oxygen atmosphere at 5 Pa for 20 min in order to eliminate the
oxygen vacancies in MgO.

After the growth process, five samples with different annealing conditions were
named as sample S1, S2, S3, S4, and S5, respectively. Detailed samples information is
listed in Table 1. The compositions of samples were determined by energy-dispersive
x-ray spectroscopy (EDS, EDAX Inc., Mahwah, NJ, USA). Structural investigations of
these specimens were performed with high-resolution transmission electron microscopy
(HRTEM) and high-resolution high-angle annular dark field scanning transmission electron
microscopy (HAADF-STEM) by using a FEI Tecnai F20 microscope (FEI Inc., Hillsboro, OR,
USA). To analyze the chemical states of Fe and Pt atoms, x-ray photoelectron spectroscopy
(XPS, Thermo Fisher Scientific Inc., Massachusetts, MA, USA) was used to measure Mg
Kα twin sources. In-plane and out-of-plane magnetization loops were measured at room
temperature with superconducting quantum interference device magnetometer (SQUID,
Quantum Design Inc., San Diego, CA, USA).

Table 1. Samples information.

Sample No. Atmosphere Temperature (◦C) Time (Hours)

S1 unannealed – –

S2 O2 (~5 Pa) 800 ◦C 4

S3 O2 (~5 Pa) 700 ◦C 4

S4 high vacuum (~5 × 10−5 Pa) 800 ◦C 4

S5 H2/Ar (95%Ar + 5% H2) 800 ◦C 4

3. Results and Discussion

The composition of the samples was determined to be 52:48 by EDS. Top-view TEM
images of S1 and S2 are shown in Figure 1 and a remarkable morphology change was
observed. For S1, the FePt layer shows an interconnected isotropic maze-like pattern and
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almost covered all the MgO substrate. However, the atoms’ diffusion occurred, and film
morphology changed from interconnected to granular after annealing. For S2, the particle
size is around 5~13 nm, and their distance is approximately 10 nm. This morphology
variation after annealing could be explained by de-wetting phenomena. Many earlier
works have also reported this similar phenomenon about metal (like Au, Pt, Co-Pt, etc.)
films after thermal treatment [35,36]. Here, de-wetting phenomena occurred in order
to decrease its total free energy, which caused the reduction of interfacial area between
the FePt layer and substrate [36]. Therefore, the diffusion of FePt atoms under a high
temperature prefers to assemble at the top of FePt in order to decrease their interfacial
area. It drove the edge retraction of the FePt layer and changed it towards a collection of
three-dimensional (3D) islands. It demonstrates that the coverage of the MgO matrix could
restrain the particles’ coalescence effectively, but could not disturb the diffusion and island
growth of FePt atoms.
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Figure 1. Top-view Transmission Electron Microscopy (TEM) images of (a) S1: before annealing (insert is its local magnifica-
tion image) and (b) S2: after annealing in oxygen at 800 ◦C for 4 h (insert is its local magnification image).

Further, the influence of annealing temperature on particle morphology was also
investigated by using TEM. Figure 2 gives the top and cross-section HRTEM images of S2
and S3. It can be seen that the thickness of the MgO cover layer is around 10 nm. The stripe
contrast observed in the particles is Moiré pattern caused by the lattice parameter difference
between MgO matrix and FePt NPs. The HRTEM images show that the crystal structure of
the FePt NPs in both samples remains disordered A1 phase, but their morphology varies
with annealing temperature. As shown in Figure 2a,b, the FePt NPs annealed at 800 degrees
(S2) exhibit a well-defined morphology with facets. High-resolution TEM observation of
FePt NPs (Figure 2b) indicates very good crystalline and a dominant truncated inverted
triangle shape. The formation of these shapes may result from the anisotropy of FePt NPs
surface energy and the sufficient atoms’ diffusion in higher temperatures [37]. While, as
shown in Figure 2c,d, the FePt NPs in S3 exhibit a sphere-like morphology in both top
and cross-section view images. Further, the elemental distribution of S2 within the orange
area was examined by using EDS mapping, as shown in Figure 2e. It reveals the projected
distributions of Pt and Fe within the particle. Figure 2e insert shows the electron energy
loss spectroscopy (EELS) spectrum of S2, with its Fe2p3/2 and Fe2p1/2 peaks located at
708.8 and 721.6 eV, respectively. These values are higher than the ones reported for bulk
values of pure Fe (Fe (2p3/2) = 706.75 eV, Fe (2p1/2) = 719.95 eV) [38]. It suggests that the Fe
atoms of S2 were oxidized after annealing. It also demonstrates that the coverage of MgO
cannot avoid the oxidation of Fe when it is exposed to oxygen in high temperatures.
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cross-section HRTEM views of S3. (e) The cross-section STEM image of S2 (annealed under oxygen at 700 ◦C for 4 h). Insert:
EELS spectrum of yellow square area and EDS mapping of orange square area.

