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Abstract: Outlier detection in data streams is crucial to successful data mining. However, this task is
made increasingly difficult by the enormous growth in the quantity of data generated by the expansion
of Internet of Things (IoT). Recent advances in outlier detection based on the density-based local
outlier factor (LOF) algorithms do not consider variations in data that change over time. For example,
there may appear a new cluster of data points over time in the data stream. Therefore, we present
a novel algorithm for streaming data, referred to as time-aware density-based incremental local
outlier detection (TADILOF) to overcome this issue. In addition, we have developed a means for
estimating the LOF score, termed "approximate LOF," based on historical information following
the removal of outdated data. The results of experiments demonstrate that TADILOF outperforms
current state-of-the-art methods in terms of AUC while achieving similar performance in terms of
execution time. Moreover, we present an application of the proposed scheme to the development of
an air-quality monitoring system.

Keywords: outlier detection; local outlier factor; data streams; air quality monitoring

1. Introduction

The expansion of Internet of Things is increasing the importance of outlier detection in streaming
data. A wide range of tasks ranging from factory control charts to network traffic monitoring depend
on the identification of anomalous events associated with intrusion attacks, system faults, and sensor
errors [1,2]. Some outlier detection methods are designed to find global outliers, while some methods
try to find local outliers [1,2].

The local outlier factor, LOF, proposed in [3], is a well-known density-based algorithm for the
detection of local outliers in static data. LOF measures the local deviation of data points with respect
to their K nearest neighbors, where K is a user-defined parameter. This kind of method can be useful
in several applications, such as detecting fraudulent transactions, intrusion detection, direct marketing,
and medical diagnostics. Later, the concept of LOF was extended for incremental databases [4],
and for streaming environments [5,6]. However, recent advances in LOF-based outlier detection
algorithms for data streams, MILOF [5] and DILOF [6], do not consider variations in data that may
change over time. For example, there may appear a new cluster of data points over time in the data
streams. In addition, algorithms for data streams need to avoid using outdated data. To handle the
data streams, the algorithms utilize a fixed window size to limit the number of data points held in
memory by summarizing previous data points. These recent studies base their summaries only on the
distribution of previous data; i.e., they do not take the sequence of data into account. The fact that these
methods lack a mechanism for the removal of outdated data can greatly hinder their performances.
Imagine a situation where sensors installed near a factory are used to detect the emission of PM2.5
pollutants. If pollutants were emitted on more than one occasion (with an intermittent period of normal
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concentrations), then the fact that the initial pollution event is held in memory might prevent the
detection of subsequent violations. In other words, if the previous pollution event is held in memory
for longer time, the next pollution event will be treated as an inlier and the method could not detect
next pollution event.

Moreover, limited memory and computing power impose limitations on window size and thus
on model performance because limitations on memory capacity and computational power necessitate
the elimination of some previous data points. However, setting an excessively small window size can
degrade performance because we can only hold a few data points in memory and hence there may be
lack of neighboring data points with similar features, which affects the outlier scores.

A data stream potentially contains an infinite number of data points: S = {s1, s2, ..., st, ...}.
Each data point St ∈ RD is collected at time t. We need to consider the following constrains for
applications in data stream environments.

• Continuous data points (usually infinite).
• Limited memory and limited computing power.
• Real time responses for processed data.

Our goal is to detect outliers by calculating the LOF score for each data point. In addition, we are
focusing on detecting outliers in data stream. Therefore, the following constraints must be considered
in the detection of outliers in a data stream.

• Memory limitations constrain the amount of data that can be held in memory. We need to consider
this for handling unbounded data stream environment.

• The state of the current data point as an outlier/inlier must be established before dealing with
subsequent data points. Note that we do not have any information related to subsequent data
points appearing in the data stream.

• Adding new data may induce new clusters.
• Limited computing power needs to be utilized before new data arrives in the data stream.

Therefore, the algorithms need to be efficient in terms of execution time.

In this study, we sought to resolve these issues by developing a (1) time-aware and
density-summarizing incremental LOF (TADILOF) and (2) a method to approximate the value of LOF.
For time-aware summarization, we include a time component, also termed time indicator, with each
data point. The inclusion of a time component in the summary phase makes it possible to consider the
sequential order of the data, and thereby deal with concept drift and enable the removal of outdated
data points. Basically, every data point is assigned a time indicator referring to the point at which it was
added to the streaming data. When a new data point arrives, the time indicators of K-nearest neighbor
data points are updated if the newly added data point is not judged as an outlier. Using this strategy,
the data points near to new data points are updated with the current time indicator and therefore these
data points are less likely to be removed in the summarization phase. Thus, our proposed method is
more likely to follow the variations in data that may change over time.

Furthermore, we propose a method to calculate approximate LOF score based on the summary
information of previous data points. Note that this involves estimating the distances between
newly-added data points and potential deleted neighbors (i.e., data points deleted in a previous
summary phase). In the proposed method, LOF score is used to decide whether a newly added data
point is an outlier or not in accordance with a LOF threshold. LOF score represents the outlierness of
the data points based on the local densities defined using K-nearest neighbor data points. In addition,
LOF score is able to adjust for the variations in the different local densities [2]. If the newly added
data point is detected as an outlier as per LOF threshold, we use a second check based on proposed
approximate LOF score to finally decide whether it is an outlier or not.

To maintain the data in the window, we use the concept of a landmark window strategy as used
in the recent studies, MILOF [5] and DILOF [6], for local outlier detection in data streams. When the
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window is filled with the data points, we summarize the window to make space available for new
data points by removing the old and less important data identified by the proposed summarization
method. In our proposed summarization method, we summarize the data points of complete window
using three quarters of the window. Then, one quarter size of window becomes available for new data
points. We discuss the details of our summarization method in Section 3.2.

To limit the data to fit into available memory, the sliding window technique used in several
applications for data streams is also an option. In the sliding window technique, all the old data points
are deleted that cannot fit into memory. However, this may degrade the performance of local outlier
detection because new events cannot be differentiated from some past events, and the accuracy of the
estimated local outlier factor of data points will be affected if the histories of earlier data points are
deleted [5]. Therefore, we use the landmark window strategy. In addition, the proposed strategies of
using a time indicator and approximate LOF are suitable in combination with a landmark window for
local outlier detection accuracy.

In addition, to evaluate the performance of our proposed method, we executed extensive
experiments against the state-of-the-art algorithms on various real datasets. The results of experiments
illustrate that the proposed algorithm outperforms state-of-the-art competitors in terms of AUC while
achieving similar performance in terms of execution time. The results of experiments validate the
effectiveness of the proposed method to use the time component and approximate LOF, which help to
achieve better AUC.

Moreover, we applied the proposed method to a real-world data streaming environment for the
monitoring of the air quality. The Taiwanese monitoring system referred to as the location-aware
sensing system (LASS) employs 2000 sensors, each of which can be viewed as an individual data
stream. We used the proposed system to detect outliers in each of these data streams. We call this type
of outlier a temporal outlier because such outliers are compared with historical data points from the
same device. We then combine the position of every device to facilitate the detection of spatial outliers
and pollution events based on outliers from the neighboring devices.

