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Abstract: C-11 is a hybrid compound derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamide, with a
wide spectrum of anticonvulsant activity and low neurotoxicity. The aim of this study was to deter-
mine the effects of C-11 on the protective action of various antiepileptic drugs (i.e., carbamazepine
CBZ, lacosamide LCM, lamotrigine LTG, and valproate VPA) against maximal electroshock-induced
seizures (MES) in mice, as well as its neuroprotective and physicochemical/pharmacokinetic prop-
erties. Results indicate that C-11 (30 mg/kg, i.p.) significantly enhanced the anticonvulsant action
of LCM (p < 0.001) and VPA (p < 0.05) but not that of CBZ and LTG in the MES test. Neither C-11
(30 mg/kg) alone nor its combination with other anticonvulsant drugs (at their ED50 values from
the MES test) affected motor coordination; skeletal muscular strength and long-term memory, as
determined in the chimney; grip strength and passive avoidance tests, respectively. Pharmacokinetic
characterization revealed that C-11 had no impact on total brain concentrations of LCM or VPA in
mice. Qualitative analysis of neuroprotective properties of C-11, after a single administration of
pilocarpine, revealed no protective effect of this substance in the tested animals. Determination of
physicochemical descriptors showed that C-11 meets the drug-likeness requirements resulting from
Lipinski and Veber’s rules and prediction of gastrointestinal absorption and brain penetration, which
is extremely important for the CNS-active compounds.

Keywords: antiepileptic drugs; maximal electroshock-induced seizures; pharmacokinetic/pharmacodynamic
interaction; neuroprotection; physicochemical descriptors

1. Introduction

Epilepsy, one of the most common diseases of the nervous system, belongs to a
group of social diseases. It is estimated that approximately 400,000 people suffer from
this disease in Poland and approximately 60 million people worldwide, which constitutes
about 1% of the human population [1]. Despite the availability of over 25 antiepileptic
drugs (AEDs) worldwide, it is estimated that their effectiveness is in approximately 66% of
all seizure patients, leaving 1/3 of the patients resistant to one of the available AEDs used
in monotherapy [2,3]. The ineffectiveness of monotherapy with two consecutive drugs
from the same group is the basis for the introduction of polytherapy with two or more
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AEDs, preferably with different mechanisms of action [4–6]. Such therapy, unfortunately,
carries an increased risk of side effects.

Due to this, there is an urgent need to develop a new class of active compounds with
anticonvulsant and neuroprotective properties while being non-toxic. Over the past few
years, our team has focused on the search for new substances, both natural and synthetic,
that have such properties, and may have a magnifying effect on commercially used AEDs,
increasing their anticonvulsant activity [7–14].

Among a wide range of such substances is the 2-(2,5-dioxopyrrolidin-1-yl) propanamide
derivative, C-11 (formerly KA-11) (Figure 1). This compound is a hybrid substance that
was created as a result of the combination (hybridization) of fragments of the ethosuximide
structure (pyrrolidine-2,5-dione derivative), levetiracetam LEV (butanamide derivative of
pyrrolidin-2-one), and lacosamide LCM (compound with a benzylamide structure) [15].
Taking three AEDs with different modes of action into one substance may yield a compound
with a multidirectional mechanism(s) of action, and as a result, broad.
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Figure 1. Structural formula of 2-(2,5-dioxopyrrolidin-1-yl) propanamide derivative (C-11).

Pharmacological studies conducted by our research team have revealed that the C-11
hybrid has a wide spectrum of anticonvulsant activity and is effective in three acute seizure
models—MES, scPTZ, and 6 Hz (32 mA), after intraperitoneal administration in mice
(Table 1). Additionally, C-11 effectively suppresses seizure progression in the kindling
model of epilepsy caused by repeated injection of PTZ [16]. It should be emphasized
that this substance combines protective properties of individual drugs forming a hybrid
structure, which was observed in preclinical studies on animals. C-11 compound is more ef-
fective, and simultaneously, characterized by lower acute neurotoxicity than the commonly
used valproic acid (VPA),which was assessed in the funnel test in mice (Table 1) [15]. More-
over, it appears that C-11 may positively influence epilepsy-induced depressive behaviors.
This compound has also been shown to be effective in reducing pain responses in a tonic
pain model and a chemotherapy-induced peripheral neuropathy model in mice [16].

Table 1. Antiseizure and acute adverse effects of C-11 in the three seizure models and chimney test in mice.

Pretreatment Time (min) ED50 MES (mg/kg) ED50 PTZ (mg/kg) ED50 6Hz (mg/kg) TD50 (mg/kg) PI

30 88.4 ± 8.5 59.9 ± 4.0 21.0 ± 6.6 >1500
>16.97 (MES)
>25.04 (PTZ)
>71.43 (6 Hz)

60 85.1 ± 5.5 88.7 ± 3.1 35.0 ± 8.2 823.6 ± 107.9
9.68 (MES)
9.28 (PTZ)

23.53 (6 Hz)

Results are ED50 (±S.E.M) and TD50 (±S.E.M) values of C-11 that protected 50% of the mice from MES, PTZ, 6Hz-induced seizures, and
impaired motor coordination in 50% of mice challenged with chimney test, respectively [15].
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We also evaluated C-11 influence on cognitive functions, neurodegeneration, and
neurogenesis process in mice after chronical treatment in C57BL/6 mice. C-11 did not
disturb the proliferation of newborn cells compared to the control mice and did not induce
significant neurodegenerative changes in the mouse hippocampus. Behavioral studies did
not indicate any disturbances in spatial learning and memory functions in the Morris Water
Maze test after C-11 treatment [17]. In another experiment, we also assessed the impact
of C-11 on neurogenesis and cognitive functions after pilocarpine (PILO)-induced Status
Epilepticus (SE) in mice. The results obtained, where PILO SE mice were treated with C-11
and LEV, indicated markedly beneficial effects of C-11 on the improvement of neurogenesis
compared to the PILO control and PILO LEV mice. Moreover, C-11 improved cognitive
functions in PILO SE mice [18].

