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Myeloid-derived suppressor cells (MDSCs) are cells of myeloid lineage with a potent

immunosuppressive capacity. They are present in cancer patients as well as in patients

with severe inflammatory conditions and infections. MDSCs exist as two main subtypes,

the granulocytic (G-MDSCs) and the monocytic (Mo-MDSCs) type, as defined by their

surface phenotype and functions. While the functions of MDSCs have been investigated

in depth, the origin of human MDSCs is less characterized and even controversial. In

this review, we recapitulate theories on how MDSCs are generated in mice, and whether

this knowledge is translatable into human MDSC biology, as well as on problems of

defining MDSCs by their immature cell surface phenotype in relation to the plasticity of

myeloid cells. Finally, the challenge of pharmacological targeting of MDSCs in the future

is envisioned.

Keywords:myeloid-derived suppressor cell, cancer, infection, development, differentiation,maturation, activation,

tolerance

A BRIEF HISTORY OF MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

Already in 1929, cancer was found to be associated with an aberrant myelopoiesis (1). In the late
1960–80s, experiments revealed leukocytosis, granulocytosis, and extramedullary myelopoiesis in
tumor-bearing mice (2–5). This aberrant emergencymyelopoiesis was driven by tumor cell-derived
colony stimulating factors GM-CSF, G-CSF and M-CSF (5–10), that also promoted cancer cell
growth (8). During the same time period, the “left shift” test was established as a clinical test in
patients with severe bacterial infections. “Left shift” is defined as an increased ratio of immature
myelocytes, metamyelocytes and band neutrophils (i.e., shifted to the left of the differentiation
model) in blood smears from patients (11–14). A similar “left shift” is also proposed in patients with
sterile inflammation and cancer, although not necessarily associated with as severe leukocytosis
(15, 16). The leukocytosis in sepsis patients is a normal feedback regulation to replace consumed
neutrophils, and is likely caused by similar factors that cause the aberrant myelopoiesis in cancer,
including colony stimulating factors, other growth factors and secondary host responses such as
damage associated molecular patterns (DAMPs) (16). The first studies showing that the increased
systemic immature myeloid cells in tumor-bearing mice where immunosuppressive (“natural
suppressor cells”), came in the late 1970s (3, 17–19) but not until 1996 this was first shown in
humans (20). Over the following years, the definition of subpopulations and mechanisms of action
were heavily investigated (21) and the consensus terminology myeloid-derived suppressor cells
(MDSCs) was established in 2007 (22). Today, MDSCs are divided into two main subtypes; the
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granulocytic-MDSCs [G-MDSCs or polymorphonuclear
(PMN)-MDSCs] and monocytic-MDSCs (Mo-MDSCs). A third
subpopulation has also been proposed, the early-stage MDSC
(eMDSC) that lacks both CD14 and CD15 expression, which
will not be covered in this review (23). All subpopulations
above are excellently reviewed from different angels in previous
publications (15, 16, 21).

DEFINING MYELOID-DERIVED
SUPPRESSOR CELLS (MDSCs) IN MICE
AND MEN

The current definition of MDSCs is that that they should be
of myeloid origin and enriched in mice/patients with cancer
or severe disease, display an immature surface phenotype and
with the key defining trait being their potent immunosuppressive
capacity (23–26). Using these criteria, they are further divided
into Mo-MDSCs and G-MDSCs (26–28). In this review we
will use the nomenclature G-MDSC, and not PMN-MDSCs,
since this latter population consists of cells with heterogenous
morphology and not only polymorphonuclear cells (29, 30).
In mice Mo-MDSCs are defined by the surface phenotype
CD11b+Ly6G−Ly6Chi and G-MDSCs by CD11b+Ly6G+Ly6Clo

(31). In humans Mo-MDSCs are CD14+HLA-DR−/lo and
G-MDSCs CD11b+CD15+CD14−CD33+/loCD66b+ cells with
a low density [low density granulocytes (LDGs)] (23, 32, 33),
and are hence present in the peripheral blood mononuclear
(PBMC) fraction of gradient centrifugations. Many markers are
still appearing in efforts to further define the human MDSC
subsets (34), one being S100A9 (35, 36).