The main contributions of this work are as follows.

• We developed a novel algorithm to detect outliers in data streams. The proposed approach is
capable of adapting the changes in variations of data over time.

• We developed an algorithm to calculate approximate LOF score in order to improve model
performance.

• Extensive experiments using real-world datasets were performed to compare the performance of
the proposed scheme with those of various state-of-the-art methods.

• The efficacy of the proposed scheme was demonstrated in a real-world pollution detection system
using PM2.5 sensors.

The rest of this paper is organized as follows. In Section 2, we discuss related works. Then, we introduce
the proposed method in Section 3. In Section 4, we describe our experiments and a performance evaluation
of the proposed method. Section 5 demonstrates a case study based on our proposed method for monitoring
air quality and detection of pollution events. Finally, conclusions are presented in Section 6.

2. Background and Related Work

Outlier and anomaly detection on large datasets and data streams is a very important research
area that has been useful for several applications [1,2,7]. Some studies focus on detecting global
outliers, whereas other studies focus on detecting local outliers [1,2]. Different approaches have been
studied for outlier detection, such as distance-based methods, density-based methods, and neural
network-based methods [8].

In addition, clustering techniques can also be used for outlier detection. Therefore, we discuss
some works on clustering and outlier detection based on clustering. In [9], the authors discussed
a method for incremental K-means clustering. In the incremental database, this approach is better
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than traditional K-means. Similarly, the study in [10] proposes IKSC, incremental kernel spectral
clustering, for online clustering in dynamic data. Another study in [11] discusses various machine
learning approaches for real-world SHM (structural health monitoring) applications. The authors
discuss the temporal variations of operational and environmental factors and their influences on the
damage detection process. In [12], the authors propose enhancement of density-based clustering and
outlier detection based on clustering. In addition, the authors discuss the approach for parameter
reduction for density-based clustering. In [13], the authors propose a density-based outlier detection
method using DBSCAN. First, the authors compute the minimum radius of an accepted cluster; then a
revised version process of DBSCAN is used to further fit for data clustering and the decision of whether
each point is normal or abnormal can be made. In [14], the authors provide survey of unsupervised
machine learning algorithms that are proposed for outlier detection. In [15], the authors propose a
cervical cancer prediction model (CCPM) for early prediction of cervical cancer using risk factors as
inputs. The authors utilize several machine learning approaches and outlier detection for different
preprocessing tasks.

The local outlier factor (LOF) [3] is a well-known density-based algorithm for the detection of
local outliers in static data. This method can be useful in several applications, such as detecting
fraudulent transactions, intrusion detection, direct marketing, and medical diagnostics [16–18].
Based on LOF, the study in [19] proposed a method to mine top-n local outliers. Later, the concept
of LOF was extended for dynamic data—for instance, incremental LOF (iLOF) [4] was made for
incremental databases, and MiLOF [5] and DILOF [6] were made for streaming environments.
The application of LOF to incremental databases requires updating every previous data point and
the recalculation of the LOF score, both of which are computationally intensive. iLOF reduces the
time complexity to O(nlogn) by updating the LOF score of data points affected by newly-added
data points. Unfortunately, this approach is inapplicable to data streams with limited memory
resources. MiLOF leverages the concept of K-means [20] to facilitate outlier detection in data streams
by overcoming the space complexity of iLOF (i.e., O(n2)). MiLOF uses a fixed window size to limit the
number of data points held in memory by summarizing previous data points through the formation of
K-cluster centers. Note, however, that MiLOF is prone to the loss of density information and a large
number of points are required to represent sparse clusters. DILOF was developed to improve the
summarization process using the nonparametric Rényi divergence estimator [21] to select minimum
divergence subset from previous data points. However, neither MiLOF nor DILOF consider the
concept-drift [22,23] of data in data streams to avoid using outdated data [24]. Furthermore, MiLOF and
DILOF base their summaries only on the distribution of previous data; i.e., they do not take the
sequence of data into account.

Some other methods based on LOF have been proposed for top-n outlier detection. In [25],
the authors proposed the TLOF algorithm for scalable top-n local outlier detection. The authors proposed
a multi-granularity pruning strategy to quickly prune search space by eliminating candidates without
computing their exact LOF scores. In addition, the authors designed a density-aware indexing mechanism
that helps the proposed pruning strategy and the KNN search. In [26], the authors proposed local outlier
semantics to detect local outliers by leveraging kernel density estimation (KDE). The authors proposed a
KDE-based algorithm, KELOS, for top-n local outliers over data streams. In [27], the authors proposed
the UKOF algorithm for top-n local outlier detection based on KDE over large-scale high-volume data
streams. The authors defined a KDE-based outlier factor (KOF) to measure the local outlierness score,
and also proposed the upper bounds of the KOF and an upper-bound-based pruning strategy to reduce
the search space. In addition, the authors proposed LUKOF by applying the lazy update method for bulk
updates in high-speed large-scale data streams.

Since this study proposes a method to find local outliers in data streams, we discuss LOF, iLOF,
MiLOF, and DILOF in the following subsections.
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2.1. LOF and iLOF

LOF scores are computed for all data points according to parameter K (i.e., the number of nearest
neighbors). The LOF score is calculated as follows:

Definition 1. d(p, o) is the Euclidean distance between two data points p and o.

Definition 2. K-distance(p), dK(p), is defined as the distance between data point p and its Kth nearest neighbor.

Definition 3. Given two data points p and o, reachability distance reach-distK(p, o) is defined as:

reach-distK(p, o) = max{d(p, o), K-distance(o)} (1)

Definition 4. Local reachability density of data point p, LRD(p), is derived as follows:

LRD(p) =

 1
K
∗ ∑

o∈NK(p)
reach-dist(p, o)

−1

(2)

where NK is the set of K nearest neighboring data points of point p, and K is a user-defined parameter.

Definition 5. Local outlier factor of data point p, LOF(p), is obtained as follows:

LOF(p) =
1
K
∗ ∑

o∈NK(p)

LRDK(o)
LRDK(p)

(3)

If the LOF score of a data point is greater than or equal to the threshold, then that data point is
considered an outlier.

LOF is used to calculate the LOF scores only once. iLOF was developed to deal with the problem
of data insertion, wherein we update only the previous data points that are affected by the new data
point. Note that iLOF is not applicable to the detection of outliers in streaming data, due to the fact
that there is no mechanism for the removal of outdated points. In addition, real-world applications
lack the memory resources required to deal with the enormous (potentially infinite) number of data
points generated by streaming applications.

Since LOF and iLOF are not suitable for data streams, MiLOF [5] was proposed for the detection
of outliers in streaming data. We discuss MiLOF in the next subsection.