If an innovative substance that has a chemically different structure from the currently
used AEDs exhibits anticonvulsant properties in experimental models of epilepsy, it is
possible that such a substance could become a novel antiepileptic drug in the future. In
general, AED candidates considered for preclinical evaluation are commonly assessed in
combination with other, already established AEDs to confirm their effectiveness. Such
a protocol is the same as the one in clinical trials, in which novel AEDs are usually co-
administered with AEDs to provide the efficacy of novel antiepileptic drugs in patients
with seizures [6,19].

Considering the above-mentioned facts, it seems interesting and necessary to continue
experiments with C-11 in order to determine its anticonvulsant properties in combination
with four various antiepileptic drugs (carbamazepine CBZ, lacosamide LCM, lamotrigine
LTG, and valproate VPA) in the mouse maximal electroshock-induced seizure (MES) model,
which is considered to be an experimental model of tonic–clonic seizure and, to a certain
extent, of partial seizures with or without secondary generalization in humans [20]. That
particular seizure model was chosen because of its impact on the evaluation of anticonvul-
sant properties of a variety of compounds and because of the possibility to determine their
influence on commonly used drugs [20]. Additionally, to determine the acute adverse-effect
profiles for the combinations of C-11 with CBZ, LCM, LTG, and VPA, three behavioral tests
(chimney, passive avoidance, and grip-strength) were used. To confirm or exclude any
pharmacokinetic background for the observed interactions between C-11 and the studied
antiepileptic drugs, total brain concentrations of antiepileptic drugs were measured with
HPLC techniques. Neuroprotective properties of C-11 were also assessed. For this purpose,
experiments were conducted with the use of the neurodegenerative factor pilocarpine hy-
drochloride (PILO). Pilocarpine causes damage to neurons; therefore, it is commonly used
to induce seizures and status epilepticus in animals [21–25]. Furthermore, using the online
tool SwissAdme website, [26] the physicochemical properties of C-11 were determined.

2. Results
2.1. Effect of C-11 on the Anticonvulsant Activity of Various AEDs in the MES Model in Mice

CBZ, LCM, LTG, and VPA when administered alone protected, in a dose-dependent
manner, the animals from the tonic–clonic seizure model. Their ED50 values are presented
in Figure 2A–D.

C-11 (30 mg/kg) co-administered with LCM significantly enhanced the anticonvulsant
effect of the latter drug against maximal electroshock-induced seizures (F (2;45) = 9.152;
p = 0.0005), by reducing its ED50 value from 8.4 mg/kg to 4.4 mg/kg (by 48%; p < 0.001)
(Figure 2B). C-11 at a lower dose of 10 mg/kg did not significantly potentiate the anti-
seizure activity of LCM in the MES test (Figure 2B).

In relation to the VPA, C-11 at 30 mg/kg markedly potentiated the anticonvulsant
effects of this drug by decreasing its ED50 value from 355.2 to 251.5 mg/kg (by 29%; p < 0.05;
Figure 2D). However, C-11 at a lower dose of 10 mg/kg had no significant effect on the
antiepileptic properties of VPA in this experimental seizure model (Figure 2D).
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Figure 2. Effects of C-11 on the anticonvulsant potency of CBZ, LCM, LTG, and VPA in the MES model in mice. Columns
represent median effective doses (ED50 in mg/kg ± SEM) of antiepileptic drugs (CBZ (A), LCM (B), LTG (C) and VPA
(D)that protected half of the tested mice from tonic–clonic seizures. The log-probit method was used for calculating the
ED50 values. *** p < 0.001, * p < 0.05 vs. control (LCM, VPA + vehicle-treated) animals (one-way ANOVA and post-hoc
Tukey–Kramer test).

In contrast, C-11 at doses of 30 mg/kg had no significant impact on the anticonvulsant
action of CBZ and LTG in the MES test in mice (Figure 2A,C).

2.2. Effects of C-11 Alone and in Combination with Studied Aeds on Muscular Strength, Motor
Coordination, and Long-Term Memory in Mice

C-11 administered alone at a dose of 30 mg/kg did not affect motor, skeletal muscular
strength, and long-term memory in tested animals (Table 2). When C-11(30 mg/kg) was
administered in combination with CBZ, LCM, LTG, and VPA at doses corresponding to
their ED50 values from the MES test, long-term memory as determined in the passive
avoidance test was unaffected (Table 2). Furthermore, none of the combinations studied
impaired the skeletal muscular strength of the animals, as assessed by the grip-strength
test (Table 2). Similarly, C-11 (50mg/kg) concomitantly administered with the AEDs had
no significant impact on motor performance of the animals as assessed by the chimney
test (Table 2). In regards to the AEDs administered alone at doses corresponding to their
ED50 values from the MES test, the antiepileptic drugs had no significant impact on motor
performance, skeletal muscular strength, and long-term memory in mice (Table 2).
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Table 2. Effects of C-11 and its combinations with classical antiepileptic drugs on long-term memory, muscular strength,
and motor performancein mice.

