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Abstract

Oral tolerance blocks the development of specific immune responses to proteins ingested by the oral route. One of the first
registries of oral tolerance showed that guinea pigs fed corn became refractory to hypersensitivity to corn proteins. Mice fed with
chow containing corn are tolerant to zein, and parenteral injection of zein plus adjuvant blocks immunization to unrelated
proteins injected concomitantly and reduces unspecific inflammation. Extensive and prolonged inflammatory infiltrate in the
wound bed is one of the causes of pathological wound healing. Previous research shows that intraperitoneal injection of zein
concomitant with skin injuries reduces the inflammatory infiltrate in the wound bed and improves wound healing. Herein, we
tested if one subcutaneous injection of zein before skin injury improves wound healing. We also investigated how long the
effects triggered by zein could improve skin wound healing. Mice fed zein received two excisional wounds on the interscapular
skin under anesthesia. Zein plus Al(OH)3 was injected at the tail base at 10 min, or 3, 5, or 7 days before skin injuries. Wound
healing was analyzed at days 7 and 40 after injury. Our results showed that a zein injection up to 5 days before skin injury
reduced the inflammatory infiltrate, increased the number of T-cells in the wound bed, and improved the pattern of collagen
deposition in the neodermis. These findings could promote the development of new strategies for the treatment and prevention
of pathological healing using proteins normally found in the common diet.
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Introduction

Skin injury, whether accidental or surgical, triggers
an orchestrated process of cellular and molecular inter-
actions that generally results in wound healing (1–3). The
sequential progression of cellular and molecular inter-
actions that occurs during wound healing in healthy
conditions is predictable and begins with the activation
of the blood coagulation cascade (hemostasis), leukocyte
recruitment (inflammatory phase), keratinocyte prolifer-
ation, angiogenesis, and fibroblast activation with extra-
cellular matrix synthesis (proliferation phase) until the
remodeling of the matrix and reduction of dermal cellu-
larity (maturation phase) (4,5).

During the inflammatory phase, the number leukocytes
in the wound bed increases. Leukocytes reach the site of
the skin injury through their recruitment from the blood and
the areas adjacent to the lesion. Neutrophils, present in

large numbers in the blood, are among the first circulating
cells to arrive, followed by monocytes, which differentiate
into tissue macrophages (6). Lymphocytes are also recruit-
ed to the wound bed and their numbers peak on days 7–10
after skin injury (7,8). Mast cells are abundant in healthy
skin and can be recruited to the lesion area from the
dermis adjacent to the lesion and from undifferentiated
precursors in the blood (9,10). At the wound bed, leuko-
cytes can phagocyte microbes and cellular debris or
produce cytokines and growth factors, contributing to the
restoration of tissue integrity. It is not a simple task to
determine the specific function of each type of leukocyte
during repair because leukocytes can have redundant,
overlapping, and changing functions over time. However,
excessive or prolonged inflammation may prevent lesion
closure or form pathologic scars (3,11). Under normal
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conditions, the inflammatory infiltrate decreases after the
first week, while activated fibroblasts secrete a new extra-
cellular matrix. The reduction in the number of leukocytes
in the wound area depends on the reduction in their
recruitment and their death or migration away from the
wound (12,13).

Skin scarring results from substitution of dermal
components by an extracellular matrix (ECM) that is
organized differently from the original ECM. In uninjured,
intact skin, collagen fibers have a typical basket weave
arrangement and are thick and densely organized. On the
other hand, scars have collagen fibers arranged parallel to
the epidermis and are thinner and loosely organized.
Scars visible to the naked eye can range from a soft,
barely noticeable line to disfiguring hypertrophic and
keloid scars (14). While excessive or prolonged inflamma-
tion is related to hypertrophic scars, reduced inflammation
results in scarless healing (2,15,16). Although it is known
that the inflammatory phase of wound repair significantly
influences its outcome, it remains difficult to predict the
type of scar that will form after healing and to promote
scarless healing (3,4).

Since excessive and prolonged inflammation can
compromise wound closure or result in hypertrophic
scarring and keloids, developing strategies to reduce
inflammation or promote rapid resolution of inflammation
would be useful to promote good healing in a shorter time.

