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Abstract

Background: Current methods for gene-set or pathway analysis are usually designed to test the enrichment of a
single gene-set. Once the analysis is carried out for each of the sets under study, a list of significant sets can be
obtained. However, if one wishes to further prioritize the importance or strength of association of these sets, no
such quantitative measure is available. Using the magnitude of p-value to rank the pathways may not be appropriate
because p-value is not a measure for strength of significance. In addition, when testing each pathway, these analyses
are often implicitly affected by the number of differentially expressed genes included in the set and/or affected by the
dependence among genes.

Results: Here we propose a two-stage procedure to prioritize the pathways/gene-sets. In the first stage we develop a
pathway-level measure with three properties. First, it contains all genes (differentially expressed or not) in the same set,
and summarizes the collective effect of all genes per sample. Second, this pathway score accounts for the correlation
between genes by synchronizing their correlation directions. Third, the score includes a rank transformation
to enhance the variation among samples as well as to avoid the influence of extreme heterogeneity among genes. In
the second stage, all scores are included simultaneously in a Bayesian logistic regression model which can evaluate the
strength of association for each set and rank the sets based on posterior probabilities. Simulations from Gaussian
distributions and human microarray data, and a breast cancer study with RNA-Seq are considered for demonstration
and comparison with other existing methods.

Conclusions: The proposed summary pathway score provides for each sample an overall evaluation of gene
expression in a gene-set. It demonstrates the advantages of including all genes in the set and the synchronization of
correlation direction. The simultaneous utilization of all pathway-level scores in a Bayesian model not only offers a
probabilistic evaluation and ranking of the pathway association but also presents good accuracy in identifying
the top-ranking pathways. The resulting recommendation list of ranked pathways can be a reference for
potential target therapy or for future allocation of research resources.

Keywords: Association study, Bayesian logistic regression, Competing pathways, Differentially expressed genes,
Gene-set analysis, Pathway ranking, Pahtway score

Background
To evaluate the enrichment of a pathway or gene-set
under consideration, several methods for pathway ana-
lysis (PA) or gene-set analysis (GSA) have been proposed
over the past decades, including the over-representation
analysis (ORA), significance analysis of function and
expression [1], gene-set enrichment analysis (GSEA) [2],

global test [3], and signaling pathway impact analysis
(SPIA) [4, 5] (more reviews in [6–8]). The existence of
the enrichment of the pathway or gene-set, often a gene
ontology term, is sometimes interpreted as the associ-
ation between the phenotype and the set. A significantly
enriched pathway or gene-set would then be recom-
mended for further investigation of subset analysis or
target therapy. When several significant pathways are
available, these sets may need to be prioritized for future
research or for better allocation of limited resources.
Two problems arise, however. The first one is that the
gene-sets identified by different procedures may not be
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consistent with each other [6, 9], and the second is the
lack of a measure to quantify the strength of association
of each set.
The problem in reproducibility can be caused by the

discrepancy between the statistical assumptions under-
lying the approaches and the biological reality of the
gene-gene relationship. For instance, genes in the same
pathway are often considered independent in several
GSAs; while they can correlate with each other because
they participate in the same or related biological func-
tions [10–12]. This correlation can inflate type I error
rates and reduce power of both univariate and multivari-
ate tests [8, 13, 14]. Another issue of concern is the con-
dition on genes to be included in GSAs. Some analyses
including ORA utilize only genes that are differentially
expressed (DE), while excluding those exerting mild or
weak effect. For instance, ORA uses hypergeometric test
for GSA. As pointed out by Rahmatallah and colleagues
[9], the power of a gene-set analysis may be influenced
by the number of DE genes in that set.
To quantify the strength of association, a common

practice is to order the sets based on p-values resulting
from a certain GSA that is applied to each individual set.
Since p-value is defined for data more extreme than the
observed assuming the null hypothesis is true, its magni-
tude would not be proper to serve as a quantitative
measure for the strength of association [15]; therefore
the ranking based on p-values would be inappropriate.
To solve these problems, we propose first to