Treatment (mg/kg) (1) Retention Time (s) (2) Grip Strength (gf) (3) Motor Coordination Impairment (%)

Vehicle 180 (173; 180) 98.51 ± 5.37 0
C-11 (30) 151 (25; 180) 94.89 ± 4.09 25

VPA (251,5) 137 (35; 180) 89.63 ± 6.15 0
VPA (251,5)+ C-11 (30) 156 (107; 180) 80.26 ± 4.94 12.5

CBZ (15.0) 180 (74; 180) 113.5 ± 4.25 0
CBZ (15.0) + C-11 (30) 180 (135; 180) 102.2 ± 4.73 0

LCM (4.4) 180 (130; 180) 94.80 ± 5.61 12.5
LCM (4.4)+ C-11 (30) 180 (29; 180) 98.26 ± 6.30 25

LTG (4.4) 180 (151; 180) 104.8 ± 6.41 0
LTG (4.4) + C-11 (30) 180 (161; 180) 97.94 ± 4.82 37.5

Results are presented as: (1) median retention times (in seconds; with 25th and 75th percentiles in parentheses) from the passive avoidance
task, assessing long-term memory in mice; (2) mean grip-strengths (in Newtons ± S.E.M.) from the grip-strength test, assessing muscular
strength in mice; and (3) percentage of animals showing motor coordination impairment in the chimney test in mice. Each experimental group
consisted of eight mice. Statistical analysis of data from the passive avoidance task was performed with nonparametric Kruskal–Wallis ANOVA
test, whereas those from the grip-strength test were analyzed with one-way ANOVA followed by Bonferroni’s post-hoc test. Fisher’s exact
probability test was used to analyze the results from the chimney test. All drugs were administered i.p. at times scheduled from the maximal
electroshock-induced seizures and at doses corresponding to their ED50 values against maximal electroconvulsions in mice.

2.3. Effect of C-11 on Total Brain AED Concentrations

Total brain concentrations of LCM and VPA for which ED50 values were significantly
reduced by C-11 (30 mg/kg) administered alone did not differ from those determined for
the combination of these drugs with C-11 (Figure 3A,B). Since C-11 at 30 mg/kg did not
significantly affect the anticonvulsant potential of CBZ and LTG in the MES test, the total
brain concentrations of this drug were not measured.
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Figure 3. Influence of C-11 on total brain concentrations of LCM (A) and VPA (B) in mice. Scatter
plots represent total brain concentrations of AEDs in µg/mL (as means ± SEM, as the error bars)
(n = 6 mice/group). No statistical significance between the means were observed (unpaired Student’s
t test).

2.4. Influence of C-11 on Neuroprotection in Pilocarpine Convulsion in Mice

Qualitative evaluation of potential neuroprotective properties of the C-11 compound
administered at a dose of 100 mg/kg was carried out after a single administration of
pilocarpine (PILO) at a dose of 300 mg/kg as a factor inducing permanent neuronal damage
to the test groups. Results obtained from the FJB staining showed neurodegenerative
changes for the C-11 group in the CA1–CA3 region of the hippocampus (Figure 4C), similar
to the changes observed in the PILO control animals suggesting no neuroprotective effect
of C-11 (Figure 4B). In contrast, no neurodegenerative changes were shown in the healthy
control mice (Figure 4A).
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(A)—Control; (B)—PILO, 300 mg/kg; (C)—C-11, 100 mg/kg. The degenerate neurons are stained
green; blue—cell nuclei.

According to the Racine scale, the PILO mice exhibited a high seizure score (4–5),
characterized by generalized tonic, rearing, convulsion with status epilepticus (SE), and
even death. The survival rate was 100% in the controls group. In the PILO and C-11 groups,
the survival rate was similar (Table 3).

Table 3. Effect of C-11 on pilocarpine (PILO)-induced convulsions and lethality. Data on survivors and the number of
animals with status epilepticus (SE) calculated as percentages.

Groups Number of Animals Percentage Convulsion (%) Percentage SE (%) Percentage of Survival (%)

Control 10 0 0 0
PILO 10 100 100 50 (5/10)
C-11 10 100 100 60 (6/10)

2.5. In Silico Physicochemical Descriptors Determination of C-11

The Lipinski and Veber’s rules are used to evaluate drug-like properties, which allow
for determining whether a chemical compound has physicochemical properties that would
make it suitable as an orally active drug in humans. The criteria of Lipinski’s rules are:
molecular weight (MW) ≤ 500 Da, lipophilicity values (log p) ≤ 5, number of hydrogen
bond donors (NHD) ≤ 5, and number of hydrogen bond acceptors (NHA) ≤ 10, and
Veber’s rules include: rotatable bonds (NBR) ≤ 10 and polar surface area (PSA) ≤ 140 Å2
[27,28] (Table 4).

Table 4. Drug-likeness parameters estimated according to Lipinski and Veber rules.

Compound

Lipinski Rule Veber Rule

MW
≤500

LogP
≤5

NHD a

≤5
NHA b

≤10
NBR c

≤10
TPS d

≤140

C-11 383.37 1.98 0 6 5 60.93

a NHD: number of hydrogen bond donors; b NHA: number of hydrogen bond acceptors; c NBR: number of
rotatable bonds; d TPSA: total polar surface area.

The tested compound C-11complies with Lipinski’s and Veber’s rules. C-11 possesses
a molecular weight below 500 Da, less than 5 hydrogen bond donors, less than 10 hydrogen
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bond acceptors, log p values < 5, number of rotating bonds (NBR) less than 10, and polar
surface area (PSA) values lower than 140 Å2.