It is possible to inhibit immune responses and prevent
allergic and autoimmune inflammation through an immune
phenomenon triggered by protein administered by the oral
route, called oral tolerance (17–19). Feeding with maize
(Zea mays) or with ovalbumin (OVA) impairs the subse-
quent induction of allergic reactions to zein or OVA,
respectively (20,21). Oral tolerance is the systemic
unresponsiveness induced specifically by protein deliv-
ered orally: feeding with zein does not impair allergy to
OVA and feeding with OVA does not impair allergy to zein.
However, parenteral re-exposure to an orally tolerated
protein has indirect and systemic effects that inhibit
immune responses to unrelated proteins injected con-
comitantly (22,23). Therefore, concomitant injection of
zein and OVA in mice exhibiting oral tolerance to zein
prevents the immune response to zein (as predictable)
and to OVA - an indirect effect of oral tolerance (24).
Moreover, the indirect effects of oral tolerance induced by
parenteral re-exposure to a protein previously orally
administered inhibit immunization to other unrelated
antigens injected 3 days later, but not to antigens injected
7 days later (25). In a similar way, simultaneous injection
of OVA and myelin basic protein (MBP) prevents experi-
mental autoimmune encephalomyelitis (EAE) in mice
orally tolerant to OVA (26). Furthermore, intraperitoneal
injection of OVA or zein in mice with skin injuries reduces
inflammation in the wound bed and improves wound
healing in mice orally tolerant to these proteins but not in
non-tolerant mice (27–30).

Herein, we tested if subcutaneous injection of zein in
mice with skin injuries pre-treated with zein by the oral route
reduces inflammation in the wound bed and improves
wound healing in mice. We also evaluated how long the
systemic effects of injecting a tolerized protein lasts to
reduce inflammation and improve wound healing.

Material and Methods

Animals
Eight-week-old male C57BL/6 mice were obtained

from the Institute of Biological Sciences, Universidade
Federal Minas Gerais (UFMG, Brazil) and treated accord-
ing to the guidelines of the Ethics Committee of Animal
Experimentation of UFMG. Water and food were offered
ad libitum. Each group had six mice per time point.

Oral exposure to zein
All animals were fed commercial pelleted chow

(Nuvilab CR-1, Nuvital Nutrientes S/A, Brazil), traditionally
used for rodent feeding. The rodent chow contained corn
(Zea mays) and zein is one of the most abundant proteins
of corn.

Subcutaneous injection of zein at the base of the tail
In a first experiment, animals in the experimental group

received a subcutaneous injection of 10 mg zein (Sigma
Aldrich, USA) plus 1.6 mg Al(OH)3 adjuvant at the tail root,
just before skin injury. One control group received saline
and the other control group received 1.6 mg Al(OH)3
adjuvant in a final volume of 100 mL. In subsequent
experiments, zein was injected 3, 5, or 7 days before skin
injury and control mice received saline.

Skin injury
Mice were anesthetized with ketamine (97 mg/kg) and

xilazine (16.5 mg/kg), and their dorsal thoracic skin was
shaved and cleaned with 70% ethanol just before
wounding. Two circular excisional injuries were made on
the interscapular skin, using a biopsy punch (6 mm
diameter), one on each side of the dorsal midline. The
wounds were left unsutured and without dressing. After
wounding, the animals were housed individually to prevent
traumatic damage to the wounds by other mice.

Macroscopic analysis
The injured skin was photographed with an in-picture

ruler for scale using a digital camera (Nikon Coolpix
S3100, Japan) immediately after or 7 days after injury. The
images were analyzed using Image Tool software (IMAGE
TOOL 3.0 UTHSCSA, USA) and wound outlines were
manually traced for calculation of wound area.

Microscopic analysis
After surgery, the animals were kept at 37°C until

anesthesia recovery. Then, they were transferred to the
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bioterium with the temperature at 23°C and 12 h light/dark
cycle. Water and food were offered ad libitum. On days 7
and 40 after surgery, the animals were euthanized and
the wound with surrounding skin area was collected for
microscopic evaluation.

