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Despite improved diagnostic and therapeutic intervention, advanced prostate cancer
(PC) remains incurable. The acquired resistance of PC cells to current treatment
protocols has been traced to apoptosis resistance based on the upregulation of
anti-apoptotic proteins of the Bcl-2 family. The use of BH3 mimetics, mimicking pro-
apoptotic activator or sensitizer proteins of the intrinsic apoptotic pathway, is therefore
a promising treatment strategy. The present review gives an overview of preclinical and
clinical studies with pan- and specific BH3 mimetics as sensitizers for cell death and
gives an outlook how they could be effectively used for the therapy of advanced PC in
future.
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INTRODUCTION

Prostate cancer remains the second most common cancer in men worldwide. About 1.1 million
new cases are detected every year, accounting for 15% of all diagnosed cancers. As the fifth leading
cause of cancer deaths, PC was responsible for an estimated 307,000 deaths representing 6.6%
of the total cancer mortality (Ferlay et al., 2015). Locally restricted tumors can be successfully
treated by radical prostatectomy, brachytherapy, external beam radiation, or active surveillance. In
advanced PC, ADT is administered as first-line therapy. However, its median duration response of
up to 18 months is limited, because virtually all patients develop CRPC with biochemical progress
and high therapeutic resistance (Halabi et al., 2014; Katzenwadel and Wolf, 2015). In 2004, only
a moderate overall survival benefit of about 3 months was reached in two independent phase
3 trials with docetaxel chemotherapy in metastatic CRPC (Petrylak et al., 2004; Tannock et al.,
2004). Despite improved diagnostic and therapeutic procedures and improvements in terms of
treatment sequencing and combinations, CRPC remains incurable. Studies evidence that a main
factor for the acquired resistances to ADT, radiation, and chemotherapy is the resistance of PC
cells to apoptosis (Gjertsen et al., 1998; Stein, 1999; DiPaola et al., 2001). Therefore, restoration of
apoptosis represents a promising strategy for the future treatment of advanced PC.

REGULATION OF APOPTOSIS BY BCL-2 FAMILY MEMBERS

Apoptosis, the programmed cell death, is a highly regulated and controlled process of multicellular
organisms for the elimination of surplus or damaged cells to preserve tissue and organ homeostasis
(Kiraz et al., 2016). Key regulators of the intrinsic apoptotic pathway are proteins of the B-cell

Abbreviations: 2DG, 2-deoxyglucose; ADT, androgen deprivation therapy; CRPC, castration resistant prostate cancer; JNK,
c-Jun N-terminal kinase; MSeA, methylseleninic acid; PAB, pseudolaric acid; PC, prostate cancer.
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lymphoma 2 (Bcl-2) family (Youle and Strasser, 2008). According
to their function in the apoptosis network, Bcl-2 family members
can be divided into two different subgroups: the anti-apoptotic
proteins (Bcl-2, Bcl-w, Bcl-xl, and Mcl-1) and the pro-apoptotic
proteins. The latter group comprises the effectors (Bax and Bak),
the activators (BID, BIM, and PUMA), and the sensitizers (BAD
and NOXA) (Figure 1A). Structural analyses showed that the
anti-apoptotic proteins share four regions of sequence homology
dubbed Bcl-2 homology domains (BH1-4). The domains BH1-3
form a hydrophobic binding pocket into which the effectors can
bind via their BH3 domain. The activator and sensitizer proteins
hold only the BH3 domain and are therefore called BH3-only
proteins (Czabotar et al., 2014).

In non-apoptotic cells, the effectors are inhibited by binding
of the anti-apoptotic proteins. Upon induction of apoptosis, the
BH3 only proteins are transcriptionally or post-translationally
activated and bind via their BH3 domain to the binding pocket
of the anti-apoptotic proteins to free the effectors. Taking
different models into consideration, the activators are believed to
directly activate Bax and Bak and to inhibit the anti-apoptotic
proteins. The sensitizers, which cannot directly interact with
the effectors, can also neutralize the anti-apoptotic proteins.
Displacing Bax and Bak from the anti-apoptotic proteins leads to
their homo-oligomerization and a formation of pores in the outer
mitochondrial membrane. This event is termed mitochondrial
outer membrane permeabilization (MOMP) and marks the point
of no return in apoptosis. MOMP is followed by cytochrome
c release from the mitochondria and activation of initiator
caspase-9 and downstream effector caspases (Youle and Strasser,
2008).