The SwissADME website also provides radar charts that consider six physicochemical
properties: lipophilicity, size, polarity, solubility, flexibility, and saturation of the molecule
showing the relationship between chemical structures represented by given physicochem-
ical descriptors and oral bioavailability. The physicochemical properties for C-11 are
displayed as pink dots, while the pink area represents an acceptable range of physicochem-
ical parameters according to Lipinski’s and Veber’s rules (Figure 5). It can be concluded
that C-11 meets the drug-likeness requirements resulting from Lipinski’s and Veber’s rules.
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Figure 5. The bioavailability radar of compounds C-11 (LIPO—lipophilicity, POLAR—polarity, INSOLU—solubility,
FLEX—flexibility, INSATU—saturation of the molecule).

The Brain Or Intestinal Estimated permeation method (so called ‘BOILED-Egg’) is a
predictive model that works by computing the lipophilicity and polarity of small molecules.
Therefore, the SwissADME website provides ‘BOILED-Egg’ (Figure 6) showing the predic-
tion of gastrointestinal absorption and brain penetration. In this predictive model, C-11
shows both high probability for good absorption from the gastrointestinal tract, and a high
probability to cross the blood brain barrier.
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Figure 6. The BOILED-Egg predictive model for C-11 (visible as dot marked in red). The white region (HIA) is the
physicochemical space of molecules with the highest probability of being absorbed from the gastrointestinal tract, and the
yellow region (BBB) is the physicochemical space of molecules with the highest probability to permeate to the brain.

3. Discussion

The aim of this study was to evaluate the effect of C-11 (pyrrolidine-2,5-dione deriva-
tives) on the anticonvulsant action of four AEDs in the mouse model of tonic–clonic seizures.
The use of a combination of C-11 and selected AEDs allowed to determine its impact on
increasing the anticonvulsant effectiveness of the studied drugs. For combinations in which
an increase in the protective effect was found, the type of interaction with the determination
of whether the interaction was pharmacodynamic or pharmacokinetic was investigated.

We found that C-11 significantly enhanced the anticonvulsant action of LCM and VPA,
but not that of CBZ and LTG in the MES test. To explain the nature of the pharmacodynamic
interaction between C-11 and LCM or VPA, one should consider the fact that the mechanism
of action of C-11 can be, at least in part, related to its ability to modulate the voltage-sensitive
sodium and/or L-type calcium channels in neurons [15]. Kamiński et al. [15], using the
[3H]BTX as radioligand, showed that C-11 was a relatively effective binder to the neuronal
voltage-sensitive Na+ channel at the highest concentration (500 µM). The above results may
suggest that the mechanism of anticonvulsant protection of C-11 is most probably related
to its influence on the voltage-gated sodium channel. Moreover, in the binding assays for
voltage-gated Ca2+ channels, C-11 exhibited stronger affinity to L-type Ca2+, even though
it did not bind to the N-type Ca2+ channel. It should be emphasized that a modulation of
neuronal L-type Ca2+ channel activity is an essential mechanism of action for topiramate
(TPM), an AED with broad therapeutic spectrum [29,30]. Notably, C-11 proved to be a
more effective binder to the voltage-gated L-type Ca2+ channel compared to the mentioned
AED at a concentration of 100 µM.

LCM is a functionalized amino acid that produces activity in the MES test; therefore,
its activity is considered to be similar to that of other AEDs through voltage-gated sodium
channels [31,32]. However, LCM enhances the slow inactivation of voltage-gated sodium
channels without affecting the fast inactivation of voltage-gated sodium channels, char-
acteristic to many antiepileptic drugs, such as CBZ or LTG. Slow inactivation is similar
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to fast inactivation, but it does not produce complete blockade of voltage gated sodium
channels, with both activation and inactivation occurring over hundreds of milliseconds or
more. This activity causes LCM to only affect neurons that are depolarized or active for
long periods of time, typical of neurons at the focus of epilepsy [15]. LCM administration
results in the inhibition of repetitive neuronal firing, the stabilization of hyperexcitable
neuronal membranes, and the reduction of long-term channel availability, but does not
affect physiological function [33]. Moreover, it also modulates collapsin response medi-
ator protein 2 (CRMP-2), preventing the formation of abnormal neuronal connections in
the brain [34].

It seems that the increase in the anticonvulsant activities of LCM caused by C-11 in
the mouse MES test may result from the fact that C-11 is a hybrid substance of which LCM
is a part. However, the mechanisms of action of these drugs, as mentioned previously,
are different, and moreover, the action of C-11 relies on the voltage-gated sodium chan-
nels based on their fast inactivation [16]. Presumably, having different mechanisms of
action, C-11 and LCM act synergistically, potentiating the antiseizure effects of the two-
drug mixture in the MES test. However, this needs experimental confirmation in further
neurochemical studies.

VPA is another drug whose activity was enhanced by C-11 in the mouse tonic–clonic
seizure model [35]. This drug constitutes an essential AED, without yet fully understood
mechanism of activity, and because it is difficult to compare its mechanism to any specific
one, it has been suggested that its therapeutic properties are a combination of numerous
targets. Despite various reported pharmacologic effects, the antiseisure activity of VPA
most likely results from the GABA mechanism. VPA increases the turnover of GABA,
which might be connected to enhanced synaptic or extrasynaptic inhibition. At high
concentrations, VPA was considered to affect voltage-gated sodium channels; however,
contemporary research involving brain slice recordings did not provide a foundation
for sodium channel block as an essential mechanism to support its clinical activity [36].
Likewise, there is little support to prove its effects on calcium channels. It is possible
that that VPA possesses a pharmacologic action important for its antiseizure activity that
remains uncovered [37].

