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The outcome of a viral infection within the nervous system depends on a 
complex interplay between the virus, its target cell and the immune system. 

Recent research has elucidated a variety of mechanisms involved in these 

interactions and their role in the production of disease. 
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The inter-relationship between viruses and the nervous 
system is complex and diverse. Whereas some viruses 
may cause a lethal encephalitis, others, within the im- 
munopriveledged environment of the central nervous 
system (CNS), are able to establish lifelong infections. 
Anatomically the CNS is protected by the blood-brain 
barrier, which not only serves to limit the entry of in- 
fectious agents, but also limits the inIlux of serum and 
cells. However, many viruses have evolved sophisticated 
ways to breach these barriers, either by entering from the 
bloodstream via infection of endothelial cells or inside 
haemopoietic cells (Trojan Horse effect), or by infect- 
ing nerve endings and then travelling retrogradely inside 
neurons. The ensuing immune response, whilst being a 
necessary response to the invader, may itself contribute 
towards pathology. This review will focus on the inter- 
action of virus and cell, and the interplay between the 
infected cell and the immune response leading to ner- 
vous system disease. 

Cell - virus interactions within the nervous 

system 

The outcome of a viral infection in the nervous system 
- in terms of whether it causes death of the infected 
cell, or establishes a persistent or latent infection - is 
governed, in part, by the cellular environment in which 
the virus Iinds itself. Viral behaviour may be influenced by 
the differentiation state of the host cell in the nervous sys- 
tem. For example, the behaviour of Japanese encephalitis 
virus within the brain of Fischer rats is determined by the 
maturity of its hosts’ neurons [ 11. Animals infected prior 
to age 13 days die, but those infected after age 14 days 

do not. Furthermore, kinetic studies showed that viral 
antigen disappears from the cerebral cortex as neuro- 
nal maturation occurrs. Similarly, Sindbis, an alphavirus, 
causes cytolysis of most dividing cells, but establishes a 
persistent infection in post-mitotic neurons. Levine et al. 
[2**] have shown that Sindbis virus induces apoptosis 
in a number of different cell types in culture. Bcl-2, a 
proto-oncogene, is able to block apoptosis in neurons 
and there is a correlation between levels of Bcl-2 mRNA 
and resistance to Sindbis. Transfection of a non-neuro- 
nal cell line with a Bcl-2-expressing plasmid is able to 
prevent Sindbis-induced death, but the virus is then able 
to persist and replicate [ 2**]. Thus, by counteracting cell 
apoptosis, Bcl-2 activity may be involved in the persis- 
tence of some viruses within the CNS. 
The role of the cell in controlling the behaviour of a virus 
is illustrated by herpes simplex virus (HSV), which es- 
tablishes a truly latent infection in dorsal root ganglia; 
the only RNA’s produced in this state are the latency 
associated transcripts (LATS), but no viral proteins are 
expressed [3]. The virus may subsequently reactivate 
with the possibility of spread to a new host. The immune 
system clearly plays a role in the control of the primary 
infection and reactivation [ 41, but during the latent phase, 
the virus expresses no protein and so it is invisible to the 
immune system. Therefore, control of expression during 
latency and the initial signal to reactivation must funda- 
mentally lie with the transcription factor environment of 
the neuron. This is reflected in the fact that in humans the 
virus can reactivate spontaneously despite well developed 
immunity. 
Conversely, viruses can alter cellular function in a 
non-lethal manner. Lymphocytic choriomeningitis virus 
(LCMV), if injected intracerebrally into adult mice will 
result in death mediated by CD8+ T cells. In neonatal 
mice, however, a state is established in which the virus 
is able to replicate without apparent ill effect. Some of 
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the infected neonatal mice do show, however, a growth 
retardation syndrome that is linked to a persistent infec- 
tion of the pituitary gland [ 51. De la Torre and Oldstone 
[+I, using a rat pituitary cell line that produces growth 
hormone and prolactin, have demonstrated that these 
pituitary cells support LCMV replication without struc- 
tural damage, but show a livefold reduction in growth 
hormone mRNA, and, furthermore, that continued viral 
replication was needed to maintain this effect. This raises 
the possibility that similar persistent viral infections may 
be involved in producing neurological disease in humans 
without producing changes that would be detectable on 
even the most careful histopathological examination. 

Immune effector mechanisms in the CNS 

The requirement to avoid immune-mediated destruction 
in tissue in which a key cell population, namely the neu- 
rons, is terminally differentiated and irreplaceable, places 
certain constraints on the immune response for control- 
ling infection at this site. The immunologically priviledged 
status of the nervous system may be one reason why 
viruses are able to persist at this site. Even so, the 
immune response engendered by the virus may cause 
damage to the CNS, as in the case of Theiler’s virus, 
a picornavirus that establishes a persistent infection in 
the nervous system [7]. The response to HSV type 1 
has also been described as causing a (late phase) mul- 
tifocal demyelination within the CNS, the pattern of the 
disease varying according to the genetic background of 
mouse used [8]. Hence, the immune response within the 
nervous system provides examples both of rather special 
ized effector functions, and of novel pathologies that arise 
from the interaction between virus and the host defence 
system. 

