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Dear Editor,

The current pandemic of beta-coronavirus (SARS-CoV-2) has
exerted devastating influence on almost all countries, resulting in
the disease named COVID-19." Coronavirus possesses the largest
RNA genome among all the RNA viruses. Its genome encodes about
29 proteins (Supplementary Fig. S1). The subcellular distributions of
the viral proteins have yet been reported for SARS-CoV-2. It is
important to investigate the viral proteins’ locations in cells because
the subcellular distribution information not only helps us in
understanding how viruses interact with the host cells but also
provides clues in fighting against the viral infection. Therefore, we
cloned all the genes of SARS-CoV-2 into vectors for expression in
mammalian cells and used immunofluorescent assay (IFA) to
examine the viral proteins’ subcellular location. Except for the
NSP11 that is only 14 aa long, we expressed all other 28 viral
proteins in HEp-2 or Caco-2 cells and found a diversity of protein
distribution in cells, suggesting a complicated interaction of SARS-
CoV-2 with host cells to achieve a successful infection.

In a systemic attempt of revealing the subcellular locations of
SARS-CoV-2 proteins, we transfected each plasmid into HEp-2 cells
for 20 h, then the cells were fixed for IFA using anti-FLAG antibody
to show the viral protein and anti-CoxIV to show the mitochondria
or anti-Giantin to show the Golgi apparatus.

As can be seen in the Supplementary Fig. S2, the viral proteins
are either cytoplasmic (NSP2, NSP3C, NSP4, NSP8, Spike, M, N,
ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b and ORF10) or
both nuclear and cytoplasmic (NSP1, NSP3N, NSP5, NSP6, NSP7,
NSP9, NSP10, NSP12, NSP13, NSP14, NSP15, NSP16, E and ORF9a).
Although no viral proteins were detected in mitochondria, M
protein colocalizes with Giantin, which is consistent to that of
SARS-CoV-1. Whether other proteins are related to Golgi apparatus
or other cellular organelles needs to be further investigated.
Interestingly, some proteins showed punctate staining in the IFA
experiments: NSP1, NSP5, NSP9, NSP12, NSP13, NSP14, NSP15,
ORF3a and M. The relationships of these proteins with subcellular
organelles are further explored in this study.

Results from the Supplementary Fig. S2 showed that some
proteins are cytoplasmic punctate proteins. We wondered if they
are in any cellular organelles. First, we examined their locations with
Golgi apparatus. The HEp-2 or Caco-2 cells were fixed at the 24 h
post-transfection and stained with anti-FLAG in green and anti-
Giantin to visualize the Golgi apparatus in red. Consequently, we
detected that four SARS-CoV-2 proteins are related to Golgi
apparatus: NSP15, M, ORF6 and ORF7a. As shown in Fig. 1a (left)
and the Supplementary Fig. S3a, viral proteins M, ORF7a and NSP15
colocalize with Golgi apparatus, and ORF6 partially colocalizes with
Golgi apparatus. Except that M-Golgi apparatus relationship has
been previously reported,® other proteins’ relationships with Golgi
apparatus are the first reported by this study.

To ensure the specificities of the IFA results, we employed a co-
transfection system using a Golgi apparatus protein expression
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plasmid in which the N-terminus (1-61 aa) of the Beta-1,4-
galactosyltransferase 1 was fused with a cyan fluorescent protein
variant, mTurquoise2. In this system, we only need to stain the
viral proteins with anti-FLAG antibody. As shown in Fig. 1a (right)
and the Supplementary Fig. S3b, the co-transfected cells were
fixed for IFA and the viral proteins were immuno-stained in red
fluorescence. After merging different colors, the results showed
ORF6, ORF7a and NSP15, like M protein, colocalized with Golgi
apparatus. Therefore, we identified four SARS-CoV-2 proteins (M,
ORF6, ORF7a and NSP15) that are related to Golgi apparatus.