It is highly likely that C-11, through the inhibition of voltage-gated sodium or calcium
channels, contributes to the enhanced anticonvulsant potency of this drug. It is possible
that the affinity of C-11 to both of the channels is higher than that of VPA and thus, C-11
potentiates its antiseizure action in the MES test. Although this explanation is highly
speculative, it is very probable that C-11 enhances the blockade of sodium or calcium
channels (or both of them) in neurons, contributing to the potentiation of the antiseizure
effects of this drug, or as in the case of LCM, the mechanisms of action of C-11 and VPA are
complementary. However, more advanced neurochemical and electrophysiological studies
are required to elucidate this phenomenon.

On the other hand, C-11, as a sodium channel blocker, may compete with CBZ (AED
with firmly established sodium channel blocker properties) in their affinity towards voltage-
gated sodium channels. This could be the main reason whyC-11, when combined with
CBZ, produced a barely additive interaction, even reducing the effect of this drug. It should
also be emphasized that the inhibition of L-type neuronal calcium channels is the second
important mechanism of CBZ activity [38]. Perhaps a similar situation occurs in the case
of C-11 interactions with LTG which, apart from inhibitory action on sodium channels,
may also block voltage- gated N- and P/Q-type calcium channels [39]. Moreover, LTG also
demonstrates weak inhibitory effect on the serotonin 5-HT3 receptor, as well as weakly
binds to other receptors including the Adenosine A1/A2, α1/α2/β adrenergic, dopamine
D1/D2, GABA A/B, histamine H1, κ-opioid (KOR), mACh, and serotonin 5-HT2 [40].
Taking into account the multimodal mechanism of action of these two drugs, the lack
of synergy between these AEDs and C-11 is perplexing. Perhaps in other experimental
models of epilepsy, this compound would enhance the effects of these drugs; however, in
order to confirm that, we need more preclinical studies.
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Assessment of the adverse reaction profile in selected behavioral tests for CBZ, LCM,
LTG, and VPA administered separately and in combination with C-11 (30 mg/kg) at
doses corresponding to their ED50 values did not indicate any adverse effects of the tested
combinations. None of the combinations tested significantly impaired motor coordination
in the chimney test, skeletal muscle strength in the grip-strength test, and long-term
memory in the passive avoidance test. Test results prove good tolerance of the combinations
of tested drugs with C-11 among the tested experimental animals. Additionally, C-11
administered alone in a dose of 30 mg/kg does not have a negative impact on tested animals
in all three behavioral tests, which is in line with previous studies where C-11 was non-toxic
at doses even exceeding 1000 mg/kg of body weight of the tested animals in the chimney
test [15]. Moreover, both the lower (50 mg/kg) and the higher doses of C-11 (100 and
150 mg/kg) did not cause disturbances in motor coordination in mice in the rotarod test at
all speeds tested [15,16]. Socała et al. [16] confirmed that the C-11 compound administered
at doses of 25 mg/kg and 50 mg/kg did not induce significant cognitive disorders in
the passive avoidance test assessing the elements of long-term memory functioning in
mice, while a high dose of C-11 (100 mg/kg) statistically significantly reduced the time of
return to the shaded part of the room (the so-called latency time), which suggests that this
compound, in high doses, may cause slight cognitive dysfunctions. In addition, Andres-
Mach et al. [17] showed that C-11 at a dose of 20 mg/kg did not significantly impair the
animal’s ability to orientate in space and the ability to learn and remember compared
to the control group in the Morris Water Maze test;in the same study, 10 mg/kg LCM
administered for 10 days caused significant dysfunctions in time, distance, and direct swim
to the platform.

The results obtained from the assessment of the effect of C-11 on total LCM or VPA
concentrations in brain tissue did not show a statistically significant increase in LCM
or VPA in combination with C-11, which indicates the pharmacodynamic nature of the
interaction between the tested substances.

Regarding the metabolism of LCM, this drug is removed from the organism via dual
pathways: renal elimination of unchanged drug and metabolic degradation of the drug,
thus using approximately 40% of the dose as unchanged active drug in the urine. In
turn, about 60% of the dose is subject to metabolic degradation in two phases: the main
phase 1 degradation processes are demethylation, deacetylation, and hydroxylation; the
minor phase 2 metabolism contributes to glucuronidation. LCM is metabolized by several
cytochrome P450 (CYP) enzymes (CYP2C19, CYP2C9, and CYP3A4) and CYP-independent
mechanisms [41,42].

In the case of VPA, this drug is mainly metabolized in the liver. It is distinguished by
glucuronidation, β oxidation in the mitochondria (both considered major routes accounting
for 50% and 40% of dose, respectively), and cytochrome P450 (CYP)-mediated oxidation
(considered a minor route, ~10%) [43,44]. VPA is known to be metabolized by the CYP
enzymes: CYP2C9, CYP2A6, and to a lesser extent by CYP2B6 [44].

In a research conducted by Kamiński et al. [15] on the influence of C-11 on CYP activity,
it has been stated that even with the highest applied doses of 10 and 25 µM, this compound
exhibits a slight inhibitory effect on cytochrome CYP3A4 activity, which is responsible for
the metabolism of over 50% of drugs [15]. Moreover, C-11 does not affect the function of
CYP2D6, which is considered to be the second most important isoform of cytochrome P450
for possible metabolic interactions [16].