Using these criteria, MDSCs have been studied successfully
in mice for many years, and in humans for slightly more than
a decade with varying results. In mice, CD11b+Ly6G−Ly6Chi

Mo-MDSCs and CD11b+Ly6G+Ly6Clo G-MDSCs with
immunosuppressive capacity can be enriched and studied

FIGURE 1 | The generation, distribution, and plasticity of human MDSCs subtypes; monocytic-MDSCs (Mo-MDSC) and granulocytic-MDSCs (G-MDSCs) are

pictured. Differentiation of myeloid cells in healthy individuals (solid arrows) and potential origin of MDSCs during disease (dashed arrows) are indicated.

from peripheral blood, secondary lymphoid organs
and tumors, with quite consistent results. In humans,
using the Mo-MDSC CD14+HLADR−/lo and G-MDSC
CD11b+CD15+CD14−CD33+/loCD66b+ cell markers for
identification has turned out to be complex. There are multiple
reasons for this, some being; (i) Immaturity vs. Plasticity; the
problem of defining heterogeneous cell populations using cell
surface markers, (ii) Subpopulations vs. Technical issues; the
problem of comparing human blood and tissue MDSCs along
with the problem of investigating human MDSCs by other
means than flow cytometry of PBMCs as source, (iii) In vitro vs.
In vivo; as recently suggested, functional studies on human cells
are for natural reasons more often performed ex vivo, but all
in vitro generated humanMDSCs should by all means be defined
as “MDSC-like” cells (23). Therefore, questions still remain
concerning subsets, origin, and function of human MDSCs.
If the debate concerning the true identity of human MDSCs,
and subsets thereof, would be of only philosophical character,
one could still adhere to the most important notion that they
are myeloid cells with an immunosuppressive capacity, and
an immature surface phenotype. However, when the question
concerns how to be able to target them in cancer patients,
the issue of defining human MDSC subsets identity and their
origin, is still in need of improvement. Below we will discuss
the generation and identity of the different human MDSC
subsets and put them in context with their sites of distribution
(Figure 1).

HUMAN PERIPHERAL BLOOD G-MDSCs

G-MDSCs are a heterogeneous population of cells of the
granulocytic lineage. In mice, the surface marker definition
is CD11b+Ly6G+Ly6Clo, while in human the definition
is CD11b+CD15+CD14−CD33+/loCD66b+ cells with a low
density (LDGs) (23, 30). As for all MDSCs, the most critical trait
is their immunosuppressive activity. For G-MDSCs, suppression
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of immune responses is conveyed in an antigen-specific manner,
and mediated by secreted factors such as reactive oxygen species
(ROS) and G-CSF, and enzymatic mediators like Arginase
I (ARG1), although the Arginase function is reported with
varying results in humans partly due to inconsistencies in
measuring protein levels as compared to enzymatic activity
(23, 37, 38). The functional aspects of G-MDSCs, have been
excellently reviewed elsewhere and will therefore not be covered
in detail here (30, 39). The generation of human G-MDSCs
is still debated, mainly since the morphology of human G-
MDSCs present a heterogeneous population of cells ranging
from immature neutrophils to mature polymorphonuclear
(PMN) neutrophils (Figure 2) (29, 32, 38, 40, 41). The
“left shift” (11–14), or emergency myelopoiesis exporting
immature myeloid granulocytes, may be considered when
investigating the morphology and generation of isolated human
peripheral blood G-MDSCs (Figure 2). According to previous
literature, PMN shaped G-MDSCs (Box 1) can be discriminated
from steady-state neutrophils based on a PMN morphology
with fewer granules (23). However, in humans, the markers
CD11b+CD15+CD14−CD33+/loCD66b+ enrich for neutrophils
at all maturation stages; from myelocytes to mature neutrophils
(Figure 2, Table 1), including cells with fewer granules thus