Histological analysis
The wounds on the right side of the animal were fixed

in Carson’s modified Milloning’s phosphate-buffered
formalin for 24 h, perpendicularly sectioned in half at the
center, dehydrated in ethanol, and embedded in paraffin
for histological studies following standard protocols. Serial
5-mm cross-sections from the middle of the wound were
stained with hematoxylin and eosin (H&E), Alcian blue-
Safranin, Masson’s trichrome, or Sirius red. Collagen fibers
stained with Sirius red were examined under polarized light
(Olympus BX43 microscope, Japan) and images were
captured at 200� magnification. For morphometry, mast
cells were identified after Alcian blue-Safranin staining
and leukocytes and fibroblasts were identified after H&E
staining by their characteristic morphology at high magni-
fication (1000�) under a light microscope (Olympus BX40
microscope). Cells were counted by two investigators in
a blinded manner using an intersection grid (Thomas
Scientific, USA) placed at the ocular lens. Leukocytes,
fibroblasts, and mast cells were counted in 10 fields of
10,000 mm2 each, within the wound healing area of one
section per mouse and the results from six sections per
group are reported as means±SE.

Immunofluorescence analysis
The wound on the left side of the animal was fixed in

20% dimethyl sulfoxide (DMSO) and 80% methanol at
–80°C for at least 6 days. One day before processing for
inclusion in Paraplast (Sigma Aldrich, USA), skin samples
were transferred to –20°C and then brought to room
temperature. Five-mm cross-sections from the middle of
the wound were mounted on slides and submitted to
standard immunofluorescence staining protocol. The
following primary antibodies were used: purified rat anti-
mouse CD45 (Biolegend, USA), rat anti-Mouse CD3 (BD
Pharmigen, USA), and monoclonal anti-a-smooth muscle
actin antibody produced in mouse (Sigma-Aldrich, USA).
After 5 rinses in PBS, sections were incubated for 1 h at
room temperature in the dark with the following secondary
antibodies: Alexa-Fluors488 goat anti-mouse IgG2a or
Alexa-Fluors488 rabbit anti-rat IgG (H+L) (Molecular
Probes, USA). Nuclei were labeled with 4’6-diamidino-2-
phenylindole dihydrochloride (DAPI) (Molecular Probes).
Fluorescence was viewed using a laser scanning confocal
microscope (LSM 880; Carl Zeiss AG, Germany) at the
Centro de Aquisição e Processamento de Imagem (CAPI)
of Instituto de Ciências Biológicas, UFMG. Optimal
confocal settings (aperture, gain, and laser power) were
determined at the beginning of each imaging session and
then held constant during the analysis of all samples.

To perform quantitative analysis of fluorescence, images
were captured at 12 bits and analyzed in the gray scale
range of 0 to 255 with Image Tool 3.0 software (http://
ddsdx.uthscsa.edu/dig/itdesc.html). Fluorescence inten-
sity was recorded as the sum of gray values of all pixels
divided by the area (in mm2) � 10–3. Background
fluorescence was measured in each sample and sub-
tracted from the values obtained for the fluorescence
intensity.

Analysis of neutrophil myeloperoxidase (MPO)
One day after skin injury, mice were euthanized with

an overdose of anesthetic and the wounds with about
4-mm surrounding area were removed and snap frozen in
liquid nitrogen. The tissue was processed as previously
described (31) and the MPO assay was performed by
measuring the change in absorbance at 450 nm using
1.6 mM 3,30,5,50-tetramethylbenzidine (Sigma-Aldrich)
dissolved in DMSO (Merck, USA) and 0.003% H2O2 (v/v)
dissolved in phosphate buffer (0.05 M Na3PO4 and 0.5%
hexadecyltrimethylammonium bromide [pH 5.4]). Results
are reported as the relative unit that denotes activity of
MPO.

Statistical analysis
The GraphPad Prism7 program (GraphPad Software,

USA) was used. The significance of the differences
between experimental and control groups was determined
by one-way ANOVA followed by Bonferroni test. Pp0.05
was considered significant and results are reported as
means±SE.