2.2. MiLOF

MiLOF [5] was developed for the detection of outliers in streaming data using limited memory
resources. Essentially, MiLOF overcomes the memory issue by summarizing previous data points.
MiLOF is implemented in three phases: insertion, summarization, and merging. Note that the insertion
step of MiLOF is similar to that of iLOF. When the number of points held in memory reaches the
limit imposed by window size b, the summarization step is invoked, wherein the K-means algorithm
is used to find c cluster centers to represent the first b

2 data points, after which the insertion step is
repeated iteratively. In the merging phase, weights are assigned to each cluster center based on the
number of associated data points. The weighted K-means algorithm is then used to merge the new
cluster center with the old cluster center. When using MiLOF, the total amount of data held in memory
does not exceed m = b + c. MiLOF can be used to reduce memory and computation requirements;
however, it does not preserve the density of the original dataset within the summary, which is crucial
to detection accuracy.
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2.3. DILOF

Being similar to MILOF, DILOF is a density-based local outlier detection algorithm for data
streams that utilizes LOF score to detect outliers. DILOF is implemented in two phases: detection
and summarization. The detection phase, which is called last outlier-aware detection (LOD), uses the
iLOF technique to calculate LOF values when new data points are added to the dataset. DILOF then
classifies the data points within the normal class or as an outlier. The summarization phase, which is
called nonparametric density summarization (NDS), is activated when the number of data points
reaches the limit defined by window size W. DILOF uses the nonparametric Rényi divergence
estimator [21] to characterize the divergence between the original data and summary candidate.
The gradient descent method is then used to determine the best summary combination. Summarization
compiles half of the data X = {x1, x2, ..., xW/2} within a space one quarter the size of the window size
Z = {z1, z2, ..., zW/4} by minimizing the loss function. There are four terms in the loss function. In the
following, we introduce them one by one.

The first term is the Rényi diversity between the summary candidate and the original data.
Renyi diversity is calculated using Equation (4), as follows:

W/2

∑
n=1

yn
pK(xn))

vK(xn))
(4)

In Equation (4), yn is the binary decision variable of each data point xn. Data point xn is selected
when yn equals 1 and discarded when yn equals 0. However, assessing every subset combination to
determine the minimum loss values is impractical. NDS resolves this issue by relaxing the decision
variable to produce an unconstrained optimization problem, where yn becomes a continuous variable.
Using the gradient descent method, NDS selects the best combination of xn—i.e., the half of parameter
set yn with the highest values. pk(xn) is the Euclidean distance between data point xn and its
Kth-nearest neighbor in X. vk(zn) is the Euclidean distance between data point zn and its Kth-nearest
neighbor in Z. This term is given by the Rényi divergence estimator.

The second term is the shape term, which preserves the shape of the data distribution by selecting
data points at the boundary of clusters, such that the data point within the boundary always has a
higher LOF value. This term is shown as Equation (5).

−
W/2

∑
n=1

yneLOFK(xn)) (5)

The third and fourth terms are regularization terms. The third term is used to control yn close to 0–1.
It is important to avoid excessively high xn values, which would render other data points ineffective.
The fourth term is used to select half of all data points. These terms are shown in Equation (6).

W/2

∑
n=1

ψ0,1(yn) +
λ

2
(

W/2

∑
n=1

yn −
W
4
)2 (6)

Combining all of the components, we obtain the loss function of DILOF as follows:

min
y

W/2

∑
n=1

yn
pk(xn)

vk(xn)
−

W/2

∑
n=1

yneLOFk(xn)

+
W/2

∑
n=1

ψ0,1(yn) +
λ

2

(
W/2

∑
n=1

yn −
W
4

)2 (7)
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The gradient descent method is then used to obtain the optimal result as shown in Equation (8).

yn
(i+1) = yn

(i) − η

 ∑
x∈CK,n

pK(x)
vK(x)

+
pK(xn)

vK(xn)
− eLOFK(xn)

+ ψ0,1
′
(yn

i) + λ

(
W/2

∑
n=1

yn
(i) − W

4

)} (8)

In Equation (8), ψ is the learning rate, i is the number of iteration, and C(K,n) is a set of data points
that have xn as their Kth-nearest neighbor in Z. Interested readers are referred to the DILOF paper [6]
for details on the calculation of C(k,n). After the decision variable has been updated, the larger half
is selected as the summary point. Following this summarization phase, half of all data points are
summarized into a quarter of all data points. This leaves a space equal to one quarter of the window
size into which new data points can be inserted.

The DILOF method lacks a mechanism by which to remove outdated data or compensate
for concept drift. NDS calculates only the difference in density in selection of a summary point.
We therefore added the concept of time to differentiate outdated data points.

3. Proposed Method: TADILOF

In this section, we outline the proposed TADILOF algorithm and approximate LOF score.
Algorithm 1 presents the pseudocode of the TADILOF algorithm. Our scheme also uses density
to select the summary; therefore, we have two phases: detection and summarization. In the detection
phase, we include a step in which previous information is used to obtain the approximate LOF, which is
then used to determine whether the newly-added point is an outlier. This detection phase is referred
to as ODA, outlier detection using approximate LOF. We add a time component to the summarization
phase, and therefore refer to it as time-aware density summarization (TADS). We provide the details of
procedures TADS and ODA in the following subsections. The approximate LOF score is calculated only
when there is information from previous data points. Therefore, we introduce the time component
before obtaining the approximate LOF score.

Algorithm 1 TADILOF algorithm

Input: DS: A data stream D = {d1, d2, ..., dt, ...},
Window size: W,
Number of neighbor: K,
Threshold: θ,
Step size: η,
Regularization constant: λ,
Maximum number of iteration: I

Output: The set of outliers in streams
1: dataInMemory = {};
2: outlierSet = {};
3: while a new data point dt is in stream do
4: dataInMemory.add(dt)
5: LOFk(dt) = ODA(dt,outlierSet,θ)
6: if LOFk(dt) > θ then
7: outlierSet.add(dt)
8: if dataInMemory.length > W then
9: dataInMemory=TADS(dataInMemory,η,λ,I)

10: end while
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3.1. Time Component

Addition of a time component to this type of task allows the model to distinguish old data from
new, thereby making it possible to recognize concept drift over time. For example, daytime readings
might not be explicitly differentiated from nighttime readings in the PM2.5 data, despite the fact that
time of day plays an important role in PM2.5 concentrations. Another example is the degree to which
purchasing behavior varies over time as a function of the strength of the economy. The addition of a
time component also provides a mechanism by which to remove outdated data, which might otherwise
compromise model performance.

In this study, we include a time component in the summarization phase. Basically, every data
point is assigned a time indicator ti referring to the point at which it was added to the streaming data.
In other words, the time indicators describe the age of every data point. The difference between ti and
the current time point corresponds to the length of time that data point di has existed in the dataset.
The objective is to discard outdated data and preserve newer data points, which are presumed to
more closely approximate the current situation. TADILOF refreshes data points close to the current
data point and updates the time indicator of points neighboring the new data point, as shown in the
following equation. Fortunately, this does not incur additional calculations due to the fact that we
have already identified the neighbors of the new data in the LOF process.

ti = tnew, i f di ∈ NK(dnew) (9)

Refreshing the time indicator of each data point enables our loss function to select data points
that fit the current concept. Thus, a new model can be used to select data points in accordance with the
density as well as the concept(s) represented by the current data streams. When TADS is triggered to
summarize previous data points, it calculates the time difference t_di f f between summarized time
stamp ts and the time stamp of data point di as follows:

t_di f fi = max {ts − ti − α ∗W, 0} (10)

In Equation (10), α is a hyperparameter indicating the amount of time that must elapse before
TADILOF designates data as outdated and removes them. For example, α = W

4 means that any data
point with a time difference of less than one quarter of the window size is less likely to be selected for
removal by the objective function. We present TADS in the next subsection.