making this distinction difficult (23, 30, 45). Some markers that
have been identified to distinguish immature neutrophils from
the PMN shaped G-MDSCs are CD10, CD13, CD16, and CD38
which all represent different stages of neutrophil maturation
(Table 1), thus supporting that the PMN shaped G-MDSCs are
more mature (46–52). However, as discussed below, there are
also studies suggesting that immunosuppressive G-MDSCs with
an immature surface phenotype and morphology, could derive
from de-differentiated or reprogrammedmature neutrophils into
immunosuppressive G-MDSCs (29, 53, 54). The traditional view
that immunosuppressive bona fide G-MDSC are immature cells,
is being challenged by current literature indicating that mature
cells may also be immunosuppressive. The immature neutrophils
(the non-PMN G-MDSCs in Figure 2, Table 1, Box 1), make up
∼5–15% of all LDGs in the peripheral blood of cancer patients,
probably varying with cancer type and stage (55). Whether
the immature neutrophils are more immunosuppressive than
the PMN shaped G-MDSCs, thus representing the bona fide
G-MDSCs, is currently debated (30, 38, 55). There is also a
possibility that the immature neutrophils, or subsets thereof,
may be mature cells of some other lineage, exemplified by
fibrocytes (56). Immature neutrophils are proposed to have a
longer half-life and therefore also to survive longer in tissues

FIGURE 2 | Similarities between neutrophil maturation stages and human G-MDSCs. The various differentiation stages of neutrophils are depicted, both for healthy

subjects and for patients with severe diseases as represented by the “Left shift.” Human G-MDSCs subpopulations are represented in most neutrophil maturation

stages, ranging from promyelocyte to mature neutrophil (PMN, polymorphonuclear cells).
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BOX 1 | Explanation to nomenclatures used in this review.

Immature neutrophil G-MDSCs:G-MDSCs that are derived from immature

neutrophils or G-MDSCs that represent immature neutrophils with non-PMN

shaped nuclei and with immunosuppressive activity.

PMN shaped G-MDSCs: G-MDSCs that are derived from mature or

activated neutrophils or G-MDSCs that represent mature or activated

neutrophils with PMN shaped nuclei and with immunosuppressive activity.

and tumors, as mentioned below (57). The difference between
immature neutrophils and the more mature PMN shaped G-
MDSCs regarding function is not clear, but ARG1/iNOS may
be mediators preferably used by the immature neutrophil G-
MDSCs, as compared to their PMN shaped counterpart (30, 52).
Lately, lectin-type oxidized LDL receptor 1 (LOX1) has been
suggested as a marker that may identify human G-MDSCs at the
functional level (47, 52, 58).

Presently, there is no firm evidence that human PMN shaped
G-MDSCs are anything else than activated neutrophils. Mature
activated neutrophils may also acquire a low density and thus
be isolated in the LDG/PBMC fraction of human peripheral
blood (59). Activated neutrophils can be immunosuppressive by
inhibiting T cell proliferation via ROS. Neutrophil extracellular
traps (NETs) should, however, inevitably induce neutrophil
cell death, although with a slight delay (60). Nevertheless,
since G-MDSCs theoretically should live longer than activated
neutrophils, a unique PMN shaped G-MDSC population has
been proposed (23, 61). There are contradicting findings
available from gene expression profiles of isolated cancer patient
derived G-MDSCs, concerning whether G-MDSCs are activated
neutrophils or unique G-MDSC cell populations, a fact that
mirrors the complexity of investigating this heterogeneous
population of cells in different indications. Indeed, the isolation
procedure and choice of neutrophil source, as well as the inter-
and intra-patient variation in numbers of immature neutrophils
as compared to PMN shaped G-MDSCs, will unequivocally lead
to unique profiles for each study (47, 62). Newly introduced
methods like multiparameter, multidimensional imaging, single
cell RNA Sequencing and mass cytometry by time of flight
(CyTOF), will hopefully lead to a better understanding of
the heterogeneity of G-MDSCs and their unique subtypes.
Indeed, using multidimensional imaging, LOX1+ G-MDSCs
were recently found to co-express the neutrophil activation
marker MPO (58, 63).