APOPTOSIS RESISTANCE IN PROSTATE
CANCER

Resistance against apoptosis is a significant hallmark of
cancer and contributes to tumor formation, survival, and
therapeutic resistance (Cory et al., 2003; Hanahan and Weinberg,
2011). The acquired resistance of advanced PC to current
treatment protocols (ADT, radiation, and chemotherapy) has
been associated with apoptosis resistance of PC cells, especially
based on an upregulation of the anti-apoptotic Bcl-2 family
members (Gjertsen et al., 1998; Stein, 1999; Lebedeva et al.,
2000; DiPaola et al., 2001). This has been proven by the
fact that the treatment of hormone-naïve PC with ADT
plus docetaxel, which primarily affects Bcl-2 expression by
phosphorylation (Pienta, 2001; Boudny and Nakano, 2002),
led to a survival benefit of about 13–15 months compared
to the ADT monotherapy (Sweeney et al., 2015; Wolf,
2017).

In an immunohistological study, Bcl-2 was detected
in 25% of human prostate adenocarcinomas and shown
to be more present in high grade tumors (Gleason
grade 8–10; 41%) and nodal metastases (38%) compared
to lower grade primary tumors (Gleason 2–7; 16%;
P < 0.05) (Krajewska et al., 1996). Bcl-2 expression was
also associated with lower biochemical-free survival in

patients with advanced PC undergoing ADT (Anvari et al.,
2012).

Bcl-xl was detected in all tumors tested and more intense
immunostaining was observed in the high grade primary tumors
and in metastases compared to prostatic intraepithelial neoplasia
(PIN) and low grade neoplasms (P < 0.0001). Moreover, it was
more abundant in samples of patients with CRPC (Krajewska
et al., 1996; Castilla et al., 2006).

Mcl-1 was expressed in 81% of the tumors, compared
with only 38% cases of PIN (P < 0.001). A higher
percentage of Mcl-1 positive cells was observed in
high grade tumors and metastases than in lower grade
tumors (P = 0.025) (Krajewska et al., 1996). Studies
with different PC cell lines verified that, compared to
Bcl-2, Bcl-xl and Mcl-1 protected the cells from different
chemotherapeutic agents (Lebedeva et al., 2000; Reiner et al.,
2015).

Interestingly, the pro-apoptotic effectors Bax and Bak were
shown to be present in 95–100% and 77.5%, respectively, of
all PCs tissues evaluated regardless of tumor grade (Krajewska
et al., 1996; Yoshino et al., 2006; Anvari et al., 2012). Moreover,
mutations of the Bak and Bax genes are rare events in PC
(Yoshino et al., 2006).

BH3 MIMETICS FOR THE TREATMENT
OF PROSTATE CANCER

Pan-BH3 Mimetics
Due to their overexpression and their significant role
in the induction of apoptosis, anti-apoptotic Bcl-2
proteins can act as suitable targets in cancer cells for
the restoration of apoptosis. Bcl-2 family inhibition
encompasses two main strategies: (i) knockdown and (ii)
the use of synthetic low-molecular agents mimicking the
BH3 only proteins. The latter are called BH3 mimetics
or Bcl-2 inhibitors and can directly bind and thus inhibit
the anti-apoptotic proteins (Scarfo and Ghia, 2013)
(Figure 1B).