For a virus to elicit an immune response within the brain, 
foreign antigens must be clearly perceived by T lympho- 
cytes. Major histocompatibility complex (MHC) proteins 
are expressed at comparatively low levels within the CNS. 
The lack of MHC expression on neurons, in particular, 
has been invoked to explain the ability of a number 
of viruses to persist in these cells and the inability of 
MHC class l-restricted T cells to recognize and kill vi- 
rally infected neurons [9]. Joly et al. [10*-l conclude that 
neuronal cells do not express sufficient MHC molecules 
to act as targets for cytotoxic T lymphocytes (CTL), but 
that this can be overcome by adding interferon gamma, 
which upregulates MHC expression. This failure of neu- 
rons to present antigens in association with MHC appears 
to result from a down-regulation of peptide-transporting 
proteins Tap 1 and 2 (or Ham 1 and 2) the levels of which 
can also be increased by interferon gamma [lo**]. This 
may be a means by which, except in very cytopathic in- 
fections, neurons harbouring viral antigen escape CTL de- 
struction. Although protection of these irreplaceable cells 
may be seen to be of value for the host, the avoidance 
of immune eradication may thus contribute to viral per- 
sistence [ 111. 

MHC class l-restricted CD8+T cells are generally thought 
to kill their target cell through release of performs and 
granzymes, which induce apoptosis. There is evidence, 
however, that they may control viral infection without in- 
ducing death of the target cell. Simmons and Tscharke 
[ 12.1, in a quantitative study on the effect of depleting 
CD8+ T cells on HSV infection of dorsal root gan 
glia, show that these cells limit the spread of HSV in 
the peripheral nervous system. They demonstrated that 
the number of neuronal profiles showing antigen pos- 
itivity greatly exceeds the number destroyed, and that 
anti-CD8 + antibody administration (to deplete CD8+ 
T cells) leads to increased neuronal destruction. The 
authors therefore propose a non-lytic role for CD8+ 
T cells in clearing herpes simplex infection in the ner- 
vous system. In a study on the effect of CD8+ T cells on 
herpes simplex infected Iibroblasts, Martz and Gamble 
[ 131 found that inhibition of viral replication could not 
be accounted for by the percentage of cells killed, and so 
they also proposed a non-cytotoxic role for CD8+ T cells 
in the reduction of viral gene expression. In a recent re- 
view, Ramsay, Ruby and Ramshaw [14] propose that the 
antiviral activity of CTIs is mediated by the direct antiviral 
action of cytokines such as interferon gamma. 

In certain viral infections, such as human immunodefi- 
ciency virus (HIV), the pathological effects seen in the 
CNS may result from the (appropriate) release of sol- 
uble mediators. The neuronal loss seen in a murine 
model of retrovirus-induced spongiform encephalopa- 
thy, is not due to direct neuronal infection, but arises 
secondarily to infection of non-neuronal cells [ 151. The 
selective tropism of HIV in the brain does not, directly, 
explain the neuropathologies seen in this condition. In 
the late stages of acquired immune deficiency syndrome 
(AIDS) there appears to be a state of immune activation 
within the CNS, with the production of interferon gamma, 
interleukin (IL)-1, IL6 and tumor necrosis factor (TNF)-a, 
mainly distributed in endothelium and stellate parenchy- 
mal cells, probably microglia [ 161. In addition, elevated 
levels of TNF-a have been detected in the cerebrospinal 
fluid (CSF) of HIVpositive patients with neurological dis- 
orders [ 171. It is possible that these cytokines could play 
a role in inducing the brain pathology. However, in vitro 
evidence suggests that the release of HIV antigens, such 
as tat and gp120, from infected macrophages may also 
have a role in inducing cell damage [ 181. Inilammatory 
mediators, such as leukotriene-B4 and prostaglandinD2, 
are also elevated in the CSF of patients with neurological 
complications of HIV 1191. Hence, although cytokines 
may prove to be important in the induction of neuro- 
pathology, they are not the only molecules that can me- 
diate this effect. On the other hand, cytokines may also 
be involved in determining the behaviour of the virus it- 
self. Swingler, Easton and Morris 1201 found that in an 
in vitro system certain cytokines could augment the ex- 
pression of a reporter gene driven by the long-terminal 
repeat region of HIV. 