The distinctive function of PMN shaped G-MDSCs
should be debated. Even though PMN shaped G-MDSCs are
immunosuppressive, they could still be classified as conventional
activated neutrophils, or as neutrophils with an alternative
activation. Indeed, a high Neutrophil to Lymphocyte Ratio
(NLR) in cancer patients, is associated with worse prognosis
(64). Deciphering the immunosuppressive mechanisms of action
of PMN shaped G-MDSCs will undoubtedly be relevant for
understanding their origin and nature (47, 52, 58). Of relevance,
LDGs with similar surface phenotype as G-MDSCs are isolated
from patients with autoimmune disorders, with the important
difference that these cells are pro-inflammatory (41). As for all

MDSCs, only cells with a potent immunosuppressive capacity
may be defined as MDSCs.

The immature neutrophils, produced as a response to tumor-
induced stress and secreted colony stimulating factors GM-CSF,
G-CSF, and M-CSF (5–10), could represent unique immature G-
MDSC subpopulations. Their mechanisms of action, and also
their capacity to differentiate into PMN shaped G-MDSCs, or
neutrophils, will be important to delineate. An interesting and
important issue for the future, is whether treating cancer patients
with G-CSF for neutropenia, could affect the patients negatively
in terms of G-MDSC enrichment, or not (65).

HUMAN G-MDSCs IN TUMORS

In mice, tumor infiltrating G-MDSCs are classically defined
by the Ly6G marker. In humans, an equivalent marker has
not yet been defined, since many candidate markers (e.g.,
CD15 or CD66b) are expressed on immature as well as
mature neutrophils (Table 1). Indeed, immature and mature
neutrophils are found both in the circulation of cancer patients
(66, 67), and in human tumors (58, 68, 69), probably at
varying density depending on tumor type and stage (58,
66–69). Of relevance, observations concerning migration and
accumulation of immature and mature neutrophils in tumors
have been made, where immature neutrophils have a reduced
migratory capacity, but may still be able to accumulate
at metastatic sites (40, 70, 71). Immature neutrophils have
also been shown to survive longer in tumors (57). The
immature and mature neutrophils in tumors may have different
biology, as described above, and will thus affect disease
severity differently (30). To define them as G-MDSCs, their
immunosuppressive function is of outmost importance. The
fact that a diversity of neutrophils is found in tumors have
promoted researchers to define them as classical (N1) and
alternative (N2) neutrophils (30, 53, 72). This has, however,
only been experimentally shown in mice, and will still have
to be determined in human tumors (41). Whether tumor
infiltrating neutrophils derive from the immature neutrophil G-
MDSCs as proposed in mice (66), or if they are reprogrammed
or alternatively TGFβ activated N2 neutrophils (53, 73) will
be interesting to follow. Until then, tumor infiltrating G-
MDSCs may theoretically be grouped as immunosuppressive
neutrophils (23). Novel methods as single cell RNA Seq,
multiparameter immunofluorescence and mass cytometry by
time of flight (CyTOF) will be valuable tools to decipher
different subpopulations of tumor associated neutrophils (TANs)
and G-MDSCs. Recently, using multidimensional imaging,
LOX1+ tumor infiltrating G-MDSCs were reported to co-express
the neutrophil activation marker MPO, and associate with
immunosuppression and a worse prognosis (58, 63). For the
future, TANs and G-MDSC may thus be targeted with similar,
or vastly different therapeutic approaches.