3.2. Time-Aware Density Summarization (TADS)

Figure 1 presents the proposed TADS (in the TADILOF algorithm), which differs from NDS (in the
DILOF algorithm). Note that NDS always retains the most recent half window of data points and
summarizes the older half within a quarter size window. By contrast, TADS summarizes data points
from three quarters of the window, and does not necessarily retain only the latest data. Rather, the TADS
mechanism considers the density and the age of the data points. The time term is added to the TADS
loss function as follows:

min
y

W

∑
n=1

yn ∗ t_di f fn +
W

∑
n=1

yn
pK(xn))

vK(xn))
−

W

∑
n=1

yneLOFK(xn))

+
W

∑
n=1

ψ0,1(yn) +
λ

2
(

W

∑
n=1

yn −
3W
4

)2

(11)
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Figure 1. The summarization phase of TADILOF.

The details of the TADS procedure are shown in Algorithm 2.

Algorithm 2 Procedure TADS

Input: set of data point in memory X = {x1, x2, ...xW},
Window size: W,
Step size: η,
Regularization constant: λ,
Maximum number of iteration: I

Output: summary set
1: for each datapoint x ∈ X do
2: if LOFk(x) < historicalLOF(x) then
3: update LOF,LRD and meanDistance
4: end for
5: Y = {y1, y2, ...yW}
6: for each decision variables y ∈ Y do
7: y = 0.75
8: end for
9: for i = 1:I do

10: η = η ∗ 0.95
11: for n = 1:W do

. Using objective function, calculate the score of each data point for selection in the summary

set.
12: yn

(i+1) = yn
(i) − η

{
t_di f fn + ∑x∈CK,n

pk(x)
vk(x) − eLOFk(xn)ψ0,1

′
(yn

i) + λ
(

∑W
n=1 yn

(i) − 3W
4

)}
13: end for
14: end for
15: Project Y into binary domain
16: for n=1: 3W

4 do
17: Z ← Z ∪ {xn}
18: end for
19: Return Z
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3.3. LOF Score and ODA (Outlier Detection Using Approximate LOF)

Limitations on memory capacity and computational power necessitate the elimination of some
previous data points; however, setting an excessively small window size can degrade performance.
Let us take an example shown in Figure 2 with two local clusters from the data stream. The symbols
in different shape do not represent different kind of data points in a data stream. We have just make
different symbols to represent two different local clusters of data points from data stream in Figure 2.
In the example in Figure 2, new point A sits very close to cluster 1, but some of the points in that cluster
were deleted in the previous summarization phase, with the result that the new point is unable to find
a sufficient number of neighbors in cluster 1. This means that LOF must be calculated using points
from cluster 2, which could present the new point as an outlier. We sought to overcome this issue
by calculating approximate LOF scores, which are then saved with the LRD and the mean distance
between each point to neighbors in every summarization phase. This saved information can then be
used to calculate the reachability of potential neighbors.

New
Point A

p𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡

𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡

Reference 
Point R

Potential 
Point P

Cluster 1 Cluster 2

Figure 2. The case of new point to calculate LOF score with point from other cluster.

Assume that new point A is added to the dataset. If the calculated LOF exceeds the threshold,
then the algorithm classifies it as an outlier. At the same time, historical information related to reference
point R (a KNN neighbor of A) is used to find potential neighbor point P as a function of historical
distance between R and its neighbors. Following the identification of the reference point R and its
potential neighbor point P, the approximate LOF value is calculated to reassess whether the data point
in question should be classified as an outlier or an inlier.

Calculation of the approximate LOF score requires preservation of some of the information in the
previous window. In the summarization phase, the LOF score of any data point selected for inclusion
in the first summary is retained as its historical LOF score. Note that its historical LRD and the mean
distance to its neighbors are also preserved. For any data point selected for the initial and subsequent
summarization, we compare the current LOF score with its historical LOF score. In cases where the
current LOF score is lower, the associated information is updated. Note that a lower LOF score is
indicative of the density typical of inliers.

Point A has K-nearest neighbors. Our aim is to identify the neighbor with the lowest product of
historical LOF score and Euclidean distance between A and itself. That neighbor is then used as a
reference point R by which to calculate the approximate LOF score of A.

We can use the historical LRD of R to obtain the mean reachability distance between R and P
using the following equation:

mean-reach-dist(R, P) =
1

historicalLRD(R)
(12)

Our objective is to identify potential neighbors of new point A. Even though the current state
indicates that A is an outlier, it may in fact be an inlier if some of its neighbors avoided deletion in the
previous few windows.
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There are three scenarios in which new point A, reference point R, and potential neighbor P,
which represents a deleted data point, could be distributed in ODA. In Definition 1 d(R, P) is used
to represent the mean Euclidean distance between R and P. Using Definition 3, reach-dist(R, P)
indicates the mean reachability distance between R and P. Before we discuss these three scenarios,
it is necessary to discuss the distribution of potential neighbors. Potential neighbor P can be in any
position, including the space between the reference point and the new point. It is infeasible to record all
potential neighbor positions; therefore, we use the case where the potential neighbor is located at the
greatest distance between the new data point and itself. We then use the mean distance between R and
its historical neighbors and the mean reachability distance to calculate the approximate reachability
distance between A and P.

In the first scenario (Figure 3 left), reachability distance reach-dist(R, P) is equal to Euclidean
distance d(R, P), which is larger than K-distance(P). In this scenario, ODA can use d(R, P) + d(R, A)

to cast the mean approximate reachability distance between A and P. In the second scenario (Figure 3
middle), reach-dist(R, P) is larger than d(R, P) but less than d(R, P) + d(R, A). In this case, ODA can
also use d(R, P) + d(R, A) to cast the mean approximate reachability distance between A and P. In the
third scenario (Figure 3 right), reach-dist(R, P) is larger than d(R, P) + d(R, A). In this case, ODA can
use reach-dist(R, P) to represent the mean approximate reachability distance reach-dist(A, P).

New Point A

Reference 
Point R

Potential 
Point P K-Distance

𝑑𝑖𝑠𝑡(R, P)

𝑑𝑖𝑠𝑡(R, A)

Reference 
Point R

New Point A

Potential 
Point P

K-Distance

𝑑𝑖𝑠𝑡(R, P)

𝑑𝑖𝑠𝑡(R, A)

𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡(R, P)

Reference 
Point R

New Point A

Potential 
Point P K-Distance

𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡(R, P)
= 𝑑𝑖𝑠𝑡(R, P)

𝑑𝑖𝑠𝑡(R, A)

Figure 3. Three scenarios of a potential neighbor, a reference point, and a new point.