In preclinical and clinical studies against PC the natural
BH3 mimetics (−)-Gossypol [R-(−)-enantiomer of gossypol, AT-
101], BI-97C1 (Sabutoclax), and GX15-070 (Obatoclax) were
used. They act as pan-Bcl-2 inhibitors targeting the four major
anti-apoptotic Bcl-2 proteins Bcl-2, Bcl-xl, Mcl-1, and Bcl-w
(Wolter et al., 2006; Lessene et al., 2008; Wei et al., 2010; Joudeh
and Claxton, 2012) (Table 1). (−)-Gossypol alone inhibited
cell growth and induced the intrinsic apoptosis of PC cells
with 50% inhibitory concentration values (IC50) in the low µM
range (Volate et al., 2010). Mechanistically, a blocking of the
interactions of Bcl-xl with Bax or BAD and enhanced PUMA
and NOXA levels were detected. Moreover, it synergistically
increased the antitumor activity of docetaxel (Meng et al.,
2008; Volate et al., 2010). The multikinase inhibitor Sorafenib
synergistically suppressed the growth of PC cells in combination
with (−)-gossypol by Mcl-1 inhibition and Bak activation (Lian
et al., 2012). The use of valproic acid, a histone deacetylate
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FIGURE 1 | Schematic representation of the interactions between different members of the Bcl-2 protein family and BH3 mimetics. (A) The effector proteins of the
Bcl-2 family, Bax and Bak, are inhibited by the anti-apoptotic proteins Bcl-2, Bcl-w, Bcl-xl, and Mcl-1. Upon induction of apoptosis, the sensitizers BAD and NOXA
inhibit the anti-apoptotic proteins. The activators BID, BIM, and PUMA can also block the anti-apoptotic proteins and can interact directly with Bax and Bak. Free
effectors can then induce MOMP and apoptosis. (B) The BH3 mimetics are surrogate proteins to the activator and sensitizer BH3-only proteins. They can be divided
into pan-BH3 mimetics [GX15-070, (–)-gossypol, BI-97CI] antagonizing all members of the anti-apoptotic proteins, and specific BH3 mimetics (ABT-263/737),
binding to Bcl-2, Bcl-xl, and Bcl-w, but not Mcl-1. Abbreviations: BAD, Bcl-2 antagonist of cell death; Bak, Bcl-2 antagonist/killer; Bax, Bcl-2 associated X protein;
Bcl-2, B-cell lymphoma 2; Bcl-w, Bcl-2 like 2; Bcl-xl, B-cell lymphoma extra-large; BID, BH3 interacting domain death agonist; BIM, Bcl-2 interacting mediator of cell
death; Mcl-1, myeloid cell leukemia sequence; MOMP, mitochondrial outer membrane permeabilization; NOXA, phorbol-12-myristate-13-acetate-induced protein 1;
PUMA, p53 upregulated modulator of apoptosis. BH3 mimetics: ABT-263, Navitoclax; BI-97-CI, Sabutoclax; GX15-070, Obatoclax.

inhibitor (HDACI), also heightened the cytotoxicity of (−)-
gossypol. Mechanistically, valproic acid enhanced the induction
of mitochondrial stress, as shown by upregulation of glycolysis-
and hypoxia-associated proteins (Ouyang et al., 2011). (−)-
Gossypol also acted as a radiosensitizer in a study of Xu
et al. (2005). The pan-BH3 mimetic enhanced the radiation-
induced apoptosis of PC-3 cells, which were established from
a PC bone metastasis, show androgen-independent growth and
express high levels of Bcl-2 and Bcl-xl (Kaighn et al., 1979).
Combination therapy led to tumor regression in a PC-3 mouse
xenograft model, and anti-CD31 immunostaining evidenced
that the combination therapy also inhibited tumor angiogenesis
(Xu et al., 2005). Synergistic effects by the pan-BH3 mimetic
Obatoclax with androgen receptor (AR) inactivation by the
antiandrogen bicalutamide was observed in a study of Santer et al.
(2015). The combination of BI-97CI (Sabutoclax) with an IL-10
family cytokine, called melanoma differentiation associated gene-
7/interleukin-24 (mda-7/Il-24), was marked by autophagy that
facilitated NOXA and Bim-induced Bax/Bak mediated apoptosis.

This resulted in an enhanced cytotoxicity in PC cells and
significant in vivo inhibition of tumor growth (Dash et al.,
2011).

AT-101 was also tested in clinical trials against PC; however,
the goals of the studies were not reached. AT-101 as single
agent had only limited activity in 23 patients with chemotherapy
naïve CRPC. Two patients of a phase I/II study had a
confirmed ≥ post-therapeutic prostate-specific antigen decline.
No objective responses were observed. Gastrointestinal toxicity
was the main adverse side effect and was dose-limiting (Liu
et al., 2009). In a phase II trial, AT-101 was combined with
docetaxel/prednisone treatment in 221 patients with hormone-
naïve, progressive CRPC. The median overall survival of patients
treated with AT-101 was 18.1 months and not significantly
different from patients treated with docetaxel/prednisone alone
(17.8 months; HR 1.07; 95% CI 0.72–1.55, p = 0.63) (Sonpavde
et al., 2012).