summarize the gene expression levels, whether DE or
not, in the same pathway with a rank transformation ad-
justed by direction of correlation. The rank is applied on
all samples per gene to depict the relative magnitude of
a gene across samples, and the sign of correlation is used
to incorporate and synchronize the gene-gene relation-
ship. This procedure is conducted for all gene nodes in
the pathway, including those in sub-pathways. We next
adopt the Bayesian regression machine to model the de-
gree of association between the pathway and disease sta-
tus, where the prioritization of competing pathways is
carried out based on conditional probabilities. The use
of Bayesian model for GSA was considered earlier in
[16] for DNA methylation profiling. The rest of the
paper is organized as follows. The formulation of the
proposed pathway score and the construction of the
Bayesian model will be introduced in Section “Methods”.
In Section “Results and discussion” we demonstrate the
performance of the procedure with simulation studies.
The simulated gene expressions are generated either
from multivariate Gaussian distributions or from public
human expression data to reserve the dependence
among genes. The evaluation of performance is based
on the type I error rate, percentage of correctly ranking
the gene-sets, and the ability to detect the associated

pathways. In the same Section we also apply the pro-
posed methodology on a study of high-grade ductal car-
cinoma in situ with RNA-Seq data and six competing
pathways, followed by discussion and conclusion. Note
that here we consider a pathway also a gene-set and will
interchange the words pathway and gene-set to refer to a
set of genes under investigation.

Methods
Suppose there are N samples and M genes or gene nodes
in the study. Let Gnm denote the expression value of the
n-th sample in the m-th gene, where n = 1, …, N and m
= 1, …, M, and let the N ×M matrix G contain all ex-
pression values, where its column vector is denoted as
G·m = (G1m,G2m,…,GNm)

t for the expression of all sam-
ples in the m-th gene. The rank function is next applied
on each gene (column) vector respectively. That is, each
column vector in G is replaced with the vector r(G·m)
= (r(G1m), r(G2m),…, r(GNm))

t.
Next we establish the relationship between genes by

first selecting a reference gene, denoting its gene vector
as G·R, computing the correlation between this gene and
every other column G·m, m = 1, …, M, in G, and record-
ing the direction of the correlation between G·R and G·m

with the sign function S(G·R,G·m). That is, the value of
S(G·R,G·m) = sign (corr(G·R,G·m)) is 1 if they are posi-
tively correlated and -1 otherwise. The choice of a fixed
reference gene in this procedure is to adjust all correl-
ation directions from the same base unit, i.e., the refer-
ence gene in our case, and to avoid cancellation when
no base is considered.

Pathway score
Suppose there are K competing pathways, let Ck contain
the indices of genes (or gene symbols) in the k-th path-
way, k = 1, …, K. If a gene appears in more than one
node in the pathway, the frequency of its index is identi-
cal to the number of its appearance. Let its cardinality
|Ck| denote the number of elements in Ck. That is, |Ck|
is the size of the k-th pathway. In this pathway, a refer-
ence gene is first selected and then a standardized
pathway score pnk is defined to summarize the expres-
sion values for the n-th sample as

pnk ¼
Qnk−

XN

n¼1

Qnk=N

sd Q1k ;…;QNkð Þ
Qnk ¼

1
j Ck j

X

m∈Ck

r Gnmð Þ � S G�R;G�mð Þ

Note that Qnk is the average ranks of the expression
levels with signs for the n-th sample and pnk is the stan-
dardized score so that the (pn1, pn2, …, pnK) are compar-
able among the K competing pathways. The standard
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deviation sd(Q1k,…,QNk) in the denominator is calcu-
lated across samples n = 1, …, N for each fixed k. After
all pathway scores are computed for each sample, the
values are stored in the N × K matrix P.
This proposed pathway score has several advantages.