The fact that these enzymes are not affected by C-11 is likely to be caused by the nature
of the interaction between this compound and test drugs, since these drugs, like many
others, are metabolism-based and are mediated primarily via the microsomal CYP family
of enzymes. As previously mentioned, among CYP isoforms, the CYP3A4 is responsible for
the metabolism of more than 50% of medicines and the associated drug−drug interactions.
The inhibition of these enzymes may decrease the metabolic clearance of a coadministered
drug, resulting in elevated blood concentration, which may cause adverse drug effects or
toxicity. This is crucial at an earlier stage of drug development to avoid the development
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of compounds with the potential to yield adverse drug interactions. Additionally, the
determination of substance influence on the function of cytochrome P450 (CYP) is one of
the most essential factors in the development of new drugs [45].

A preliminary, qualitative analysis of the potential neuroprotective properties of C-11
after a single administration of PILO showed no protective effect of this substance in the
tested animals. The use of PILO as a neurodegenerative factor in the present study enabled
the observation and the analysis of the degree of nerve cell degeneration, which was the
basis for a preliminary assessment of neuroprotective properties of the test substance.

As it is well known that epilepsy causes the degeneration and death of neurons, neuro-
protection appears to play a key role in monitoring this disease. All available LPPs can be
divided into two groups—one characterized by a neuroprotective effect (benzodiazepines,
LTG, LEV, PB, TPM, VPA, VGB), and the other without such potential, such as CBZ
or PHT [46,47].

Among other AEDs, neuroprotective properties have been demonstrated for LCM
in a gerbil cerebral ischemia model [48]. The results of the conducted studies showed
that pre- and postoperative treatment of gerbils with LCM (25 mg/kg) had a protective
effect on CA1 neuronal pyramidal cells in the hippocampus of tested animals. A study
by Nirwan et al. [49] showed that LCM at the doses of 20 mg/kg and 40 mg/kg protected
against PILO-induced status epilepticus in C57BL/6 mice, while preventing neurodegener-
ation and spatial memory impairment. Moreover, a number of in vitro studies proved that
VPA protects neurons from glutamate-induced excitotoxicity [50], damage due to oxygen
and glucose deprivation [51], as well as from oxidative stress [52]. In addition, in vivo
studies showed that VPA protects neurons exposed to ischemic stroke [53].

Andres-Mach et al. [18] examined the neuroprotective properties of C-11 in human
neurons and rat astrocytes under trophic stress and excitotoxicity conditions using the
MTT test. The results proved that C-11, also in in vitro conditions, did not protect neurons;
however, the results regarding the impact of C-11 on the nerve cell viability under trophic
stress conditions in astroglia cell culture indicated that C-11 significantly induced the
astrocytes viability. Furthermore, C-11 also effectively increased the number of astrocytes
in the standard conditions (complete medium with a standard amount of trophic agents).
The obtained data may suggest stimulating properties of C-11 on the astrocytes’ viability,
as well as the nutritional effect on astrocytes under trophic stress conditions. This may be
tied to the beneficial impact of C-11 on the secretion of trophic factors by astrocytes [54].
Taking into consideration the fact that neurotrophin production by astrocytes in response
to brain tissue injury is a well-described mechanism of neuroprotection, such properties of
C-11 are possible [55]. It seems that additional in vivo as well as in vitro tests are necessary
to confirm or exclude the neuroprotective properties of this substance.

In summary, it can be concluded that C-11 seems to be a very interesting substance
that increases the effect of LCM and VPA in the MES test; simultaneously, it does not affect
their metabolism and does not cause behavioral disturbances in the tested animals when
used in combination. In the future, additional preclinical studies are needed to confirm
whether it is a good candidate for possible clinical trials, especially since it does not increase
the effect of CBZ and LTG; it is likely that this susceptibility will not be active in CBZ- or
LTG-resistant epilepsies.

Apart from low efficacy and high toxicity, the poor pharmacokinetics and bioavail-
ability are the reasons for many new drug development failures. Therefore, the evaluation
of two pharmacokinetic behaviors, namely gastrointestinal absorption and brain access,
are crucial at very early stages of the drug discovery processes. Our physicochemical
analyzes showed that C-11 exhibited the prediction of gastrointestinal absorption and brain
penetration, which is extremely important for CNS-active compounds.

It should be emphasized that, in the development of novel antiseizure drugs, repeata-
bility of research seems to be one of the basic criteria for introducing new drugs to common
use. Improving the reproducibility of preclinical study results is one of the key elements
in the development of new therapeutic agents [56]. One of the methods of solving this
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problem is defining common methods, terms, and units for data that are usually of interest
for comparisons between various laboratories. Such an attempt was made by the Interna-
tional League Against Epilepsy and American Epilepsy Society through the introduction
of the Common Data Elements (CDE) in preclinical epilepsy research. The use of CDEs is
intended to increase rigor, standardization, and transparency of these researches [57,58]

Confirmed from our recent studies, reliable protective index values for C-11 made
it possible to classify this particular substance as a promising drug candidate for further
clinical research. While some scientists argue that only compounds with protective index
values over 5 in MES should be considered for further studies, others establish this limit at 2.
In the second case, argumentation is based on the fact that the most efficacious AED –VAP
has a protective index value of ~1.4. If more rigorous criteria had been applied in this case,
VAP would never be available for patients. Since the protective index values for C-11 range
between 9 and 17 in the MES test, this compound seems to be a promising drug candidate
and should be eligible for further preclinical studies [15,59].