Like other positive-stranded RNA viruses, SARS-CoV-2 RNA is
transported to endoplasmic reticulum (ER) after viral entry. ER is
the major cellular organelle that viruses need to usurp because it
is a factory for production of viral proteins. Most proteins of SARS-
CoV-2 were seen in cytoplasm as shown in the Supplementary Fig.
S2, so we asked whether they colocalize with ER. To that end, we
cotransfected several viral protein-expressing plasmids (NSP6,
ORF7b, ORF8 and ORF10) together with pmcCh-sec61-beta (ER
and the ER-Golgi apparatus intermediate compartment). ER is in
red fluorescence because it is tagged with mCherry. The viral
proteins (NSP6, ORF7b, ORF8 and ORF10) were shown in green
fluorescence by anti-FLAG. Although SARS-CoV-2 proteins are all
generated in ER, IFA found only NSP6, ORF7b, ORF8 and ORF10
colocalized with ER as shown in Fig. 1b and the Supplementary
Fig. S3c. The yellow color in the merged pictures was caused by
the colocalization between the viral proteins and ER protein: sec61
beta. ORF7b is a 43 aa protein, ORF8 has only 121 aa and ORF10
contains 38 aa. Although they are small proteins, their functions
might be important for viral replication and need to be further
investigated.

Endosome is a cellular organelle with a membrane in eukaryotic
cells and undergoes a maturation from early endosome to late
endosome depending on acidification. The late endosome then
fuses with the lysosome to degrade the molecule by lysosomal
hydrolytic enzymes. Here we used the plasmids expressing the
proteins standing for early endosome (Rab5), endosome (Rab11),
late endosome (Rab7), and lysosome (Lamp1),* which were
cotransfected with SARS-CoV-2 protein-expressing plasmids. We
identified ORF3a to be the viral protein that is associated with the
formation of endosome and lysosome (Fig. 1c and the Supple-
mentary Fig. S3d). Our IFA results showed that only ORF3a is
associated with endosome and lysosome. To confirm the
specificity of our IFA assay using the co-transfection system, we
also co-transfected ORF3a-expressing plasmid with an ER & Golgi
apparatus intermediate protein, Rabin8 that is tagged with GFP.
No significant colocalization was detected between ORF3a and
Rabin8. Therefore, ORF3a protein is related to the endocytosis-
related biological activities. Interestingly, for the first time, we
found that the N protein colocalizes with lipid droplet (LD)
that was visualized by BODIPY 500/510 in the Caco-2 cells
(Supplementary Fig. S4).
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Subcellular locations of SARS-CoV-2 proteins. IFA was performed at 24 h after transfection of the plasmid expressing the viral protein

into HEp-2 cells. a NSP15, M, ORF6, and ORF7a, are associated with Golgi apparatus. b NSP6, ORF7b, ORF8 and ORF10, are related to ER.

c ORF3a, is related to endosome and lysosome. Bar = 10 um

Interestingly, some SARS-CoV-2 proteins are detected in
nucleus such as NSP1, NSP5, NSP9 and NSP13 as shown in the
Supplementary Fig. S2. For these nuclear proteins, we decided
to know if they interact with any nuclear structures such as SC
(splicing compartment) that is important for gene splicing. As
shown in the Supplementary Fig. S5, we didn't detect any
relationship between NSP1 and SC35. Both NSP5 and NSP9
distribute diffusely in the nucleus, but in the strongly stained
spots of NSP5 or NSP9, SC35 appears to colocalize with the viral
proteins. Interestingly, NSP13 exists in the nuclei of HEp-2 cells
as round “dots” (shown by white arrows) that exactly colocalize
with SC35 (Supplementary Fig. S5). This phenomenon was also
found for Zika virus that NS5 to interact with SC35.° A similar
experiment was performed in Caco-2 cells for NSP13. We found
the same results that NSP13 colocalizes with SC35 in the nuclei
(Supplementary Fig. S6).

In summary, we molecularly cloned all the genes of SARS-
CoV-2 and applied a systemic IFA to characterize the subcellular
distribution of the viral proteins. Our results provide the field
with new insight into the biological functions of SARS-CoV-2
proteins because the localization of the protein to the site of a
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cell implies that the protein might play its biological function in
the subcellular location. However, a detailed study should be
conducted in the context of SARS-CoV-2 infection in cells
because viral proteins from transfection may behave differently
than that from viral infection.
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