First, the pathway score summarizes for each sample the
gene expression through the rank transformation so that
the quantity is robust to extreme expression values, as
oppose to the direct average. This transformation also
standardizes the variability across genes as well as
enlarges the heterogeneity. In addition, the product of
the function S and ranked expression r(Gnm) in the score
integrates all genes by adjusting the direction of correl-
ation between any single gene and the reference. In
other words, depending on the direction of the reference
gene, the quantity becomes extreme when many genes
in the pathway are simultaneously over-expressed or
under-expressed. This function S can be considered as a
synchronizing factor.

Strength of association and prioritization
To evaluate the strength of association of the K path-
ways, a generalized linear model with a logit link g in the
case-control setting is employed,

g Y nð Þ ¼ β0 þ
XK

k¼1

βkpnk þ αXn:

The Yn stands for the disease status of the n-th sam-
ple, pnk is the standardized pathway score defined above
with the corresponding coefficient βk, and Xn contains
other non-genetic explanatory variables associated with
this sample.
For the regression coefficient βk, we adopt the max-

imum posterior probability P(k) = max {P(βk > 0| Y,X, P),
P(βk < 0| Y,X, P)} as a probabilistic evaluation of the
strength of association between the k-th pathway and
the disease status. Here Y is the column vector contain-
ing disease status of all samples, X contains X1, X2, …,
XN, and P is defined as above. The value P(k) ranges
between 0.5 and 1. It represents the degree of associ-
ation: A value closer to 1 implies a stronger association
between the set and the disease status; while a value
closer to 0.5 indicates weak or no association. Take two
competing pathways k1 and k2 for example, if Pðk1Þ is lar-
ger than Pðk2Þ , it implies a larger degree of association
between k1 and the disease status than that between k2
and Y. This quantity can now be used to prioritize the K
competing pathways.
The computation of P(k) as well as the Markov chain

Monte Carlo (MCMC) posterior samples of βk are car-
ried out with an R package R2OpenBUGS to evaluate
the posterior probability P(βk > 0| Y, X, P) and P(βk < 0|
Y, X, P). The code and specification of the full Bayesian

model including the distributions of prior and
hyper-parameters are provided in Additional files 1 and 2.

Results and discussion
Simulation settings
In the following simulation studies, we compare the
Bayesian approach with other methods such as GSEA,
ORA, global test, frequentist logistic regression with the
proposed pathway score (denoted as Logistic (ps)), fre-
quentist logistic regression with the average expression
level as the pathway score (Logistic (sum)), and the
Fisher’s method. First we generated either 50 or 100
gene expression levels from a multivariate normal distri-
bution with assigned mean, variance, and correlation ρ
to examine the type I error. The disease status was next
determined based on the logistic regression model
described above with the intercept β0 set at 0.01 for a
prevalence of 1% and all other regression coefficients set
at 0 for no association, or at other given values if associ-
ation is assumed (described below when data were gen-
erated from human genome data for power evaluation).
In each replication, 50 cases and 50 controls were gener-
ated and the total number of replications is 1000. The
value of ρ was selected from 0, 0.1, and 0.3 to mimic the
independence, weak, and mild correlation among genes
in the same set. The p-values for the non-Bayesian
methods were computed based on asymptotics (if applic-
able) or 1000 permutations and their significance level
was set at 0.05; while for the Bayesian approach, the
threshold was set at 0.99 for P(k) based on 5000 posterior
samples. The gene is defined as DE if its single-marker
test results in p < 0.05.
In addition, we simulated real gene expression data

from a large breast cancer study [17] to preserve the
relationship among genes. This study contained 13,751
gene expressions from 623 subjects with primary breast
cancer. The expression levels were collected from micro-
array experiments and can be downloaded from Gene
Expression Omnibus (GEO) repository (accession num-
ber GSE48091). Again, either 50 or 100 genes were ran-
domly selected from this expression data to form a
gene-set and to determine the disease status, followed by
the analysis with each method to test for association.