Results

Effect of zein on the number of inflammatory cells and
fibroblasts at the injured site

Qualitative analysis of skin sections stained with H&E
at day 7 after injury showed reduced inflammation in the
experimental group treated with zein: there was less
inflammatory infiltrate, reduced tissue edema, and less
vascular congestion than in control mice (Figure 1).
In mice injected with zein, the inflammatory infiltrate was
more restricted to the injured site and the regenerated
epithelium was less hyperplastic and more aligned with
the uninjured epithelium than in control groups. Morpho-
metric analysis of skin sections stained with H&E and
Alcian blue-Safranin showed fewer leukocytes, fibro-
blasts, and mast cells in the wound healing area of
mice injected with zein (Figure 1). Immunofluorescence
analysis of skin sections incubated with anti-CD45 anti-
body confirmed the significant reduction in leukocyte
numbers, and analysis of a-SMA expression showed less
myofibroblasts in the wound bed of the zein-treated group
(Figure 2). On the other hand, injection of zein increased
the number of T lymphocytes in the wound bed
(Figure 2).
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Effect of zein on the pattern of collagen deposition in
the neodermis

Figure 3 shows a representative photograph of intact,
non-scarred skin stained with Masson’s trichrome where
one hair follicle, the papillary dermis, and the reticular
dermis can be easily identified. As expected, collagen
fibers in intact skin had a typical basket weave arrange-
ment (Figure 3A) and were thick and densely organized,
resulting in red-orange birefringence under polarized light
microscope (Figure 3B). On the other hand, the scarred
skin of the control groups had collagen fibers arranged
parallel to the epidermis and with a weak birefringence,
indicating a smaller thickness compared to the collagen
fibers found in unscarred skin. In animals treated with
zein, differently from non-treated animals, the papillary
dermis was reconstituted (Figure 3A) and the pattern of
collagen fibers in the neodermis was more similar to that
found in intact skin, with fibers arranged in a way that

resulted in red-orange birefringence under polarization
light (Figure 3B).

Effect of zein injection up to 5 days before injury on
inflammation and collagen arrangement

We then determined how long the effects of zein
injection lasted and improved collagen arrangement.
Collagen in groups that received zein 3 or 5 days before
the injuries had a pattern more similar to that found in
intact skin. On the other hand, the group that received zein
7 days before injuries had collagen fibers in the neodermis
arranged more similar to the control scarred skin.
In addition, 40 days after injury, the papillary dermis was
well organized in animals that received zein 3 or 5 days
before skin injuries (Figure 3D).

Macroscopic analysis of the wounds 7 days after injury
and qualitative analysis of H&E-stained sections showed
that, although re-epithelization was complete in all groups,

Figure 1. Zein reduced the inflammatory infiltrate and number of fibroblasts in the wound bed. A, Panoramic view of injured skin and (B)
granulation tissue area stained with H&E or (C) Alcian blue-Safranin 7 days after skin injury in mice injected with either saline, adjuvant,
or zein plus adjuvant minutes before injury. The arrows in A indicate the transition from hypertrophic epidermis to non-injured epidermis
and small letters represent: e: epidermis; d: dermis; gt: granulation tissue; pc: panniculus carnosus; sc: scab. The red and yellow arrows
in B indicate leukocytes and fibroblasts, respectively. Black arrows in C indicate mast cells. Scale bars: A, 500 mm; B and C, 50 mm.
Morphometric analyses of leukocytes (D), fibroblasts (E), and mast cells (F). Data are reported as means±SE (n=6). *Pp0.05
compared with the saline group, #Pp0.05 compared with the adjuvant group (ANOVA).
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the increase in the time interval between zein injection
and skin injuries decreased its anti-inflammatory effects
(Figure 4A and C). In mice injected with zein 5 or 7 days
before skin injury, the scabs were more prominent and
more firmly attached to the skin than in mice injected
with zein 3 days before skin injury (Figure 4A). In turn,
treatment with zein had a positive effect on wound closure
regardless of the interval between treatment and injury
(Figure 4B).

Morphometric analysis of cellular infiltration in the
granulation tissue showed that this treatment reduced the
number of fibroblasts (Figure 4E) and mast cells (Figure
4F), regardless of the time of zein injection. On the other
hand, morphometric evaluation of leukocytes in H&E-
stained skin samples (Figure 4D) and immunofluores-
cence of skin sections incubated with anti-CD45 antibody
(Figure 5) showed that zein injection on either day 3 or day
5 before injuries, but not on day 7, reduced the number of

leukocytes in the wound bed. Figure 5 shows that the
fluorescence intensity of a-SMA was not significantly
altered by injection of zein on days 3, 5, or 7 before skin
injuries.

