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SUMMARY

Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells
(PBMCs) allows in-depth assessment of transcriptional changes in immune cells
of patients with COVID-19. However, collecting, processing, and analyzing sam-
ples from patients with COVID-19 pose many challenges because blood sam-
ples may contain infectious virus, identification of immune cell subtypes can
be difficult, and biological interpretation of analytical results is complex. To
address these issues, we describe a protocol for sample processing, sorting,
methanol fixation, and scRNA-seq analysis of PBMCs from frozen buffy coat
samples from patients with COVID-19.
For complete details on the use and execution of this protocol, please refer to
(Yao et al., 2021).

BEFORE YOU BEGIN

Timing: allow 6–8 h to process samples through methanol fixation.

Blood collection

1. Collect venous blood in EDTA-coated tubes.

2. Centrifuge at 1000 3 g for 10 min with brake.

3. Collect buffy coat and add to 1.8 mL cryopreservation media.

4. Store cells in cryopreservation media at –80�C.

Note: Patient samples should be collected in accordance with institutional review board

(IRB) rules, including patient consent, and handled with strict adherence to safety rules,

including the use of appropriate PPE. Samples must be processed as quickly as possible

to maximize viability, so careful advanced planning and coordination between clinical staff
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and research facilities is recommended. For this study, vials with a suggested draw volume

of 10 mL were used. For 10 mL of starting sample, approximately 1 mL of buffy coat should

be recoverable.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human adult PBMCs from patients
positive for COVID-19

NA NA

Chemicals, peptides, and recombinant proteins

DMEM Corning Cat.# 10-013-CV

DMSO Sigma Cat.# D2650

DAPI Thermo Fischer Scientific Cat.# D1306

DPBS Corning Cat.# 45000-434

Fetal bovine serum Fischer Scientific Cat.# SH3007103

Methanol Millipore Sigma 34860

Protector RNAse Inhibitor Millipore Sigma 335399001

SSC Buffer 203 Concentrate Millipore Sigma S6639-1L

DL-Dithiothreitol solution Millipore Sigma 43816

Dulbecco’s phosphate-buffered saline
(DPBS), no calcium, no magnesium

Thermo Fisher Scientific 14190144

UltraPure BSA Thermo Fisher Scientific AM2616

Critical commercial assays

Single Cell 3’ Next GEM V3.1 10x Genomics PN-1000121

KAPA Library Quantification Kit Roche KK4824

Deposited data

COVID-19 raw and analyzed data Yao et al., 2021 GEO: GSE154567

Healthy PBMC data sets Chen et al., 2018 GEO: GSE112845

SARS-CoV-2 genome https://www.ncbi.nlm.nih.
gov/nuccore/MT246667.1

GenBank: MT246667.1

Human reference transcriptome
GRCh38

https://www.gencodegenes.
org/human/

GRCh38.p13

Software and algorithms

CellRanger v3.0.0 10x Genomics https://support.10xgenomics.com/
single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger

R package Seurat v.3.1.5 Stuart et al., 2019 https://github.com/satijalab/seurat

R package SoupX Young and Behjati, 2020 https://github.com/constantAmateur/
SoupX

Harmony Korsunsky et al., 2019 https://github.com/immunogenomics/
harmony

R package MAST Finak et al., 2015 https://github.com/RGLab/MAST

WebGestalt v2019 Liao et al., 2019 http://www.webgestalt.org

Ingenuity Pathway Analysis QIAGEN https://digitalinsights.qiagen.com/
product-login/

GraphPad Prism 9 GraphPad Software https://www.graphpad.com/scientific-
software/prism/

Other

FACS Aria III BD Biosciences N/A

10X Chromium Controller 10x Genomics Cat.# 1000202

NovaSeq 6000 Illumina N/A

70 mm Cell strainer (optional) Falcon Cat.# 08-771-2

40 mm Flowmi Cell Strainer Bel-Art H13680-0040
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MATERIALS AND EQUIPMENT

STEP-BY-STEP METHOD DETAILS

FACS sorting

Timing: 30 min/sample.

Note: Sorting time can vary considerably depending on the concentration of viable cells

recovered after thawing. Clogs may occur which will also lengthen sorting time. Cell clumps

can be removed by cell filtering using 70 mm strainers, and if available, multiple sorters can

be used simultaneously to decrease the sorting time.