Evaluation of type I error rate
Table 1 lists the type I error rates for each method but
SPIA, because SPIA is designed for known pathways and
not hypothetical ones. Under the null hypothesis of no
pathway association, we note first that the type I error
rate does not change much across different values of ρ,
regardless of the pathway size (50 or 100 genes per set).
Second, most tests show reasonable rates: the rates of
Logistic (ps), Logistic (sum), GSEA and Fisher’s test are
slightly smaller than 0.05, the rates under the Global test
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are around 0.03 with 50 genes per set and 0.05 with 100
genes, the rates under the Bayesian approach are around
0.02, but that under ORA tends to be as large as 0.1.
However, when the data were generated from
GSE48091, an inflated type I error rate is apparent for
each method, though of different degree. Only the
Bayesian regression approach can maintain a rate
smaller than 0.05.

Evaluation of accuracy performance in setting I-V
Next we evaluate the power in terms of the accuracy in
selecting the most influential pathway. In other words,
the analysis is considered making the correct decision if
the p-value corresponding to the truly most influential
pathway is the smallest; while in the Bayesian approach,
the P(k) has to be the largest. Again we simulated real
gene expression data from GSE48091 to preserve the
correlation among genes. Furthermore, to compare with
SPIA, we deliberately selected p53, Jak-STAT, mTOR,
and taste transduction pathways, denoted by C1, C2, C3,
and C4, as the four competing pathways. The contents
of these pathways and their sub-pathways all follow the
definition in the R package SPIA. A pathway with a
regression coefficient β=1 or 2 is considered exerting
strong association, since it corresponds to the odds
ratios of log(1) = 2.718 and log(2) = 7.389. Similarly,
β=0.5, 0.1, 0.01, and 0.001 correspond to 1.649, 1.105,
1.010, and 1.001, and are considered as of moderate,
weak, and almost-none association effect. Five simula-
tion settings (I-V) are included and the values of β are
displayed in Fig. 1.
Figure 2a demonstrates the accuracy of the 1000 repli-

cations in selecting the most influential pathway. For
instance, in setting I, the accuracy is defined as the per-
centage of selecting set C1 as the top pathway, since C1

corresponds to the largest absolute regression coefficient
2 in Fig. 1. That is, in each replication, if the p-value for
C1 is smaller than p-values for C2 −C4, respectively, it is
counted as accurate for the method. For Bayesian ap-
proach, this replication is considered accurate if P(1) > P(k)

for all k = 2, 3, 4. While in setting II, the accuracy is the
percentage that C2 is selected, since its absolute coefficient
2 is the largest. Among the five settings, generally the
Bayesian approach and Logistic (ps) perform the best,
except in setting II they are slightly behind the Fisher’s
method by only 0.3%. The advantage of the Bayesian
approach and Logistic (ps) decreases in setting V; the ac-
curacy of every method is between 20 and 30%. This is
under expectation, since all four competing pathways
exert weak and similar effects (coefficients between
0.1 and 0.001), making them less differentiable from
each other.
The larger accuracy of the Bayesian approach and

Logistic (ps) demonstrates the usefulness of the sum-
mary measure, the pathway score. In addition, the com-
parison between Logistic (ps) and Logistic (sum) implies
the advantage of incorporating the correlation direction
and rank information, which leads to a better perform-
ance. Note that here GSEA, SPIA, and Fisher’s method
remain in the second best group in identifying the
top-ranking pathway. Fisher’s method uses the
Chi-square as the asymptotic distribution where signifi-
cance occurs frequently when the pathway size is large
and leads to a large degree of freedom. This may explain
why it tends to reach the significant result. The ORA
does not perform well because it considers only DE

Table 1 Type I error rates under different settings when the gene-gene correlation ranges from 0 (independence) to mild
correlation (ρ=0.3), and when data were generated from GSE48091 to preserve the correlation in real application