By assembling these, we can obtain the approximate mean reachability distance between point P
and A using the following equation:

mean-reach-dist(A, P) =

max
{

d(R, P) + d(R, A),
1

historicalLRD(R)

} (13)

After obtaining the approximate mean reachability distance of point A, we can calculate the
approximate LRD of A using Equation (2) (Definition 4), based on the fact that LRD is the reciprocal of
the mean reachability distance.

ApproximateLRD(A) = mean-reach-dist(A, P)−1 (14)

ODA then calculates the sum of LRD of P using Definition 5, as follows:

mean-LRD(P) = historicalLOF(R) ∗ historicalLRD(R) (15)

The approximate reachability distance and average LRD of the potential neighbor are then used
to compute the approximate LOF using Definition 5, as follows:

ApproximateLOF(A) =
mean-LRD(P)

ApproximateLRD(A)
(16)
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ODA can use this approximate LOF to determine whether A is an outlier or an inlier.
The pseudocode of the ODA procedure is shown in Algorithm 3.

Algorithm 3 Procedure of ODA

Input: data point xt
set of data point in memory X = {x1, x2, ...xt},
threshold: θ,
set of detected outlier: outlierSet

Output: LOF score of xt
1: Using incremental LOF technique updates all reverse KNNs of xt
2: NK(x) = All KNNs of xt
3: for each neighbor n ∈ NK(x) do
4: updating time stamp of n
5: end for
6: Compute LOFk(xt)
7: if LOFk(xt) > θ then
8: Reference Point R= arg minr∈NK A historicalLOF(r) ∗ d(r, A)
9: Find the approximate reachability distance using Equation (12)

10: Find the approximate LRD of (xt) using Equation (13)
11: Use historical LRD of R and historical LOF of R to find mean of LRD of potential neighbors by

Equation (14)
12: Find the approximate LOF of (xt) using Equation (15)
13: if approximate LOF of (xt) > Threshold then
14: outlierSet.add(xt)

3.4. Time and Space Complexity

In DILOF [6], the authors analyzed time complexity from the perspectives of summarization and
detection separately. Note that time complexity of DILOF in the detection phase is O(W), whereas time

complexity of DILOF in the summarization phase is O(W
2

2
). The space complexity of DILOF algorithms

is O(W ∗ D), where D is the dimensionality of the data points.
In the following, we discuss the detection phase of the proposed algorithm, TADILOF, in which

we calculate the approximate value of the points classified as outliers by the LOF score. Let us assume
that z is the number of points that are classified as outliers. In our proposed detection phase, O(K) is
incurred in calculating the approximate LOF score for each point. Thus, O(W + z ∗ K) indicates the
time complexity in the detection phase. However, the number of neighbors K is far less than window
size W. Therefore, the cost incurred in the detection phase is O(W).

The time complexity of TADILOF in the summarization phase is O(W2). TADILOF tends to
require more time than DILOF. However, the execution times in the experiments were still very close.

The additional space complexity associated with the proposed method includes the time indicator,
historical LOF, historical LRD, and mean neighbor distance. Note that the size of the data in the
summary is 3W

4 . Therefore, the total cost is O(3W). From this, we can see that the space complexity of
TADILOF with approximate LOF is O(W ∗ (D + 3)).

4. Performance Evaluation

In this section, we compare the performance of TADILOF with the state-of-the-art, DILOF [6] and
MiLOF [5] algorithms. In addition, we have included results of experiments from iLOF [4] algorithm
on some datasets. We downloaded the implementation of DILOF and iLOF from URL provided
in [6]. In [6], two versions of DILOF were implemented. One without “skipping scheme” and another
with “skipping scheme”. We discuss the skipping scheme and the related experiments in Section 4.4.
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First, we describe the datasets and experiment settings, i.e., the parameters used in the experiments.
We then examine the performance of each algorithm.

4.1. Datasets

The performance of the proposed method was evaluated by applying it to various datasets,
which are shown in Table 1. We downloaded these preprocessed datasets from ODDS, Outlier Detection
Datasets, Library [28]. These datasets were originally from UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/index.php). ODDS Library provides preprocessed versions of these
datasets. For the details about these datasets and information on preprocessing, we refer the readers to
the ODDS Library website (http://odds.cs.stonybrook.edu/).

Table 1. Datasets.

Dataset # Data Points # Dimensions # Outlier Data Points Need to Shuffle

Annthyroid 7200 6 534 false
Cardio 1831 21 176 true
HTTP (KDD Cup 99) 567,498 3 2211 false
Letter Recognition 1600 32 100 true
Mnist 7603 100 700 true
Musk 3062 166 97 true
Pendigits 6870 16 156 false
Satellite 6435 36 2036 false
SMTP (KDD Cup 99) 95,156 3 30 false
Vowels 1456 12 50 true

4.2. Experiment Settings

The same set of hyperparameters were used for TADILOF and DILOF. The learning rate and
maximum number of gradient descent iterations were set at 0.3 and 0.001, respectively. The K-nearest
neighbors were 8 for all of the datasets. These parameters were suggested in DILOF [6] and we
have used the same parameters in our experiments for comparisons to other algorithms. In addition,
we ran another experiment for different K values. Some of the preprocessed datasets contained
all the outliers grouped together (as a class) at the beginning or end. Some datasets had outliers
scattered among inliers. We therefore shuffled datasets of the former kind before running the algorithms.
The last column in Table 1 shows whether we shuffled the dataset or not, where “true” means we
shuffled the dataset. We also assessed model performance using windows of various sizes, due to the
importance of this parameter in terms of memory usage and computation time. For small datasets,
we selected a small window size W = {100, 120, 140, 160, 180, 200}. Similarly, for larger datasets,
we selected larger window size W = {100, 200, 300, 400, 500, 600, 700}. For LOF score thresholds,
we use LOF_Thresholds = {0.1, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.6, 2.0, 3.0} which were used in DILOF
implementation. The same thresholds were used in the experiments, and false positive rate (FPR)
and true positive rate (TPR) were calculated for each threshold. Then AUC in ROC space was calculated
for all the algorithms. All experiments were performed on a PC with Intel Core i7-3770 3.4 GHz,
32 GB RAM, and Windows 10 64-bit operating system. The algorithms were implemented in C++
programming language.

4.3. Experimental Results

4.3.1. AUC, Execution Time, and Memory Usage

We evaluated MiLOF, DILOF, and TADILOF in terms of AUC and execution time on
various datasets. As reported in [6], “DILOF without skipping scheme” had better performance
than “DILOF with skipping scheme” in the datasets except for “HTTP KDD Cup 99” dataset.
Therefore, we compare “DILOF without skipping scheme” with the proposed TADILOF in this

https://archive.ics.uci.edu/ml/index.php
http://odds.cs.stonybrook.edu/
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section. We discuss the skipping scheme and related experiments on “HTTP KDD Cup 99” dataset in
Section 4.4.

First we ran experiments on Pendigits, SMTP, and Vowels datasets to assess the results for
different K values. The window size was set at 140 for Pendigits and Vowels dataset while the window
size was set at 400 for SMTP dataset. Figures 4 and 5 show the results of this experiments, i.e., AUCs
and execution times of MILOF, DILOF, and TADILOF algorithms. For the remaining experiments,
we set K at 8, which was also used in DILOF [6].
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Figure 4. AUC on various datasets for different K values.
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Figure 5. Execution time on various datasets for different K values.