HUMAN PERIPHERAL BLOOD MO-MDSCs

Mo-MDSCs are cells of the myeloid monocyte lineage, but
with an HLA-DR−/lo and co-receptor CD86−/lo cell surface
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TABLE 1 | Selected surface phenotypes during neutrophil differentiation, with expression levels of indicated markers in specific neutrophil subsets indicated (30, 42–44).

GMP Myeloblast Promyelocyte Myelocyte Metamyelocyte Band cell Neutrophil Activated

neutrophil

CD33 +++ +++ +++ ++ + + + +

CD34 + ++ – – – – – –

CD10 – – – – – –/+ ++ +

CD11b – – –/+ +/++ ++ ++ ++ ++

CD13 ++ +++ +++ + +/++ ++ +++ +++

CD14 – – – – – – – –/+

CD15 – + +++ +++ +++ +++ +++ +++

CD16 – – – – +/+++ ++ +++ ++/+++

CD24 – – – ++ ++ ++ ++ +++

CD31 –/+ – – – – – –/+ +

CD38 ++ ++ – – – – – –

CD62L ++ ++ ++ ++ ++ ++ ++ +

CD64 ++ + + ++ ++ – – –/+

CD66b – – +++ +++ ++ ++ ++ ++

TABLE 2 | Surface phenotypes during monocyte differentiation, with expression

levels of indicated markers in specific subpopulations indicated (77, 78).

GMP Monoblast Promonocyte Monocyte

CD33 +++ +++ +++ +++

CD34 +/++ + – –

CD36 – – ++ +++

CD11b – – ++ +++

CD13 ++ ++ +/++ ++/+++

CD14 – – +/++ +++

CD15 – – ++ –/+

CD16 – – – –/+

CD64 ++ – ++ +++

HLA-DR ++ ++ +++ ++/+++

phenotype. They are potently immunosuppressive by soluble
mediators like PGE2, IL10, TGFβ, and nitric oxide (NO), and
enzymatic mediators like ARG1. As for all MDSCs, it is their
immunosuppressive function that is key to defining them as Mo-
MDSCs, and their functional mechanisms have been described
in depth elsewhere (23, 39, 74–76). During leukocytosis, the
emergencymyelopoiesis is proposed to export immature myeloid
cells into the circulation. This holds true for G-MDSCs, as
discussed above, but not necessarily for Mo-MDSCs. The
morphology of immature monocytic cells (monoblasts and
promonocytes) are quite similar to the mature monocytes (77,
78). Also, the surface phenotype of immaturemonocytic cells (the
CD11b+ promonocytes that could be accounted for being Mo-
MDSCs), is very similar to mature monocytes (77, 78), including
the HLA-DR+ phenotype, which is in contrast to Mo-MDSCs
(Table 2). This makes it difficult to postulate that human Mo-
MDSCs are immature cells.

Mature monocytes come in different versions, with the most
typical human monocytes being the classical (CD14++CD16−),

non-classical (CD14loCD16+), intermediate (CD14+CD16+)
and as recently proposed the immunosuppressive Mo-MDSCs
(CD14+HLA-DR−/lo) (79, 80). To date, proof showing that
human Mo-MDSCs would be immature, or linked to an
increased export of a specific subtype of immunosuppressive
monocytes as proposed (79) is, however, still lacking. In contrast,
current literature indicate thatmonocytes are plastic cells that can
change surface phenotype and function depending on activation
state and the local microenvironment (75, 79). Mo-MDSCs are
enriched not only in patients with cancer, but also in patients
with severe infections and inflammatory conditions (16). Mo-
MDSCs have been proposed to be generated either through
affected myelopoiesis, at the stage of activation, or both (61).
Independent of which, STAT3 and NFκB inducing signals are
required for their generation, and hence also for their key
defining immunosuppressive function. STAT3 can be induced
through soluble mediators like colony stimulating factors, IL10,
IL6, or PGE2; and NFκB through pathogen recognition receptor
(PRR) signaling triggered by pathogen associated molecular
patterns (PAMPs) or sterile damage associated molecular
patterns (DAMPs) (34, 61).