It is discussed that the low antitumor activity of the pan-BH3
mimetics and their dose-limiting adverse side effects in clinical
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trials might be based on their moderate affinity and low specificity
for the anti-apoptotic Bcl-2 proteins (Vogler et al., 2009). For
example, gossypol compounds were shown to induce apoptosis
in BAX/BAK-deficient cells and elicited several off-target effects.
It is therefore suggested that they might have more functions than
only to act as pan-BH3 mimetics (Billard, 2013). The main focus
is therefore actually on the use of specific BH3 mimetics.

Specific BH3 Mimetics
Specific BH3 mimetics, which were tested in PC cells to
date, are ABT-737 and its orally administrable analog ABT-
263 (Navitoclax). They are BAD-like BH3 mimetics, which
were rationally designed by structure-based drug design
for binding the hydrophobic groove of Bcl-xl (Oltersdorf
et al., 2005). Like BAD, ABT-263/737 selectively bind with
subnanomolar affinities to Bcl-2, Bcl-xl, and Bcl-w, but not
to Mcl-1 (Figure 1B) (Zhai et al., 2006). This means that
ABT-263/737 are highly specific and cancer cells with high
overexpression of endogenous Bcl-2 or Bcl-xl are particularly
vulnerable.

An overview of preclinical studies with ABT-263/737 against
PC is given in Table 1. Since the survival of prostate tumor cells is
mainly dependent on Bcl-xl and Mcl-1, the rationale was given to
combine the BH3 mimetics with agents that additionally degrade
or neutralize Mcl-1 for the induction of apoptosis.

Some authors used the combination of ABT-263/ABT-737
with different chemotherapeutic agents to enhance efficacy
and to overcome resistance. Wang and colleagues proved an
enhanced Bcl-xl level as the reason for paclitaxel resistance
in PC cells (Wang et al., 2015). Combination with ABT-263,
which inhibited Bcl-xl, triggered the paclitaxel induced apoptosis.
Different sensitivities to the BH3 mimetic were detected in

LNCaP and PC-3 cells, although both lines showed similar
expression of the Bcl-2 family proteins. The authors therefore
speculated that downstream elements, like unidentified proteins
affecting MOMP, could be responsible for this observation
(Wang et al., 2015). Docetaxel was found to increase cyclin
B1/Cdk1-mediated phosphorylation of Bcl-2 and Bcl-xl and
to decrease Mcl-1. This, however, was not enough alone to
counteract the high levels of the anti-apoptotic proteins in
PC-3 cells. Therefore, docetaxel was combined with ABT-
263/737, which led to an enhanced induction of apoptosis
(Parrondo et al., 2013; Tamaki et al., 2014). Bray and colleagues
developed a PC mouse model with tumorigenesis and apoptosis
resistance based on overexpression of Bcl-2. They could
show that taxane-mediated Bim induction was insufficient to
exceed the apoptotic threshold conferred by Bcl-2 and used
ABT-737 for chemosensitization of the tumors (Bray et al.,
2009).

ABT-263 was also combined with the proteasome
inhibitor MLN2238. Proteasome inhibitors are able to
modulate pro-apoptotic factors, like p53 and NOXA,
for the induction of apoptosis. Whereas ABT-263 and
MLN2238 alone only showed a mild cytotoxicity in the
highly metastatic and androgen-independent PC cell lines
PC-3 and C4-2B, their combination led to synergistic effects.
Molecular examinations showed that MLN2238 enhanced
the NOXA levels, leading to an enhanced NOXA/Mcl-1
formation and dissociation of Bax from Mcl-1 (Wei et al.,
2014).

A synthetic cell penetrating peptide, called CP-d/n-AFT5-S1,
was used to inhibit the transcription factor 5 (ATF5) (Karpel-
Massler et al., 2016). ATF5 belongs to the cAMP response-
element binding protein (CREB) family and regulates the

TABLE 1 | Preclinical studies of BH3 mimetics in combination with different agents against PC cells eliciting additive or synergistic cytotoxicity.