Next, we ran the experiments on various datasets to assess the performances of the algorithms
for different window sizes. Figures 6 and 7 show the AUCs and execution timse of all the algorithms
respectively. We can see that TADILOF outperformed MiLOF and DILOF in terms of AUC in most of
the cases on various datasets. Next we discuss each experiment one by one.

Figure 6 illustrates that the AUC increases with the increase of window size on the Annthyroid,
Letter Recognition, Mnist, Satellite, SMTP, and Vowels datasets. Similarly, the AUC decreases with
the increase of window size on Cardio, Musk, and Pendigits datasets. In both the cases, TADILOF
outperforms the competitors in terms of AUC for most of the window sizes on all these datasets.
In terms of AUC, TADILOF is a clear winner on Cardio, Musk, Pendigits, Satellite, and Vowels datasets.

On the Annthyroid dataset, both MiLOF and TADILOF have similar AUCs for window sizes 100
and 120. However, in the case of window sizes larger than or equal to 140, TADILOF outperforms all
the competitors.

On the Letter Recognition dataset, TADILOF outperforms DILOF in terms of AUC. Similarly, MiLOF
outperforms DILOF. In addition, MiLOF outperforms TADILOF in the case of window sizes smaller than
140. However, in the case of window sizes larger than 140, TADILOF outperforms MiLOF.

On the Mnist dataset, TADILOF has higher AUCs for some window sizes, whereas for other
window sizes MiLOF has higher AUCs. Both MiLOF and TADILOF outperform DILOF in terms of
AUC on Mnist dataset.

On the SMTP dataset with a relatively small window size (100, 200, and 300), the performances of
TADILOF and DILOF were similar. However, for the window sizes larger than 300, TADILOF clearly
outperformed DILOF in terms of AUC. When the window size exceeds 400, the performance of DILOF
dropped dramatically due to its inability to remove outdated data. Increasing the window size beyond
500 led to a slight drop in AUC of TADILOF. However, TADILOF maintained AUC at above 0.9 for
larger windows that exceeded window size 300.
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The reasons behind the better performance of TADILOF are as follows. The method removes
outdated data which might otherwise have influence on new data points, thereby preventing the
identification of outliers. The ability to follow the concept drift of the data using time indicator was
also shown to enhance performance. In addition, approximate LOF score calculated with the historical
information provides the second chance to judge the data point as outlier or inlier. Using the time
component for time-aware summarization helps one to eliminate too-old data from the summary.
Thus, it prevents the influence of data which are too old. However, due to window size limitation,
some not-so-old data may also be deleted. Thus storing some statistics for K-neighbors from previous
window helps to judge the new data by applying second check based on approximate LOF if the new
data point is detected as outlier based on current LOF score.
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Figure 6. AUC on various datasets with different window sizes and K = 8.

Figure 7 shows the performances of the algorithms in terms of execution time. Note that the
y-axis is in log scale of base 2 in the figures for Annthyroid, Mnist, Musk, Pendigits, and Satellite
datasets. Both DILOF and TADILOF significantly outperform iLOF and MiLOF in terms of execution
time. Overall, the time complexity of TADILOF matched the values estimated in Section 3.4. The time
consumption of TADS was similar to that of the original NDS. The only difference was the fact that
TADS calculated the Rényi divergence between all data points in memory and three quarters of
the data points. In contrast, NDS computed half of all data points and a quarter of all data points.
The approximation of LOF values increased execution time only slightly. Nevertheless, TADILOF
had a similar performance to DILOF in terms of execution time. Overall, the proposed algorithm
outperformed state-of-the-art competitors in terms of AUC while achieving similar execution times.

Similarly, Figure 8 shows the performances of DILOF and TADILOF on various datasets in terms
of memory usage. We used Win32 API for reporting the memory usage of DILOF and TADILOF.
Figure 8 demonstrates that in most of the cases, TADILOF used only a little more memory than
DILOF. The results of experiments in terms of memory usage conformed with the theoretical analysis.
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Nevertheless, we can see from the results of experiments that both DILOF and TADILOF do not take
much memory and are suitable for data stream environment.
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Figure 7. Execution time on various datasets with different window sizes and K = 8.
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Figure 8. Memory usage on various datasets with different window sizes and K = 8.

4.3.2. Precision, Recall, and F1 Score

On the same datasets, we investigated the precision, recall and F1 score for different window sizes
and K = 8. The Tables 2–10 show the precision, recall, and F1 score on various datasets for DILOF,
TADILOF, and MILOF. In most cases, TADILOF had better precision and recall. Particularly, the recall
values are much better than those of the other algorithms. Thus the F1 scores of TADILOF are the best.
As for the precision, TADILOF performed better when the window size was larger.

Table 2. Precision, recall, and F1 score on Annthyroid dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.259074 0.224178 0.2289622 0.350187 0.383895 0.3506741 0.188322 0.198476 0.1945009
120 0.264844 0.222732 0.2331385 0.355993 0.392697 0.3582022 0.191396 0.200518 0.1975793
140 0.259869 0.213771 0.2369482 0.367790 0.404307 0.3630711 0.195014 0.201042 0.2018931
160 0.257486 0.218562 0.2381993 0.378652 0.415730 0.3679961 0.197863 0.206054 0.2023676
180 0.258819 0.217542 0.2464307 0.375094 0.418352 0.3726779 0.196032 0.207163 0.2043856
200 0.264608 0.218433 0.2433799 0.380899 0.426779 0.3750937 0.199770 0.210723 0.2032031

Table 3. Precision, recall, and F1 score on Cardio dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.3467338 0.3693657 0.3151908 0.3914205 0.4547727 0.3050568 0.2156009 0.2700938 0.1910918
120 0.3381342 0.3508179 0.3284806 0.3751136 0.4397159 0.3127273 0.2011454 0.2549688 0.1956810
140 0.3218308 0.3431242 0.3028065 0.3655682 0.4323864 0.2982955 0.1903846 0.2475356 0.1816338
160 0.3151459 0.3354626 0.3063062 0.3569886 0.4157387 0.3037500 0.1832554 0.2353132 0.1818394
180 0.3209461 0.3262367 0.3021858 0.3512500 0.4147726 0.3022158 0.1781800 0.2318135 0.1784863
200 0.3120879 0.3206106 0.2919695 0.3422159 0.4043182 0.2994319 0.1706907 0.2229609 0.1725868
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Table 4. Precision, recall, and F1 score on Letter Recognition dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.12697568 0.11241224 0.2220374 0.2059 0.2308 0.2593 0.06782202 0.08080138 0.1311881
120 0.14821722 0.16318930 0.2436584 0.2139 0.2443 0.2616 0.07340590 0.09222663 0.1351141
140 0.15472405 0.15568830 0.2298457 0.2193 0.2517 0.2618 0.07528581 0.09592009 0.1339924
160 0.17106840 0.17378370 0.2574958 0.2271 0.2625 0.2663 0.08395074 0.10338267 0.1392814
180 0.19773730 0.20144530 0.2839139 0.2335 0.2706 0.2718 0.08891001 0.11030273 0.1452346
200 0.20078190 0.19852930 0.2843155 0.2375 0.2732 0.2696 0.09236163 0.11257103 0.1431587