Figure 3 compares the x-rays diffraction (XRD) spectra of the sample before annealing
and the samples annealed at 800 degrees for 4 h, but with different annealing atmosphere.
All FePt-MgO nanocomposite films exhibit a sharp peak at 40.1◦, which corresponds to
FePt (111) texture. For S5, (001) and (002) peaks can be clearly observed, which indicate the
existence of ordered L10 phase, while for S2 and S4, there are no peaks corresponding to
L10-FePt. It suggests that no phase transition occurred under oxygen and high-vacuum
annealing atmosphere. For S2, the oxidation of Fe may stop the occurrence of phase
transition. But for S2 and S4, no peak can be identified with iron oxide. In order to figure
out what stopped the phase transition in S4, a further study has been conducted by XPS.
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Figure 4 illustrates the x-ray photoelectron spectroscopy (XPS) spectra of the Fe2p
binding energy of the samples before annealing and the samples annealed at 800 degrees
for 4 h but with different annealing atmosphere. A Shirley background was removed from
the original spectra. For S1, two main peaks located at around 706.72 and 719.81 eV are
assigned to Fe (0) Fe2p3/2 and Fe2p1/2, respectively. While for S2 and S4, both their main
peaks are located at around 708.89 and 722.45 eV, which are assigned to iron oxide. It
reveals that the oxidation of Fe atoms occurred under vacuum environment since oxygen
content is not low enough at pressure around 5 × 10−5 Pa. While for S1 and S5, both the
Fe2p3/2 and Fe2p1/2 peaks were composed of two peaks located at 706, 708.1 and 720,
722 eV, respectively. The two components for each peak were attributed to the coexistence
of Fe (0) and iron oxide. It suggests that iron atoms in S1 and S5 were partially oxidized.
The Fe oxide of S1 may result from the oxygen treatment process in order to eliminate
the oxygen vacancies in as-grown MgO. It reveals that iron atoms are extremely sensitive
to oxygen under high temperatures, even with the coverage of MgO. For S5, its relative
intensity of oxidized component is higher than S1. It suggests that oxidized Fe has also
been introduced from the annealing process, excepting from the oxygen treatment process.
Ying [20] and Salahpour [39] reported similar oxidation phenomena of FePt, in which
FePt was annealed in a forming gas (85% N2 + 15% H2 or 90% Ar + 10% H2), because
oxygen content cannot be completely eliminated from the annealing furnace with flowing
H2/Ar (N2). Hydrogen could suppress the oxidation process but could not effectively
reduce oxidized Fe, and even traces of O2 present in the flowing H2/Ar mixture can cause
oxidation. Further study on annealing temperature and time influence on its oxidation
process will be conducted in our future work.
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Figure 4. XPS spectra of the Fe2p binding energy of the samples with different annealing conditions.

Figure 5a,b shows the STEM image and selected area electron diffraction of S5. S5
exhibits a similar micro-morphology to S2. As shown in Figure 5b, the reflections cor-
responding to two different compounds are clearly distinguished (FePt reflections are
underlined). Beam direction is along the [001] zone axis of the substrate. The orientation
relationship between FePt and MgO is < 100 > FePt || <100 > MgO, {001} FePt || {001} MgO.
The strong {110} super lattice reflections indicate that FePt NPs with crystallographic c-axis
oriented normal to the substrate surface with a high degree of order after annealing in
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H2/Ar atmosphere. Except for suppressing oxidation, Vladymyrskyi et al. reported that
hydrogen plays an important role in the FePt ordering process [25]. The fast diffusion
rate of hydrogen atoms in turn could induce an increased diffusion rate of Fe and Pt
atoms and thus promote the L10 ordering. Figure 5c shows a HAADF-STEM image of a
typical FePt nanoparticle for S5. This particle exhibits fct structure and its (110) d-spacing
is around 0.2712 nm. Furthermore, as marked with red circles and yellow circles, a few
areas inside and in the edges of the particle present A1 phase. This nano-sized region with
disordered feature in the edge may be caused by the tensile strain arising from the lattice
misfit between FePt and MgO, while the disorder region inside the particle may be caused
by insufficient annealing.
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Figure 6a shows the out-of-plane magnetization curves obtained from the samples
with different annealing conditions. Except for S5, all the other samples showed a com-
pletely soft ferromagnetic behavior, which is for the fcc disordered phase. However, after
a heat treatment under H2/Ar atmosphere, the specimen exhibits a big coercivity, which
indicates a transition from soft to hard ferromagnetic phase. As shown in Figure 6b, the
in-plane and out-of-plane coercivity of S5 were found to be 0.9 and 37 KOe, respectively.
The great disparity between in-plane and out-of-plane coercivity indicates that the easy
axes of the magnetic grains were perpendicular to the substrate. Moreover, the presence of
a shoulder at low applied magnetic field in the hysteresis was caused by the presence of soft
phase due to the partial ordered transformation [29,40]. The soft phase resulted from the
element segregation and oxidation of Fe, as mentioned from XPS and TEM analyses above.
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Figure 6. (a) Magnetization curves of samples with different annealing conditions, (b) in-plane and out-of-plane magnetiza-
tion curves of S5.

4. Conclusions

In this work, series of FePt-MgO nanocomposite films were successfully fabricated
and the samples were annealed at different temperatures and gas environment. Annealing
induced a remarkable morphology variation and higher temperature could result in a
well-defined morphology with facets. The samples annealing in oxygen, vacuum, and
H2/Ar atmosphere all show the presence of iron oxidation, which suggests that the iron is
extremely sensitive to oxygen under the high-temperature annealing procedure even with
the coverage of MgO. Annealing in reducing atmosphere (H2/Ar) suppressed the oxidation
process and the specimen has a magnetic coercivity of 37 KOe at room temperature.
Therefore, the present work demonstrates that the oxygen and hydrogen content play an
important role in controlling the microstructure and magnetic properties of FePt-MgO
nanocomposite films under the post-annealing procedure. It is essential to anneal FePt in a
high-purity reducing or ultra-high vacuum atmosphere in order to eliminate the influence
of oxygen.
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