50 genes per set 100 genes per set

ρ=0 ρ=0.1 ρ=0.3 GSE48091 ρ=0 ρ=0.1 ρ=0.3 GSE48091

Bayesian 0.023 0.022 0.022 0.035 0.024 0.022 0.022 0.025

Logistic (ps) 0.043 0.045 0.046 0.066 0.041 0.040 0.041 0.060

Logistic (sum) 0.040 0.040 0.040 0.160 0.036 0.036 0036 0.041

GSEA 0.047 0.047 0.048 0.069 0.039 0.046 0.045 0.042

Global 0.031 0.030 0.033 0.131 0.047 0.046 0.050 0.159

ORA 0.096 0.094 0.091 0.069 0.057 0.058 0.060 0.085

Fisher’s 0.048 0.048 0.052 0.163 0.049 0.049 0.049 0.201

The size of each set is either 50 or 100. The p-values under Global and Fisher’s are derived based on 1000 permutations

Fig. 1 Values of the pathway coefficients in the five simulation
settings (I, II, III, IV, and V). The set size is the number of genes in the
corresponding set, where the number in parentheses corresponds
to genes in the pathway as well as genes in the subsets of
the pathway
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genes and no correlation among genes is included in the
analysis.
In Fig. 2b we demonstrate the percentage of correctly

selecting the top two ranking pathways. The accuracy
evaluation decreases for all methods. Again, the Bayesian
approach and Logistic (ps) perform better than the other
methods. It appears that these two have the ability to
make the correct selection as long as the coefficients are
large and separable, such as the first four settings I-IV.

Evaluation of accuracy performance under single-marker
association (setting VI-IX)
In addition to the above pathway-level generation of as-
sociation, we also consider the scenario of traditional
single-marker association, where the gene, instead of the
pathway score, is assigned with an effect to associate
with the disease. In other words, the disease probability
for the i-th subject is linked (via a logit scale) to the lin-

ear combination
X

j∈Ck

βkjGij , where Ck contains the index

of genes in the associated pathway, βkj is the effect size
of the j-th gene in this set, and Gij is the gene expression
of the corresponding gene in this subject. In this sce-
nario, non-zero effect can be assigned to a subset of
genes in this set. A randomly selected M percent of
genes in C1 are assigned with n1β1j = 0.5, M percent of

genes in C2 are assigned with n2β1j = 1; while the rest
100 −M percent in C1 and C2, and all genes in C3 and
C4 are assigned with nkβkj = 0.01. nk is the number of
causal genes. The four values, 20, 50, 80, and 100, of M
correspond to the four settings VI, VII, VIII, and IX,
respectively.
The performance of accuracy based on 100 replica-

tions is displayed in Fig. 2c for selecting the correct top
ranking pathway. All methods perform similarly well,
where the global test is slightly less powerful (but still
around 0.80). In Fig. 2d for selecting the correct top two
ranking pathways, all methods perform poorly; the lar-
gest power is around 0.50 for GSEA. In other words, no
method presents clear advantage.

Evaluation of power performance for individual pathway
An alternative way to evaluate the performance of these
competing methods is to examine their ability to cor-
rectly identify each of the associated pathway/gene-set.
Using the threshold suggested earlier (i.e., the 0.05 for
p-value and 0.99 for the maximum posterior probability
P(k)), we display in Fig. 3 the percentage of detected as-
sociation for each pathway. Only settings I and VI are
presented here because all show similar patterns. We
therefore select I from the first group of simulation
design (settings I-V) and VI from the second group
(VI-IX).