Table 5. Precision, recall, and F1 score on Mnist dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.221380000 0.191549667 0.240385667 0.209047667 0.243714000 0.241381000 0.074075133 0.107531667 0.135068000
120 0.200322333 0.272608333 0.254099000 0.212190333 0.248285667 0.242285667 0.076509233 0.112503333 0.138804667
140 0.198687667 0.260456000 0.292730000 0.216428333 0.257047667 0.249047667 0.080405100 0.121062667 0.140650667
160 0.228525333 0.293933667 0.301560333 0.217190333 0.262143000 0.252381000 0.080920167 0.125967000 0.144668000
180 0.177270000 0.281288667 0.307995000 0.219428667 0.265905000 0.257190333 0.083189067 0.127457667 0.145774667
200 0.186638333 0.297026333 0.298204333 0.221857000 0.270571333 0.257428333 0.084071200 0.133201333 0.147606667

Table 6. Precision, recall, and F1 score on Musk dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.4421690 0.4141334 0.4397151 0.3313403 0.5407216 0.2925772 0.2013681 0.3326063 0.1927423
120 0.4083079 0.4027774 0.4104153 0.2854639 0.4829896 0.2662887 0.1614765 0.2968274 0.1652040
140 0.3923583 0.3881677 0.4092076 0.2637113 0.4541238 0.2397939 0.1438728 0.2802120 0.1452295
160 0.3857042 0.3906538 0.3659905 0.2461858 0.4086599 0.2360825 0.1276172 0.2505055 0.1363073
180 0.4097445 0.3819757 0.3576605 0.2322681 0.3759795 0.2064948 0.1189272 0.2324761 0.1081695
200 0.3928690 0.3710396 0.3543731 0.2198969 0.3363918 0.1968042 0.1107008 0.2034848 0.1058940

Table 7. Precision, recall, and F1 score on Pendigits dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.0540172 0.0955094 0.10309758 0.312179 0.445513 0.3918589 0.0699342 0.103071 0.11157027
120 0.0517353 0.1142970 0.08978204 0.322436 0.483333 0.3849999 0.0718471 0.111540 0.10553305
140 0.0582843 0.0868875 0.08765809 0.331410 0.481410 0.3944872 0.0731726 0.108052 0.10599671
160 0.0553464 0.0676196 0.07356239 0.330128 0.485897 0.3857051 0.0716655 0.104400 0.09873375
180 0.0429529 0.0734877 0.07456543 0.314103 0.478205 0.3844233 0.0598091 0.105238 0.09594913
200 0.0500194 0.0743026 0.08276458 0.328205 0.484615 0.3871795 0.0667915 0.102561 0.09896692

Table 8. Precision, recall, and F1 score on Satellite dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.486230 0.488270 0.4720359 0.256925 0.333792 0.2466356 0.229341 0.303750 0.2279936
120 0.498198 0.496403 0.4636664 0.257122 0.341945 0.2488359 0.228337 0.307481 0.2281764
140 0.481029 0.494004 0.4694753 0.260806 0.332760 0.2601866 0.230814 0.295530 0.2381250
160 0.498065 0.492069 0.4886004 0.266994 0.325688 0.2682712 0.233976 0.286045 0.2438489
180 0.498793 0.507865 0.4879055 0.278340 0.339096 0.2791945 0.242351 0.298429 0.2519019
200 0.491820 0.505140 0.4673425 0.289293 0.341454 0.2788359 0.252402 0.297941 0.2501888
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Table 9. Precision, recall, and F1 score on SMTP dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.00265890 0.00164838 0.002386766 0.7633 0.7400 0.5029 0.00525291 0.00327270 0.004681796
200 0.00256851 0.00247500 0.002520710 0.7733 0.7900 0.5147 0.00507621 0.00491061 0.004933168
300 0.00332737 0.00344192 0.002814311 0.7933 0.8133 0.6179 0.00655182 0.00679199 0.005521916
400 0.00265894 0.00238982 0.002669190 0.7867 0.9133 0.6603 0.00525692 0.00475252 0.005260103
500 0.00191050 0.00313257 0.002218161 0.7467 0.9467 0.6417 0.00379399 0.00620751 0.004383276
600 0.00203202 0.00191777 0.001829777 0.7700 0.9767 0.5839 0.00403406 0.00382331 0.003621248
700 0.00168554 0.00185686 0.001824417 0.6767 0.9067 0.5933 0.00334839 0.00369957 0.003614118

Table 10. Precision, recall, and F1 score on Vowels dataset.

Window Size
Precision Recall F1 Score

DILOF TADILOF MILOF DILOF TADILOF MILOF DILOF TADILOF MILOF

100 0.14336408 0.1570996 0.1922093 0.3256 0.3898 0.4302 0.1121199 0.130352 0.179416
120 0.16889650 0.1551854 0.1959132 0.3476 0.4350 0.4202 0.1239128 0.148712 0.171690
140 0.16830130 0.1644227 0.2006647 0.3660 0.4604 0.4350 0.1329999 0.158371 0.175122
160 0.17210987 0.1958837 0.2394359 0.3756 0.4758 0.4384 0.1360716 0.166075 0.179563
180 0.16043631 0.1741156 0.2275521 0.3862 0.5022 0.4494 0.1367308 0.174471 0.182075
200 0.16436960 0.1809000 0.2074316 0.3914 0.5000 0.4348 0.1390244 0.173421 0.173099

4.4. Skipping Scheme for a Sequence of Outliers

In some cases, there may appear long sequence of outliers which can form a dense cluster of
outliers. As reported in [6], in “HTTP KDD Cup 99” dataset there is a long sequence of outliers causing
the algorithms to not perform well. In DILOF [6], the authors propose a skipping scheme to solve
the sequence of outliers problem. Any point previously classified as an outlier point is set as the
“last outlier,” before calculation of the Euclidean distance between the new point and the last outlier.
If the Euclidean distance exceeds the average of all points to its first nearest neighbor, then that point is
classified as an outlier and excluded from the database. Note however that the last outlier is identified
using a particular threshold. Under these conditions, the fact that a different threshold could give
a different last outlier means that it would be unreasonable to calculate AUC, considering that the
likelihood of registering a true positive (TP) or false positive (FP) does not necessarily vary with the
threshold. In this situation, the area under the curve is recalculated (i.e., the ROC is not continuous),
such that AUC is unable to accurately indicate the performance of the model. Nonetheless, we propose
to fix the threshold at a particular value to deal with this issue.

Note that the skipping scheme proposed with DILOF does not necessarily perform well on dense
datasets, due to the fact that many points belonging to dense clusters might be skipped. For example,
when there are a small number of sparse clusters in the memory, a new denser cluster appears.
The distance between the points associated with this cluster will be larger than the average distance of
previous data points, with the result that all of the points from this cluster are immediately discarded
by the skipping scheme.