BH3 mimetic Target Combination with Reference

Pan-BH3 mimetics

(−)-Gossypol Bcl-2, Bcl-xl, Bcl-w, Mcl-1 Docetaxel Meng et al., 2008

(−)-Gossypol Bcl-2, Bcl-xl, Bcl-w, Mcl-1 Sorafenib Lian et al., 2012

(−)-Gossypol Bcl-2, Bcl-xl, Bcl-w, Mcl-1 Valproic acid Ouyang et al., 2011

(−)-Gossypol Bcl-2, Bcl-xl, Bcl-w, Mcl-1 Radiation Xu et al., 2005

GX15-070 Bcl-2, Bcl-xl, Bcl-w, Mcl-1 Bicalutamide Santer et al., 2015

BI-97CI Bcl-2, Bcl-xl, Bcl-w, Mcl-1 mda-7/IL-24 Dash et al., 2011

Specific BH3 mimetics

ABT-263 Bcl-2, Bcl-xl, Bcl-w Paclitaxel Wang et al., 2015

ABT-737 Bcl-2, Bcl-xl, Bcl-w Docetaxel Parrondo et al., 2013

ABT-263/737 Bcl-2, Bcl-xl, Bcl-w Docetaxel Tamaki et al., 2014

ABT-737 Bcl-2, Bcl-xl, Bcl-w Cisplatin Bray et al., 2009

ABT-263 Bcl-2, Bcl-xl, Bcl-w MLN2238 Wei et al., 2014

ABT-263 Bcl-2, Bcl-xl, Bcl-w CP-d/n-ATF5-S1 Karpel-Massler et al., 2016

ABT-263/737 Bcl-2, Bcl-xl, Bcl-w 2DG Yamaguchi et al., 2011

ABT-737 Bcl-2, Bcl-xl, Bcl-w Pim kinase inhibitor Song and Kraft, 2012

ABT-737 Bcl-2, Bcl-xl, Bcl-w Pseudolaric acid B (PAB) Tong et al., 2013

ABT-737 Bcl-2, Bcl-xl, Bcl-w Transcriptional inhibitor ARC Pandit and Gartel, 2010

ABT-737 Bcl-2, Bcl-xl, Bcl-w MSeA Yin et al., 2012

ABT-737 Bcl-2, Bcl-xl, Bcl-w TRAIL Song et al., 2008
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transcription of Bcl-2 and Mcl-1 (Chen et al., 2012; Izumi
et al., 2012). It is upregulated in many cancers and promotes
apoptosis resistance (Monaco et al., 2007). CP-d/n-AFT5-S1 led
to diminished levels of Bcl-2 and Mcl-1 in cancer cells of different
origin, including PC, and acted synergistically with ABT-263. In a
mouse model the combination therapy significantly reduced the
growth of PC-3 tumor xenografts. Mechanistically, a decreased
expression of the Mcl-1 interacting proteins Bag3 and Usp9X
was observed after incubation with the inhibitor, which was
followed by Mcl-1 depletion. Interestingly, CP-d/n-AFT5-S1 also
increased the Bcl-xl expression in some cell lines. The authors
therefore discussed the possibility that the Bcl-xl overexpression
could render cancer cells more sensitive to ABT-263 (Karpel-
Massler et al., 2016).

In a further study, 2-deoxyglucose (2DG) was successfully
combined with ABT-263/737 and inhibited the growth of mouse
prostate tumor xenografts. It was found that 2DG primed the
cells by interference with Mcl-1/Bak complexes, making it easier
for the BH3 mimetics to free Bak from Bcl-2 (Yamaguchi et al.,
2011).

Pim serine/threonine kinases promote the tumorigenesis of
PC cells and contribute to the therapeutic resistance. Pim kinase
inhibitors acted synergistically with ABT-737 in vitro and in vivo.
The study proved that the Pim kinase inhibitors decreased
the Mcl-1 levels by blocking 5′-cap dependent translation and
reduction of the protein half-life. Moreover, they led to an
enhanced transcription of NOXA, which blocked the remaining
levels of Mcl-1 (Song and Kraft, 2012).

Pseudolaric acid B (PAB) is a plant-derived terpenoid,
which shows antitumorous or chemopreventive activity in many
types of cancer. PAB induced cell cycle arrest as well as a
downregulation of Bcl-2 and Mcl-1 via the JNK-mediated cell
death pathway, which is known to activate pro-apoptotic and to
inactivate anti-apoptotic Bcl-2 family proteins. As a result PAB
acted synergistically with ABT-737 in PC cells (Tong et al., 2013).

The transcriptional inhibitor ARC (4-amino-6-
hydrazino-7-β-D-ribofuranosyl-7H-pyrrolo(2,3-d)-pyrimidine-
5-carboxamide) is an inhibitor of the P-TEFb kinase
(CDK9/CyclinT1 complex). It was demonstrated that ARC
effectively downregulated the Mcl-1 expression of PC cells and
showed synergistic effects with ABT-737 (Pandit and Gartel,
2010).