One example of disease-associated activation of monocytes,
leading to cells with identical surface phenotype and
immunosuppressive function as Mo-MDSCs, are the endotoxin
tolerance reprogrammed monocytes present in the peripheral
blood of sepsis patients (34, 81–85). Endotoxin tolerance is
caused by pathogen and host response signals, with PAMPs as
pathogen-induced TLR2/4-NFκB-signals and STAT3-inducing
mediators like IL10, TGFβ, or PGE2 as host response signals
(81, 86) (Figure 3). The combination of signal transduction lead
to activation of alternative transcription factor NFκB complexes,
consisting of homodimers of p50/p50 or heterodimers of
p52/RelB, instead of the conventional p50/p65 heterodimers
(34, 81–85). This leads to, transcriptional activation of IL10
(IL10 ON) and simultaneous inhibition of tumor necrosis
factor alpha (TNFα) (TNF OFF) (Figure 3). When this
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FIGURE 3 | Reprogramming of systemic monocytes into anti-inflammatory monocytes. Human Mo-MDSCs have the same surface phenotype and function as

anti-inflammatory monocytes that are reprogrammed by anti-inflammatory mediators (e.g., IL10, PGE2, TGFβ), pro-inflammatory pattern recognition receptor (PRR)

ligands (e.g., PAMPs and DAMPs), or by endogenous anti-inflammatory PRR-ligands; tolerance associated molecular pattern (TAMPs), as previously suggested (87).

This leads to transcriptional activation of IL10 (IL10 ON), inhibition of TNFα (TNF OFF), and acquisition of a CD14+HLA-DR−/loCo-receptor−/lo Mo-MDSC phenotype.

happens, the mature peripheral blood monocytes acquire a
CD14+HLA-DR−/loCo-receptor−/lo immunosuppressive and
IL10 producing phenotype, suiting the Mo-MDSC criteria
(81). Similar mechanisms also occur in a sterile environment,
such as in a tumor or systemically in cancer patients, but with
DAMPs rather than PAMPs as TLR-ligands (84, 85, 87–90).
Downstream mediators of DAMP signaling, like PGE2, IL10,
and NGF are already known to induce immunosuppressive
myeloid cells (86, 87, 91, 92). One alternative explanation is the
potential presence of unique anti-inflammatory endogenous
PRR-ligands exclusively inducing transcriptional activation
of IL10 ON/TNF OFF (87, 93, 94). To differentiate between
pro-inflammatory endogenous alarmins (DAMPs), we proposed
to use the term tolerance-associated molecular patterns
(TAMPs) for endogenous anti-inflammatory TLR-ligands
(87). We have recently found a novel TLR4-ligand (Wnt5a)
that is induced upon TLR4-signaling, and that functions
as a TAMP activating the IL10 ON/TNF OFF signal in
primary human monocytes, resulting in Mo-MDSC-like
cells by surface phenotype and function in vitro, a finding
that was evolutionarily conserved in Drosophila (95), but
not mice (87). In this context, a homeostatic feedback loop
downstream of TLR2/4, would be able to regulate the acute
pro-inflammatory response, as observed in sepsis. Other
endogenous TLR-ligands have previously been observed to
promote MDSC generation or to inhibit pro-inflammatory
TLR signaling, like HMGB1 and S100B (89, 93, 94, 96).
Interestingly, the MDSC marker S100A9 is a DAMP, binding to
TLR4 (97).