Fig. 2 Performance evaluation. a The accuracy of selecting the correct top ranking pathway under simulation settings I-V. b The accuracy of
selecting the correct top two ranking pathways under simulation settings I-V. c The accuracy of selecting the correct top ranking pathway under
simulation settings VI-IX. d The accuracy of selecting the correct top two ranking pathways under simulation settings VI-IX. P-values of Global test
and Fisher’s method are derived based on asymptotic approximations
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When the pathway exerts strong association (C1,C2 in
I and C2 in VI), four methods (Bayesian, Logistic (ps),
Global, and Fisher’s) attain consistently a large power.
When the pathway effect is moderate or weak (C3 in I
and C1 in VI), only Global test and Fisher’s method can
detect the association. However, these two methods
incorrectly identify, with a high frequency, the pathway
with null (almost-none) effects (C4 in I and C3,C4 in VI).
In summary, the Bayesian and Logistic (ps) perform
similarly well, but the Bayesian approach has a slightly
smaller error (C4 in I and C3,C4 in VI).

Application: High-grade DCIS study
We applied the proposed method to a breast cancer
study of pure high-grade ductal carcinoma in situ
(DCIS). This study included 25 breast cancer patients and
10 normal controls [18], and applied the next-generation
sequencing (NGS) technique to quantify the gene expres-
sion. The RNA-Seq data are freely available from National
Center for Biotechnology Information (NCBI) GEO data-
base (accession number GSE69240). The data contained
read counts from 16,532 genes. Six competing pathways
(p53, estrogen, Jak-STAT, mTOR, oocyte meiosis, and
taste transduction) were selected specifically for pathway

ranking. The first five pathways have been reported to be
associated with breast cancer [19]; while the last one was
not and is considered here as the null for compari-
son. The contents of these pathways follow the defin-
ition in Kyoto Encyclopedia of Genes and Genomes
(KEGG).
To demonstrate the effect of rank transformation,

we display in Fig. 4 the heatmap of gene counts for
the Jak-STAT signaling pathway, where Fig. 4a con-
tains the original RNA-Seq data and Fig. 4b includes
the ranks of gene counts. The pattern of the relative
magnitude does not change, but the contrast in Fig.
4b is much stronger than that in Fig. 4a. In the lower
panel, Fig. 4c plots the summation of all gene counts
in this pathway for each sample and Fig. 4d shows
the value of the proposed pathway score. It can be
observed that the 35 summation values in the left
tend to overlap with each other; while the pathway
scores in the right seem to discriminate better the 10
controls versus the 25 patients.
The six pathways were then investigated under the

Bayesian approach, Logistic (ps), Logistic (sum), GSEA,
SPIA, ORA, global test, and Fisher’s method, respect-
ively. Table 2 lists either the P(k) under the Bayesian

Fig. 3 Performance evaluation. The number is the percentage of detected association of each individual gene-set under simulation settings I and
VI. P-values of Global test and Fisher’s method are derived based on asymptotic approximations
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Fig. 4 a The heatmap of expression counts of genes in the Jak-STAT signaling pathway. b The corresponding ranks of expression counts in the
same pathway. c The summation of expression counts for each sample. d The proposed pathway score for each sample

Table 2 P-values or P(k) of each pathway under different methods

p53 estrogen Jak-STAT mTOR oocyte meiosis taste transduction

Size 68 (290) 99 (838) 158 (1039) 60 (433) 124 (499) 83 (247)

Bayesian 0.717 0.736 0.895 0.722 0.611 0.554

Logistic (sum) 0.386 0.447 0.009 0.006 0.038 0.006

GSEA 0.264 0.134 0.306 0.571 <1e-4 0.228

SPIA 0.195 0.396 0.266 0.956 0.222 0.983

Global <1e-21 <1e-17 <1e-22 <1e-23 <1e-16 <1e-15

ORA 0.036 0.101 0.275 0.469 0.086 0.083

Fisher’s <1e-214 0 <1e-311 <1e-314 0 <1e-67

Numbers underlined and in boldface indicate the most influential pathway (top-ranked) under each test; while numbers in boldface represent the least influential
pathway. The second row lists the number of genes in each pathway, where the number in parentheses includes the genes in sub-pathway. The p-values under
Global and Fisher’s are asymptotic approximates
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model, or the p-values under other tests. Note that the
DE genes here are defined if they pass the single-marker
test with Bonferroni correction and the fold-change not
between 0.5 and 2. Under each method, the largest and
smallest values are in boldface, corresponding to the
most influential (top-ranked) and the least influential
pathway.
For the Bayesian ranking scheme with all six pathways