The selenium compound methylseleninic acid (MSeA)
has been reported to downregulate prostate-specific antigen
expression via disruption of AR signaling (Dong et al., 2004;
Zhao et al., 2004). MSeA led to a decreased Mcl-1 expression
in DU145 cells and acted therefore synergistically with ABT-737.
Remarkably, synergism was due to a dephosphorylation of BAD
by MSeA, since phosphorylation of BAD at ser-136 and ser-112
was identified as an ABT-737 resistance mechanism (Yin et al.,
2012).

Song and colleagues demonstrated that ABT-737 can directly
influence the extrinsic apoptotic pathway (Song et al., 2008).
Combination of the tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) with ABT-737 led to a synergistic
cytotoxicity in PC cells. Interestingly, ABT-737 treatment was
shown to enhance the expression of the TRAIL receptor DR5 via

a transcriptional mechanism dependent on the NF-kappaB site of
the DR5 promotor (Song et al., 2008).

Testing of ABT-737 in clinical trials against PC is ongoing.
Recently, a phase II study of ABT-263 in combination
with abiraterone or abiraterone/hydroxychloroquine
in patients with CRPC following chemotherapy and
abiraterone treatment has been terminated (Identifier:
NCT01828476)1 . Study results have not been published
yet.

CONCLUSIONS AND OUTLOOKS

BH3 mimetics seem to be particularly suitable for the
combination treatment of PC for several reasons. First, different
preclinical studies have proven that BH3 mimetics are sensitizers
for apoptosis in PC cells, which represent advanced stages
of the disease and which are known to be resistant against
apoptosis. Second, the intrinsic apoptotic pathway is involved
in cell death caused by most of the chemotherapeutic drugs,
toxins, antiandrogens, and irradiation, and BH3 mimetics are
able to lower the threshold for its activation. Third, BH3 mimetics
directly abrogate the interaction between pro- and anti-apoptotic
Bcl-2 proteins, with a direct activation of the effectors Bax and
Bak. This might be more promising than the use of antitumor
drugs that act upstream. Fourth, Bax and Bak are expressed in
nearly all PC cells in a non-mutated form and can therefore
successfully be activated for the induction of apoptosis.

It is important to ensure the comprehensive blocking of all
of the anti-apoptotic members of the Bcl-2 family for highest
efficacy. This is in principle possible by using pan Bcl-2 inhibitors.
However, these molecules have a lower affinity to the target
proteins than the specific Bcl-2 inhibitors, and high off-target side
effects led to a lack of efficacy and to dose-limiting toxicities in
clinical trials.

Specific BH3 mimetics like ABT-737 have the advantage to
bind with higher affinity; however, might not be sufficient to
induce apoptosis. Moreover, upregulation of non-targeted Bcl-
2 members could lead to resistance (Konopleva et al., 2006;
Yecies et al., 2010). Specific Mcl-1 inhibitors (Small molecule
Mcl-1 inhibitor, MIM-1, TW-37, A1210477, biphenyl-NOXA
BH3 peptide) are therefore currently under investigation to be
combined (Besbes et al., 2015).

Since BH3 mimetics developed so far are non-targeted
molecules, off-target adverse side effects could endanger the
success of clinical trials. The best way should therefore be to
combine BH3 mimetics with tumor-specific agents to selectively
attack the cancer cells. One such agent can be an immunotoxin
consisting of an antibody fragment specifically binding to a tumor
surface antigen and of the cytotoxic domain of Pseudomonas
aeruginosa exotoxin A (PEA). PEA-based immunotoxins inhibit
the protein biosynthesis of antigen-expressing cancer cells and
especially downregulate Mcl-1 (Michalska and Wolf, 2015). Such
immunotoxins, targeting mesothelin on pancreatic cancer cells
or the transferrin receptor on small cell lung cancer cells, were

1ClinicalTrials.gov
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successfully combined with ABT-263/737 and induced death
in cells that were shown to be resistant against the individual
components (Mattoo and FitzGerald, 2013; Hollevoet et al.,
2014). Table 1 demonstrates that only unspecific agents were
added to the BH3 mimetics in the studies against PC. The
combination of specific BH3 mimetics with targeted molecules,
leading to an induction of apoptosis specifically in cancer cells,
could therefore provide a successful route for an improved
therapy of PC in future.
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