Since neutrophils are prominent inflammatory cells
that infiltrate the wound bed soon after skin injury, we
performed an additional experiment to verify if subcuta-
neous injection of zein before injuries blocked neutrophil
infiltration. Figure 4G shows a significant decrease in
MPO activity in the skin samples of mice injected with zein
3, but not 5 or 7 days, before injuries.

Discussion

The development of therapeutic strategies to prevent
complications in wound healing is of general interest,
especially because the number of scheduled surgeries
has increased greatly in recent years (32). We show here

Figure 2. Zein increased the number of T lymphocytes in the wound bed. A, Representative images of skin after immunostaining with
anti-a-SMA (myofibroblasts), anti-CD3 (lymphocytes), or anti-CD45 (leukocytes), and nuclear counterstaining with 4’6-diamidino-2-
phenylindol (blue), 7 days after skin injury. The bottom row shows typical sections of each group using differential interference contrast
(DIC) and an insert with an image of the control staining without the primary antibody. Scale bars: 20 mm. Fluorescence intensity
determined in sections immunostained with anti-a-SMA (B), anti-CD3 (C), or anti-CD45 (D) in the saline, adjuvant, and zein groups. Data
are reported as means±SE of fluorescence intensity (n=6). *Pp0.05 compared with the saline group, #Pp0.05 compared with the
adjuvant group (ANOVA).
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that it was possible to improve healing of skin injuries
through one subcutaneous injection of zein at a site
distant from the injury site. We also show that, although
injection of zein 10 min before skin injury was highly
effective in improving the pattern of collagen arrangement
in the neodermis, the injection of zein 3 or 5 days before
injury also had positive effects and resulted in better
wound healing. However, when the interval between zein

injection and skin injury was increased to 7 days, wound
healing did not improve. Furthermore, injection of zein
7 days before wounding did not reduce the inflammatory
infiltrate and did not increase the number of T lympho-
cytes in the wound bed, but did reduce the number of mast
cells. Our results suggest that reduction of mast cell num-
bers by itself was not sufficient to significantly amelio-
rate the pattern of collagen deposition in neodermis.

Figure 3. Subcutaneous injection of zein up to 5 days before skin injury improved the pattern of collagen arrangement. A–C,
Representative sections of intact skin or wounds harvested 40 days after skin injury in mice injected with saline, adjuvant, or Zein plus
adjuvant, minutes prior to injury. D–F, Representative sections of wounds harvested 40 days after skin injury in mice injected with Zein
plus adjuvant 7, 5, or 3 days before skin injury. Skin sections stained with (A and D) Masson’s trichrome, (B and E) Picrosirius red under
polarization light, or (C and F) Picrosirius red without polarization light. hf: hair follicle; pd: papillary dermis; rd: reticular dermis. Scale
bars: 50 mm (Masson’s trichrome); 100 mm (Picrosirius red).
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Our results agree with those showing that reduction in the
number of mast cells does not significantly alter skin
wound healing (33,34). However, the accurate determina-
tion of mast cells roles during healing are challenged by
the pleiotropic and redundant effects of their mediators,
which can affect healing even in low quantity.

Injection of zein had a positive effect on wound
closure, independently of the time interval between zein
injection and skin injury (Figure 4B). However, the effects
of zein on wound closure did not correlate with the effects
of zein on myofibroblast number (Figure 5B). These
results suggest that the injection of zein had positive
effects on wound closure that was independent from the
number of myofibroblasts in the granulation tissue. It is
interesting to note that wound closure in rodents is greatly
promoted by contraction of the panniculus carnosus, a thin

layer of muscular tissue present in the subcutis, which
is virtually absent in humans (35). Further experiments
would be necessary to verify if the effects of zein on
wound closure occurred via contraction of panniculus
carnosus, especially using another model of skin wound-
ing that permits distinguishing the action of panniculus
carnosus from the action of myofibroblasts on skin wound
closure.