Antibody also plays a role in determining the outcome 
of CNS viral infection, through a variety of mecha- 
nisms, including antibody-dependent cell-mediated CY- 
toxicity (ADCC), complement-mediated lysis and viral 
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neutralization. Early humoral immunity, presumably in- 
volving immunoglobulin (Ig)-M antibodies, has been 
found to be protective in a murine model of retrovirus 
encephalitis [ 211. In retrovirus infection of mice, anti-viral 
antibody is able to prevent the spread of virus to the CNS 
from its peripheral site of infection, and also within the 
CNS [ 221. Antibody can also inhibit the cell-to-cell spread 
of rabies virus by neutralization. In addition, there is ev- 
idence that it may exert an effect once virus has been 
taken up by a cell, resulting in decreased transcription of 
viral mRNA and decreased replication. This implies that 
a novel antiviral mechanism is active, probably involving 
the endocytosis of antibody [23*]. Another novel mecha- 
nism involving antibody-mediated control of virus replica- 
tion in nerve cells involves Sindbis virus. Levine et al. [24] 
studied the antibody-mediated clearance of Sindbis virus 
from the brain of mice with severe combined immune 
deficiency (SCID). This was achieved without neuronal 
destruction and did not involve ADCC or complement- 
mediated lysis. It was, however, associated with decreased 
viral RNA in cells - as determined by in situ hybridiza- 
tion - suggesting interruption at the transcriptional level. 
Furthermore, the likelihood of recrudescence of disease 
from the persistent virus varies according to the antibody 
used to effect the control of the initial infection [ 251. The 
influence of the quality of the initial antibody response - 
generated in an infection - on the likelihood of disease 
arising from persistent virus is a point worth bearing in 
mind in the design of vaccines. 

It is also interesting to note that, as well as determining 
the effect of the virus on the CNS, the presence or ab- 
sence of a good antibody response may modulate the 
immunopathology that results from a different arm of 
the effector response. Wright and Buchmeier [ 261 found 
that administration of anti-viral antibody to adult mice in- 
fected intracranially with LCMV, was able to suppress viral 
replication in the CNS, and protect the mice from the usu- 
ally fatal T cell-mediated immunopathology. 

lmmunosuppression and viral infection 

The nervous system is an immunopriveledged site, even 
so, immunosuppression may alter the balance between 
virus and host, resulting in alteration of viral behaviour 
within the CNS, and the potential for disease production. 
Immunosuppression may allow a usually innocuous virus 
to cause progressive cell destruction, as seen in progres- 
sive multifocal leucoencephalopathy in which JC virus, a 
polyoma virus, causes destruction of oligodendrocytes 
[27]. The interaction of viral factors with the effects of 
immunosuppression in the control of viral behaviour is 
demonstrated in experiments with the in1814 mutant of 
HSV type 1. (The in1814 mutant has an insertion in the 
tegument protein, Vmw65 - IX TIF, transinducing factor 
- abolishing its activity 1281. When HSV infects a cell, 
Vmw65 is thought to interact with a cellular protein, Ott 
1, to form a complex capable of transactivating herpes 
immediate-early genes [29, 301.) Wild-type HSV estab- 
lishes a latent infection in Balb/c mice but is lethal 

to SCID mice. In immune competent mice, in1814 es- 
tablishes latency, but does not replicate. In SCID mice, 
however, it is able to establish a slowly progressive pro- 
ductive infection in the CNS [31]. This system illustrates 
features required if a virus is to produce a persistent in- 
fection, namely a low destructive capacity combined with 
the avoidance of the immune response, the latter due 
either to virus specific mechanisms, or to immunosup- 
pression of the host. 

Viruses may themselves have mechanisms that down-reg- 
ulate the immune response. In vitro studies of HSV-in- 
fected fibroblasts suggest that this virus can inhibit the 
activity of natural killer cells [32] and cytotoxic T cells 
[33]. Host-produced cytokines may also have a role in 
reducing the immune response. Transforming growth 
factor (TGF)-P may be produced within the brain and 
have an effect in suppressing immune responses [34]. 
Infection of rats with Borna virus, a negative strand RNA 
virus [35], can cause a T cell-mediated encephalitis. The 
administration of TGF-0 reduces the immune response 
in this disease and ameliorates the development of en- 
cephalitis [ 361. 

Conclusions 

This review has attempted to concentrate on the interac- 
tion between virus, cell and immune factors in govern- 
ing the outcome of infection within the CNS, and in 
the production of neurological disease. The search for 
viruses involved in human neurological disease contin- 
ues with, for example, Coronavirus RNA and protein 
being found in active plaques, perivascular cells and 
lipid-filled macrophages of some multiple sclerosis pa- 
tients [ 371 and Epstein Barr virus being detected by poly- 
merase chain reaction (PCR) in brain biopsies submitted 
for a number of neurological diseases [ 381. It is clear that 
some of the virus and immune-mediated pathologies that 
are now being described in animal models may be sub- 
tle and raise the possibilities of viruses being involved in 
novel ways in derangements of nervous system function 
in human disease. 
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