Thus, we modified the skipping scheme to calculate the average distance between new data
points and their K neighbors. We then conducted a comparison of the distance between the last outlier
and the new data point. In the event that the former is larger than the latter, then we immediately
designate the new data point as an outlier and discard it. We implemented this modified skipping
scheme with TADILOF.

We set the threshold of last outlier to T = {2.5, 3.0} with the number of neighbors set at 8, and a
window size of W = {100, 200, 300, 400, 500, 600, 700}. The experimental results obtained using the
HTTP KDD Cup 99 dataset are presented in Figure 9. Figure 9 illustrates that the modified skipping
scheme achieved an AUC of more than 0.9 on the HTTP KDD Cup 99 dataset, regardless of the
window size.
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Figure 9. AUC and execution time on KDD 99 HTTP dataset using skipping scheme.

5. PM2.5 Sensors Case Study

In this section, we introduce the application of our proposed method that we used for monitoring
air quality in Taiwan. There are several recent studies which have focused on air quality and PM2.5
forcasting [29–32], and anomaly detection in air quality [33].

In an effort to control air pollution in Taiwan, low-cost devices have been developed for monitoring
air quality. These devices are referred to as LASSs. The Taiwanese government has initiated a project in
cooperation with Edimax for the wide-scale deployment of LASS in elementary schools, high schools,
and universities. The LASS used in this project are referred to as AirBox devices. Our objective in this
study was to enable the real-time monitoring of all 2000 AirBox devices simultaneously.

We deployed a system in Taiwan for the detection of outliers in a large-scale dataset from PM2.5
sensors. This system provided 2000 data streams from 2000 sensors transmitting reading data at
intervals of 5 min. The proposed method was used to detect outliers in each of the streams, with a
focus on temporal outliers to compensate for inter-device variation in terms of quality and sensitivity.
Following the identification of temporal outliers, we combined the positions of the devices with
meteorological data to facilitate the detection of pollution events.

In addition, we used precision PM2.5 stations which are provided by the Environmental Protection
Administration (EPA), Taiwan, to predict air quality. We integrated the data from precision PM2.5
sensors provided by EPA, Taiwan, because the quality of the data from precision PM2.5 sensors is
better. However, there are only 77 PM2.5 stations in Taiwan and they provide an average PM2.5 value
every hour. In this situation, we cannot find small pollution events. Therefore, we used low cost but
large-scale PM2.5 devices for detecting pollution events. There are some advantages to using those
PM2.5 sensors. The first benefit is that we can monitor air quality of Taiwan by a fine resolution on
space because the number of active devices is more than 2000 regarding those that are deployed in
Taiwan. The second benefit is that their sampling rate is 5 min. Therefore, we can also have a fine
resolution on time domain to monitor air quality of Taiwan.

After getting fine resolution data based on both time and space, the challenge is how to use those
data to detect pollution events. There are three challenges of using those data to detect pollution events.
The first one is those devices are low cost and there is lack of maintenance. In general case, those kind
of sensors need device correction every few month, so that the reading number is more accurate.
The second challenge is there are numerous devices, and each device has a very high sampling rate
which is every 5 min. We can see one of these devices as a data stream, and hence there are 2000 data
streams. Therefore, we need to handle this large amount of data streams. Our proposed method has
the capability to not only find outliers on different devices but also to deal with large number of data
streams which have the high sampling rate. Next, we introduce how our method finds the pollution
events in the following subsection.
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Monitoring a PM2.5 Pollution Event

In this section, we introduce how to use the proposed method to monitor PM2.5 pollution event.
First, we define spatial neighbors of devices using average wind speed of Taiwan. According to Central
Weather Bureau (CWB) of Taiwan, the average wind speed of Taiwan is 3.36 km/h. Therefore, we define
neighbor distance to be 1.5 km, which means any two devices are neighbors if the distance between
these two devices is less than 1.5 km.

Each device produces a data stream because every device samples the concentration of PM2.5
at interval of every five minutes and the number of data values is unbounded. We implemented our
proposed method on each data stream. Thus, we can detect outliers on different devices separately.
We call this type of outlier a temporal outlier because such outliers are compared with historical data
points from the same device. If proposed method detects any temporal outlier on devices, we add the
device to a set called outlier-event-pool and set an expire time as 30 min. In next 30 min, if we can find
two neighbor devices in the outlier-event-pool for any device in the outlier-event-pool, we call this
event a pollution event. Otherwise, it represents a spatial outlier of the device.

Figure 10 shows an example of spatial outlier. A spatial outlier means that there is only one
device which has a sudden rise/fall in the measurement value and other nearby devices do not
have any such change in the measurement. In Figure 10, the data stream in blue represents a target
device which shows outlier data points marked in red. Outliers from other data streams are not
shown, i.e., not marked in red in this figure. Similarly, Figure 11 shows an example of pollution
event. At the left side of the figure, the measurement value from a device has a sudden rise. Then the
neighbor devices in the right side of the figure also has a rise in the measurement value in next few
minutes. Since this event may have been started by nearby device shown in the left side of the figure.
Thus, we can get the potential pollution event region.

Now, we discuss a use case related to a fire event, where we applied the proposed approach
discussed above. In this case study, we targeted to track the pollution events where there is sudden
increase in PM2.5 values. Our analysis targeted a fire event, which was reported at 17:51 2019/11/12 in
Tainan city following reports of burning rubber. The Tainan EPB sent emergency notifications to Tainan
citizens at 21:00. However, our system detected (and reports) the event at approximately 17:00. Figure 12
presents PM2.5 data for all devices in the vicinity of the fire throughout the day. We can see some flat
lines in the readings. These are due to device malfunctions or reading errors (we have mentioned above
about the issues related to the low-cost airbox devices). Similarly, we can see some bottom curves in
Figures 11 and 12. These are there because of the placements of the airbox devices. Some of the devices
were placed indoors whereas other devices were placed outdoors. The indoor devices had a different
environment (such as air conditioned room) than the outdoor devices, which affected the readings
among different devices. Therefore, bottom curves are different from the others.

Figure 13 shows the result that our implemented system detects the pollution event (fire event).
In Figure 13, we can see that the proposed system sends the alert to subscribers at approximately
5 p.m.
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Figure 10. An example of a spatial (and temporal) outlier.

Figure 11. An example of a pollution event.

Figure 12. A case study of a fire event with PM2.5 sensors’ data.
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Figure 13. A case study on a fire event with PM2.5 sensors’ data—detected event.

6. Conclusions

This paper presents a novel algorithm to detect local outliers in data streams using LOF score.
In addition, we used a time indicator with data points to resolve the issue of concept drift in data
streams with the aim of improving accuracy in the detection of outliers. Moreover, we developed a
novel method by which historical information is used to calculate approximate LOF values to improve
accuracy with only a negligible increase in memory cost. The results of experiments illustrate that the
proposed method, TADILOF, outperforms the state-of-the-art competitors in terms of AUC in most of
the cases on various datasets. In addition, a practical application of the proposed scheme to PM2.5
sensor data clearly demonstrated its efficacy.
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