The improved extracellular matrix reorganization in the
neodermis of mice that received zein 3 or 5 days before skin
injury also cannot be directly correlated with a significant
change in the number of fibroblasts in the granulation tissue.
However, the positive effect of zein on collagen pattern
correlated with the lower number of neutrophils in the wound
bed. Reduced numbers of neutrophils may impact on the
extension and quality of scarring as these cells produce

Figure 4. Subcutaneous injection of zein before skin injury reduced the inflammatory infiltrate and accelerated wound closure and scab
drop. A, Macroscopic photographs of wounds immediately after skin injury (33 mm2) and 7 days after injury in mice injected with saline
or zein plus adjuvant. B, Wound area 7 days after skin injury in mice injected with saline or zein + adjuvant at 7, 5, or 3 days before
wounds. Data are reported as means±SE (n=6 mice, 12 wounds). *Pp0.05 compared with the saline group. C, Representative images
of skin at day 7 after injury in the control mice (saline) and mice injected with zein at 7, 5, or 3 days before skin injury (H&E-stained
sections). e, epidermis; d, dermis; gt, granulation tissue; he, hypertrophic epidermis; pc, panniculus carnosus; sc, scab. Scale bars:
500 mm. D–F, Morphometric analyses of leukocytes, fibroblasts, and mast cells. G, Quantification of myeloperoxidase activity. Control
mice and mice injected with zein at 7, 5, or 3 days before injury. Data are reported as means±SE (n=6). *Pp0.05 compared with the
saline group, #Pp0.05 compared with the zein –7 group (ANOVA).
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proteases and reactive oxygen species that may increase
initial tissue damage (36,37).

Recent studies have shown increased numbers of
T lymphocytes at injured sites in various organs and it is
proposed that T lymphocytes are involved in making the
injured environment more conducive to regeneration (38).
It has been suggested that T lymphocytes located near
hair follicles are important for hair follicle biology and skin
regeneration (39). During cutaneous healing, T lympho-
cytes increase in the wound bed peaking on day 7 after
injury (7) and Treg cells may limit neutrophil infiltration and
facilitate skin wound healing (8,40). In agreement with the
present work, we have previously shown an increase in
T-lymphocyte numbers in the skin wound bed in OVA- or
zein-tolerant mice that received an intraperitoneal injection
of these proteins minutes before injury (28,29). It is
possible that the increase in the numbers of T lympho-
cytes in the wound bed of mice injected with the orally-
tolerated protein zein contributed to the resolution of
inflammation and to reducing fibrosis through changes in
the activation of fibroblasts and/or myofibroblasts. At this

time, it is not possible to discern if the change in collagen
pattern after zein injection was due to collagen remodeling
or to a change in collagen deposition. To further
characterize the role of T cells in skin wound healing after
tolerized protein injection, it would be interesting to identify
the T cell subtypes in the skin lesions; however, flow
cytometry analysis rather than in situ immunofluorescence
is indicated for this purpose, as the number of Tcells in the
wound bed is low.

In conclusion, the systemic effects of subcutaneous
injection of zein in mice fed with chow containing maize
lasted for at least 5 days, reduced the inflammatory
infiltrate in the wound bed, and promoted better wound
healing. Our data indicated that the systemic effects of
oral tolerance may improve cutaneous wound healing
when skin injury occurs within a 5-day interval after
subcutaneous injection of an immunologically-tolerated
protein. These data are quite important for future clinical
applications in scheduled surgeries. Zein is the most
abundant protein of maize, one of the most popular cereal
grains in the world, and allergy to zein is not common.

Figure 5. Subcutaneous injection of zein before skin injury reduced leukocyte number and increased T cells in the wound bed.
A, Representative images of skin after immunostaining with anti-a-SMA (myofibroblasts), anti-CD3 (lymphocytes), or anti-CD45
(leukocytes) and nuclear counterstaining with 4’6-diamidino-2-phenylindol (blue), 7 days after skin injury. The bottom row shows typical
sections of each group imaged using differential interference contrast (DIC) and an insert with a picture of control staining lacking the
primary antibody. Scale bars: 20 mm. Fluorescence intensity in sections immunostained with anti-a-SMA (B), anti-CD3 (C), or anti-CD45
(D). Control mice and mice injected with zein at 7, 5, or 3 days before injury. Data are reported as means±SE (n=6). *Pp0.05 compared
with the saline group, #Pp0.05 compared with the zein –7 group (ANOVA).
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