4. Materials and Methods
4.1. Animals

All study experiments were carried out on adult female Swiss mice weighing 20–25 g.
The animals were kept in colony cages under standardized laboratory conditions: natural
light–dark cycle 12/12 h, temperature 20–24 ◦C, air humidity 45–65%, and free access to
tap water and food (chow pellets). After 7 days of adaptation to laboratory conditions,
the animals were randomly assigned to experimental groups consisting of 8 mice. Each
mouse was used only once and all tests were performed between 08:00 and 15:00 h. All
the investigations were approved by the Local Ethical Committee at University of Life
Sciences in Lublin (32/2019, 71/2020 and 6/2021) and were conducted in accordance with
EU Directive 2010/63/EU for animal experiments as well as ARRIVE guidelines.

4.2. Drugs

The following drugs were used: pyrrolidine-2,5-dione derivativesC-11(Figure 1), car-
bamazepine CBZ (Polpharma, Starogard Gdanski, Poland), lacosamide LCM (Vimpat®,
UCB Pharma, Brussels, Belgium), lamotrigine LTG (Lamictal®, GlaxoWellcome, Greenford,
Middlesex, UK), valproate VPA (both from Sigma-Aldrich, Poznan, Poland), pilocarpine
PILO (MP Biomedicals, LLC, Illkirch-Graffenstaden, France), and methyl scopolamine
(Sigma-Aldrich, Saint Louis, MO, USA). The compound C-11 was obtained from the Depart-
ment of Medicinal Chemistry, Jagiellonian University Medical College (Krakow, Poland)
according to the procedure described previously [15]. All substances were suspended in a
1% solution of Tween 80 (Sigma-Aldrich, Saint Louis, MO, USA).

The studied drugs were administered intraperitoneally (i.p.) as follows: LTG—60 min,
C-11, CBZ, LCM, and VPA—30 min, before electroconvulsion, motor coordination, grip-
strength, and long-term memory tests brain sampling for the measurement of antiepileptic
drug concentrations. C-11 and methyl scopolamine were administered intraperitoneally
(i.p.) 30 min before pilocarpine-induced convulsion.

The pretreatment times before testing of the antiepileptic drugs were based on infor-
mation about their biological activity from the literature [20], and our previous experi-
ments [12–14]. The pretreatment time (30 min) before testing C-11 was established in our
previous study as the time to peak of maximum anticonvulsant activity of C-11 [15].

Allsubstances were suspended in a 1% solution of Tween 80 (Sigma-Aldrich, Saint
Louis, MO, USA) in water for injections (Baxter, Warszawa, Poland). All drugs were
injected intraperitoneally (i.p.) with 1 mL syringes as a single injection, in a volume of
10 mL/kg.In the present study, CBZ was administered at doses ranging between 10 and
18 mg/kg, LCM at doses ranging between 3 and 10 mg/kg, LTG at doses ranging between
2 and 8 mg/kg, and VPA at doses ranging between 200 and 400 mg/kg.
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4.3. Maximal Electroshock Seizure Test

Electroconvulsions were evoked by an electric stimulus (an alternating current 25 mA,
50 Hz,500 V, 0.2 s) generated by a rodent shocker (Hugo Sachs Elektronik, Freiburg, Ger-
many) and delivered via ear-clip electrodes. Tonic hindlimb extension (i.e., hindlimbs of
animals outstretched 180 to plane of the body axis) was established as the endpoint. ED50
is a median effective dose of the tested drug that protects 50% of mice against maximal
electroshock-induced seizures. A dose–response curve was calculated on the basis of the
percentage of mice protected according to Litchfield and Wilcoxon [60]. This experimental
procedure has been described in detail in our previous studies [12–14].

C-11 was administered in doses that, per se, had no effect on seizure threshold in the
maximal electroshock seizure threshold test. C-11 doses were selected based on previous
studies where C-11 administered at a dose below 50 mg/kg protected mice from tonic
hind limb extension after stimulation in MES test [15]. In addition, for ethical reasons,
in accordance with the 3Rs rule, the maximal electroshock seizure threshold test (which
would require at least additional 128 mice) was not performed.

4.4. Behavioral Tests
4.4.1. Chimney Test

The effects of C-11 administered alone, AEDs administered alone, and their combina-
tions (in doses reflecting their ED50 values from the MES test) on motor coordination in
mice were determined with the chimney test, as described elsewhere [12,14,61].

4.4.2. Grip-Strength Test

The effects of C-11 administered alone, AEDs administered alone, and their combi-
nations (in doses reflecting their ED50 values from the MES test) on muscular strength of
forelegs in mice were determined with the grip-strength test, as described elsewhere [12,14].

4.4.3. Passive Avoidance Task

The effects of C-11 administered alone, AEDs administered alone, and their combi-
nations (in doses reflecting their ED50 values from the MES test) on long-term memory
(acquisition, learning, and remembering) in mice were determined with passive avoidance
task, as described in details elsewhere [12,14,62].

4.5. Measurement of Total Brain Antiepileptic Drug Concentrations

The measurement of total brain concentrations of antiepileptic drugs was undertaken
at the doses which correspond to their ED50 values from the MES test. Mice were killed
by decapitation at times corresponding to the peak of maximum anticonvulsant effects
for the antiepileptic drugs in the MES test. The whole brains of mice were removed from
skulls, weighed, and homogenized using Abbott buffer (1:2 w/v) in an Ultra-Turrax T8
homogenizer (IKA Werke, Staufen, Germany). The homogenates were then centrifuged at
10,000 g for 10 min and the supernatant samples of 200 µL were collected.