simultaneously included in the same model, Jak-STAT is
the most influential because its P(k) is clearly the largest
and around 90%; while the taste transduction is identi-
fied the last one with P(k) close to 50%. For the other
tests, the results are contradictory. They can identify one
from the first five sets as the most influential, but they
may select one from this group as the least important.
They are not consistent in identifying the taste transduc-
tion pathway as the least important gene-set. GSEA,
SPIA and ORA identify mTOR as the least influential
pathway; whereas Logistic (sum) recommends mTOR
and taste transduction being the most influential. Fur-
thermore, both the global test and Fisher’s method can-
not differentiate the six pathways, since the p-values are
extremely small that it is not meaningful to compare the
relative magnitude. The Logistic (ps) cannot be con-
ducted here because the proposed pathway score separ-
ate the two groups (healthy vs. disease) almost perfectly,
leading to failure in estimating the effect size. For Logis-
tic (sum), the six pathway-specific covariates based on
summation of all expression levels cannot be included in
the logistic regression model simultaneously due to the
small sample size (relative to the number of pathways),
therefore the p-values in the Table are derived when only
one covariate is considered in the analysis.
The distributions of pathway effect, the regression co-

efficient, are displayed in Fig. 5 with boxplots of their
MCMC posterior samples. The top ranking pathway (the
largest P(k)) is Jak-STAT; its pathway score is positively
associated with a higher chance of disease risk. This is
expected because our proposed score synchronizes di-
rections of all expression counts according to the refer-
ence gene, thus follows the same effect direction of the
reference. Here IL17D is the reference and it does show
more expression counts in patients than in controls.
This reference is a member of the interleukin 17 family
(IL-17) that has been reported to significantly link to
tumor progression including the invasive ductal carcin-
oma, the most common type of breast cancer [20–22].
In other words, a larger value of this summary pathway
score implies a higher risk of disease.
The second group of boxplots in Fig. 5 includes three

pathways, p53, estrogen, and mTOR, sharing similar
values of P(k) (between 0.72 and 0.74). The degree of as-
sociation of these three pathways is less significant than
that of Jak-STAT, but certainly more substantial than

Oocyte meiosis and taste transduction. The least P(k) is
0.554 for taste transduction, representing a symmetric
distribution around zero, which is expected under our
hypothesis of no association.

Conclusions
In this research, we have constructed a measure to
summarize the gene-set activity for each subject. This
quantity takes into consideration all genes in the
same set, accounts for the relationship among genes
in terms of correlation direction, and can enhance the
contrast of each gene across samples. This measure is
then applied in a Bayesian model to evaluate the strength
of association between this gene-set and the phenotype of
interest, where the posterior probability can represent the
degree of association. If multiple gene-sets are of interest,
the corresponding probabilities can be ordered to
prioritize the gene-sets for future studies. In contrast,
other methods consider only one set at a time and use
p-values for ranking.
There are other advantages in using the Bayesian

regression model. The first is its interpretability. The
exponent of the regression coefficient is the odds ra-
tio: an odds ratio greater than 1 implies an increase
in risk, while a value smaller than 1 implies a de-
crease. In addition, since the pathway score synchro-
nizes all genes with the reference, the direction of
change in pathway risk (i.e., the sign of the regression
coefficient) is the same as that of the reference gene.
The second advantage is its flexibility. This model can
account for quantitative traits when the function g is re-
placed with the identity link, and can be extended to sur-
vival analysis and pedigree studies. Furthermore, other