Whether the plastic differentiation of mature monocytes
into immunosuppressive monocytes is reversible or not, is
not fully known. In patients with sepsis, the reprogrammed
monocytes stay in their immunosuppressive state for up to 10
weeks with secondary infections and death as result, indicating
that they may not be able to revert to a pro-inflammatory
state again (16, 98). Opposite findings have, however, been
presented for macrophages, where anti-inflammatory M2
macrophages where more plastic and differentiated into
M1 macrophages upon stimulation with pro-inflammatory
mediators (99, 100). It is undoubtfully so that the levels of
peripheral blood Mo-MDSCs in cancer patients are associated
with disease severity (76). Whether this is linked to an
increased export of a certain subtype of immunosuppressive
monocytes (79), or to reprogramming of circulating monocytes,
is not clear and both may hold true. The latter (reversing
reprogramming) may be more difficult to approach in a
therapeutic setting.

HUMAN MO-MDSCs IN TUMORS

When monocytes enter tissues, they are by definition
differentiated into macrophages or monocyte-derived myeloid
dendritic cells (mDCs). In an anti-inflammatory tumor
microenvironment, this differentiation process is usually skewed
into alternatively activated immunosuppressive macrophages
of various kind, often exemplified by the simplistic M2
nomenclature, but also into mDCs (75, 101–103). Whether
human myeloid cells like Mo-MDSCs also differentiate into
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FIGURE 4 | Difficulties when defining human Mo-MDSCs in tumors. Different issues ranging from plasticity of myeloid cells, technical problems concerning

investigating multiparameter cell surface phenotypes in myeloid cells isolated from tissues, and definition of subpopulation markers; exemplified by the

pan-macrophage marker CD68 which is variably expressed in different macrophage subpopulations (indicated here by a previously unpublished

immunohistochemistry image representing staining of human resident lymph node macrophages with varying CD68 levels; using anti-CD68 clone KP1, diluted

1:1000, Dako, Glostrup, Denmark).

macrophages in tumors is not fully known, although Mo-
MDSCs have been shown to do so in mice (104). In humans,
the hurdle lies with the difficulties to discriminate between
the various human myeloid cell subsets with reliable results
in tissues, and to be able to define their immunosuppressive
function in vivo. In human tumors, various differentiation
stages likely exist ranging from monocytes, Mo-MDSCs to
tumor associated macrophages (TAMs), where markers are
shared with those of Mo-MDSCs (74–76, 105). Also, isolation
of myeloid populations from single cell suspensions of human
tumors often generate subsets with less clear cell surface
phenotypes as compared to myeloid cells from PBMCs. If the
definition of Mo-MDSCs involves the CD14+HLA-DR−/lo

surface phenotype, it may thus be difficult to identify them
in human tumors. If the definition of MDSCs within tumors
are amended to describe them as immunosuppressive myeloid
cells, tumor-associated MDSCs may be reconsidered and
would include immunosuppressive macrophages as well. Still,
the potential functional difference between tumor infiltrating
Mo-MDSCs and alternatively activated macrophages is not
elucidated in humans.

In mice, markers for Gr1 (Ly6C and Ly6G) are used
to define MDSCs in tumors, and F4/80 to discriminate

them from macrophages. Human Mo-MDSCs are still
defined by a CD14+HLA-DR−/lo surface phenotype. The
immunosuppressive activity of Mo-MDSCs, which is critical
for their definition, is for natural reasons more difficult, yet
not less important, to assess in human tumors (74–76, 105).
Furthermore, the dull CD14+HLA-DR−/lo surface phenotype
is often difficult to detect with accuracy using flow cytometry,
resulting in a mixture of myeloid cells from tumor single
cell suspensions. Since Mo-MDSCs by definition should
have an immature myeloid cell phenotype, the macrophage
maturation markers F4/80 in mice and CD68 in humans,
should not be expressed (23). However, CD68 is expressed at
various levels in macrophages, even when using established
clinical pathology diagnostic markers (Figure 4), and it may
therefore be difficult to discriminate Mo-MDSCs from TAMs
by the use of conventional immunohistochemistry at present.
Similar issues become clear when discussing the M2 TAM
marker CD163. CD163 is expressed on a range of human
anti-inflammatory myeloid cells producing IL10 (106–109)
and is also upregulated by IL10, glucocorticoids and M-CSF
(110). To complicate things, some tumor infiltrating CD163+