The concentrations of LCM and VPA in brain homogenates were determined by a
Dionex HPLC system (Dionex, Sunnyvale, CA, USA) with a UVD340S diode array UV
detector, gradient pump P580 LPG, and manual injector (7725i Rheodyne) with a 20-µL
loop. Chromatographic separation of LCM was performed ona ODS-2 C18 Hypersil
(150 × 4.6 mm) column (Thermo Scientific, Darmstadt, Germany) packed with 5-µm par-
ticles using the mobil phase consisting of 0.05 M triethylammonium phosphate buffer
solution–acetonitrile (70:30, v/v; pH −3.2) at ambient temperature. The flow-rate was
1.2 mL/min. For VPA, samples were injected into a ZORBAX SB-C18 (5 µm, 150 × 4.6 mm)
column (Thermo Scientific, Darmstadt, Germany). Chromatography was performed using
the mobil phase consisting of acetonitrile-phosphate buffer (50 mM; 45:55 v/v; pH 3.0), at
ambient temperature. The flow-rate was 1.0 mL/min. The column eluates were monitored
at 215 nm (LCM) and 254 nm (VPA) with a sensitivity of 0.01 absorbance units full scale.
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Total brain concentrations of LCM and VPA are expressed in µg/g of wet brain tissue
as means ± standard error (S.E.M.) of at least 6 separate brain preparations.

4.6. Neuroprotection of C-11
4.6.1. Pilocarpine-Induced Convulsion in Mice

At the peak of C-11 activity (30 min, dose100 mg/kg) experimental animals were
injected i.p. with a single dose of PILO 300 mg/kg; 30 min prior to injection of PILO, mice
were given methyl scopolamine (1 mg/kg; i.p.) to reduce the peripheral cholinergic effects
of PILO.

Control mice were age-matched with treated mice and administered a comparable
volume of vehicle after the initial methyl scopolamine treatment. The mice were observed
continuously for 60 min for any behavior indicative of seizures, and graded according to a
modified version of the Racine scale [63]. Status Epilepticus (SE) incidence, mortality rate,
and convulsion onset time were also recorded. Convulsion was defined as the occurrence of
grade 4–5 seizures based on the Racine scale. When mice experienced grade 4–5 seizures or
SE for 60 min, the convulsions were terminated by an intraperitoneal injection of diazepam
(1 mg/kg) to reduce mortality.

4.6.2. Brain Slice Preparation

At 72 h after treatment, mice were anesthetized with isoflurane anesthesia with premed-
ication of analgesic drug, and perfused with ice-cold saline, followed by freshly prepared,
ice-cold 4% paraformaldehyde. The brains were removed, processed, and coronal sections
were cut on a vibratome (Leica VT1000 S, Wetzlar, Germany) at a thickness of 40 µm [17].

4.6.3. Fluoro-Jade B Staining

To identify neurons undergoing degeneration in mice brain slices, Fluoro-Jade B
(FJB) staining was used, as an established detection technique for degenerating neurons
described by [64]. To properly recognize neurodegenerative changes, as well as to make
sure that FJB staining worked correctly, we used PILO SE brain slices as a positive control
of neuronal damage. The stained slices were photographed using a Nikon A1R confocal
system microscope (Tokyo, Japan).

4.7. In Silico Physicochemical Descriptors Determination

Physicochemical properties of C-11 and BOILED-Egg predictive model were deter-
mined using the online tool–SwissADME website [26].

4.8. Statistics

The ED50 values with their respective 95% confidence limits were calculated in the
computer log-probit analysis according to Litchfield and Wilcoxon (1949). Then, the
standard errors (SEMs) of the mean values were assessed on the basis of confidence limits.
Multiple comparisons of the ED50 values (±SEM) from the MES test were performed using
one-way analysis of variance (ANOVA) followed by the post-hoc Tukey/Kramer test.

Qualitative variables from the chimney test were compared using the Fisher’s exact
probability test. The results from the grip-strength test were verified with one-way ANOVA,
followed by the post-hoc Bonferroni’s test. The results obtained in the step-through passive
avoidance task were statistically evaluated using Kruskal–Wallis nonparametric ANOVA,
followed by the post-hoc Dunn’s test.

Total brain antiepileptic drug concentrations were statistically compared using the
unpaired Student’s t-test. Differences among values were considered statistically significant
if p < 0.05.

5. Conclusions

Based on the results from this study, one can ascertain that C-11 pharmacodynamically
potentiates the anticonvulsant action of LCM and VPA with no adverse effects among
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the tested drugs. C-11 had no significant impact on the protective action of CBZ and
LTG against MES test in mice, indicating neutral interaction between these drugs. The
combination of C-11 with CBZ and LTG is neutral from a preclinical point of view, because
C-11 did not enhance the anticonvulsant potency of these drugs in experimental animals in
the MES test. C-11, after a single administration of pilocarpine, revealed no neuroprotective
effect in the tested animals. Physicochemical descriptors determination revealed that
C-11 has good drug-likeness parameters as well as high probability for good absorption
from the gastrointestinal tract, and a high probability to cross the blood brain barrier.
Taking into account our results, there is no doubt that modifications of the chemical
structure of compounds and/or currently available antiepileptic drugs might contribute
to the development of new drugs, more favorable and better tolerated than conventional
antiepileptic drugs.
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