Fig. 5 Boxplots of posterior samples of each pathway coefficient
under the Bayesian model
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covariates like demographic and environmental variables
can be included to account for other effects.
For the choice of the reference gene in the gene-set,

our criteria include (1) the hub gene, with many neigh-
boring genes being either its up- or down-regulating en-
tities; (2) the one acting as an upstream gene in the set,
particularly in a signaling pathway; and (3) the gene with
a large variation in expression level. For the breast can-
cer NGS study, we deliberately selected TP53, ADCY1,
IL17D, TNF, CALML5, and TAS1R3 as the reference for
p53, Estrogen, Jak-STAT, mTOR, oocyte meiosis, and
taste transduction pathways, respectively. Following the
criteria, these genes are all connected to many nodes in
the same pathway, locate in the upstream, and show
greater variation then others. There may be more than
one such gene in each set. For example, for the
Jak-STAT pathway, we have tried LEP, CNTFR, GHR,
IIL7R, IL20RB, and IL23A and the results all support the
same top ranking pathway. Table 3 lists the correspond-
ing probability P(k) when these genes are used as the ref-
erence, as well as the posterior mean for the regression
coefficient. Notice that the sign of the mean is the same
as that of the reference gene, i.e., it is positive if the gene
is over-expressed in the diseased group and negative if
under-expressed. A systematic investigation would be
necessary to find an optimal choice.

Several issues are worth noting here. First, when the
purpose is to screen a large collection of gene-sets and
not to prioritize a limited set of candidate pathways, the
current Bayesian model may not be able to accommo-
date all sets in a single model, especially when the sam-
ple size is not large enough to support statistical
inference. In this case, a pre-selection procedure is ad-
vised. One may adopt the proposed pathway score as a
pre-selection tool in a frequentist logistic regression
model for binary response outcomes or in the usual lin-
ear regression for quantitative response variables. Based
on the performance of single-pathway test in the simula-
tions, although Logistic (ps) has the tendency to provide
false positive results, it is easy to use with large power.
The resulting sets can next enter the Bayesian procedure
for prioritization. The use of other tests like ORA and
SPIA in the pre-selection stage would need special atten-
tion in the number of DE genes. The set tends to be sig-
nificant if the number is large. This relationship is
demonstrated in Fig. 6 for the breast cancer NGS study.
The p-value from such single-pathway test, however,
cannot replace the ranking procedure. Inference based
on a joint model, such as the one proposed in this
research, would be preferred.
Second, our proposed procedure is in spirit closer to a

self-contained than a competitive test, when adopting
the definition in Goeman and Buhlmann [10]. This is be-
cause the problem we are dealing with is the association
strength of gene-sets. In other words, only sets included
in the analysis are under investigation. These sets need
not to compete with genes outside the sets. On the other
hand, our procedure goes beyond a self-contained test,
because we are trying to evaluate the degree of associ-
ation, not just to test if the association exists. The future
aim is to enlarge the list of candidate pathways when all,
not just candidates, are included for exploratory and
screening purposes.

Fig. 6 The relationship between the percentage of DE genes and the negative base 10 logarithm of p-value under ORA (left, for 289 pathways in
KEGG) and SPIA (right, for 130 signaling pathways in KEGG) test, respectively. The linear correlation is 0.80 in the left and 0.49 in the right

Table 3 Probability P(k), mean of the regression coefficient β,
and if over- or under-expressed in the diseased group when
different reference gene is considered in the JAK-STAT pathway
for the breast NGS study

Reference Gene LEP CNTFR GHR IL7R IL20RB IL23A

Gene symbol 3952 1271 2690 3575 53,833 51,561

P(k) 0.889 0.886 0.880 0.873 0.844 0.812

Mean 9.05 9.03 8.54 6.71 −8.23 −7.68

Over/under over over over over under under
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Additional file 1: R code for computing the pathway score and
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Additional file 2: the R document for the analysis of two hypothetical
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