cells express low to negligible levels of the pan-macrophage
marker CD68 (107, 111). Similarly, CD163 may be expressed on
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a subset of circulating anti-inflammatory CD14+HLA-DR−/lo

monocytes, Mo-MDSCs (112). It may therefore be of relevance
to discuss whether CD163 can be expressed on tumor infiltrating
Mo-MDSCs, or if all IL10 producing anti-inflammatory
myeloid cells in tumors are M2 TAMs because of the CD163
expression. Recently, it was shown that primary human
monocytes co-transplanted with xenografts upregulated both
CD163 and nuclear S100A9 (113). Nuclear S100A9 has lately
appeared as a human Mo-MDSC marker (36, 114). However,
also the expression of S100A9, CD68, and CD163 in human
myeloid cells seems to vary (115). Novel immunofluorescent
multiparameter assays are being developed and a combination
of markers like CD14, CD68, CD163, CD206, and S100A9
(108) is probably the best strategy to define Mo-MDSCs in
human tumors, but their indispensable immunosuppressive
function would need to be determined by other means. Single
cell RNA Seq is a promising tool to provide us with more
information on the functions of Mo-MDSCs in human tumors
and tissues.

CONCLUSIONS

An imbalance in myelopoiesis reflects the biology of MDSCs

well (Figure 5). All severe inflammatory conditions, including

infection and cancer, affect MDSC generation. The challenge

in terms of cancer is the strong interdependence between

MDSCs and cancer cells. Cancer cells secrete factors that
induce aberrant myelopoiesis (G-MDSC), as well as affect

the myeloid cells already in circulation (Mo-MDSCs). The

affected myeloid cells evolve in congruence with the tumor

and metastasizing cells, and a constant feed-back loop is

generated. In many cancer patients, myeloid cells are also

unintentionally targeted during chemotherapy. To overcome

this, patients are given G-CSF to boost myelopoiesis, leading
to more MDSCs (65). An important challenge for our future
knowledge on MDSCs is the translation from mouse to human
MDSCs, where the essential immunosuppressive mediators
like ARG1 and IL10 show an extreme polymorphism in
humans but not mice (37, 116). Currently, drugs targeting

FIGURE 5 | Concluding graphical summary featuring different hypotheses concerning the generation of human MDSCs (Mo-MDSCs and G-MDSCs), in relation to

maturation and activation. Mo-MDSCs are predominantly generated from peripheral blood monocytes (solid arrows), and conceivably also through export of immature

immunosuppressive monocytes although not yet proven in humans (dashed arrow). In contrast, G-MDSCs likely originate from aberrant myelopoiesis (immature

neutrophil G-MDSCs) and alternative activation of mature neutrophils (mature neutrophil (PMN shaped) G-MDSCs, solid arrows). Whether also reprogramming or

de-differentiation of mature neutrophils occur among G-MDSCs (dashed arrow) is yet to be determined in humans.
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all myeloid cells are being developed (75). It is important to
stress that pro-inflammatory myeloid cells like lymph node
resident macrophages and monocyte derived tumoricidal
macrophages (M1 macrophages) and dendritic cells, are also
needed for successful anti-tumor immune responses. Therefore,
specific targeting of MDSC generating signals (e.g., STAT3),
or the immunosuppressive MDSC specific functions (e.g.,
ARG1), should also be considered. With implementation of
novel imaging and single cell analyses techniques, the origin
of human MDSCs will undoubtfully be investigated in the
near future. This will hopefully lead to answers on how to
target human MDSCs as a therapeutic intervention in cancer
patients. Such an intervention of the innate immunosuppressive
arm, combined with the established check-point inhibition
therapies targeting the adaptive immune response, could

potentially offer a very potent therapeutic approach
against cancer.
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