This section covers thawing, washing, and sorting live cells from frozen buffy coat.

1. Collect frozen buffy coat samples and immediately place them on dry ice until ready for sorting.

2. Thaw one sample at a time unless multiple sorters are available that can be used simultaneously.

Thaw samples by swirling gently in a 37�C water bath, until one or two small ice crystals remain.

3. Add 15 mL of buffy coat wash solution to each sample and centrifuge at 350 rcf at ambient tem-

perature for 5min. Discard the supernatant, and resuspend the cell pellets in aminimum of 500 mL

of buffy coat wash solution.

4. Add 3 mM DAPI and incubate for 5 min at room temperature.

5. After DAPI staining, proceed immediately to sorting. Sort live (DAPI-negative) singlet cells for

scRNA-seq analysis. The gating strategy for FACS sorting is illustrated in Figure 1.

Note:

Buffy coats will likely have erythrocyte contamination. If blood clots are present, they may

decrease cell recovery and filtering sample through a 70 mm cell strainer is recommended.

Access to multiple, simultaneous sorting may not be an option without a dedicated core facil-

ity. While it may introduce a batch effect, sample preparation may be spread over multiple

days if necessary.

Viability of thawed buffy coat is lower than viability of PBMCs isolated from fresh blood

samples; expect 60%–75% viability. After thawing and sorting, an average cell yield of 200–

250,000 cells can be expected.

Cryopreservation media (sterile, temperature �20�C)

Reagent Final concentration Stock concentration Amount (mL)

DMEM n/a n/a 400

FBS 10% v/v n/a 50

DMSO 10% v/v 10% v/v 50

Buffy coat wash solution (temperature �20�C)

Reagent Final concentration Stock concentration Amount (mL)

Sterile DPBS n/a n/a 450

FBS 10% v/v n/a 50

Excess solutions that contain FBS should be stored at 4�C. All other reagents in this protocol are listed in the key resources

table.
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Methanol fixation and 10X processing

Timing: Methanol fixation �1 h

This part of the protocol is modified based on the 10x Genomics protocol ‘‘Methanol Fixation of

Cells for Single Cell RNA Sequencing’’ CG000136 (https://support.10xgenomics.com/single-cell-

gene-expression/sample-prep/doc/demonstrated-protocol-methanol-fixation-of-cells-for-single-

cell-rna-sequencing).

6. Buffer preparation before starting:

a. 3X SSC Buffer: Prepare 33 SSC buffer in nuclease free water using 203 SSC stock solution.

b. Wash-Resuspension buffer: Prepare wash resuspension buffer with 0.04% BSA, 1 mM DTT,

0.2 U/mL RNase inhibitor in 33 SSC buffer.

Wash-Resuspension buffer

Note:

Keep prepared buffers at 4�C.
Timing is critical at this stage. Any delay may result in RNA loss.

Start with as many cells as possible (ideally, more than a million) because there will be signif-

icant cell loss at the rehydration step.

7. Collect FACS sorted cells by centrifuging at 500 rcf for 5 min at 4�C.

Note: generally 300 rcf is suggested, but we recommend 500 rcf for efficient precipitation.

33 SSC Buffer 15 mL 203 SSC Buffer diluted with 85 mL nuclease free water

Figure 1. Gating strategy for FACS sorting

Sequential gating is utilized to obtain live PBMCs for subsequent scRNA-seq.

Reagent Final concentration Amount

33 SSC Buffer n/a 49.3 mL

1M DTT 1 mM 50 mL

5% BSA 0.04% 0.4 mL

40 U/mL 0.2 U/mL 250 mL

Total 50 mL
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8. Carefully remove the supernatant and do not disturb the pellet.

9. Add 1 mL chilled 13 DPBS with a wide-bore pipette tip (e.g., Thermo Scientific�2079G), gently

pipette mix, centrifuge at 500 rcf at 4�C for 5 min.

10. Carefully remove the supernatant and do not disturb the pellet.

11. Resuspend the pellet in 200 mL chilled DPBS with a wide-bore pipette tip.

12. Add 800 mL chilled 100% methanol drop by drop to the cell suspension. Gently stir the cell sus-

pension during the process. Scale up the volumes of 13DPBS andmethanol if usingmore than 1

million cells.

13. Incubate at �20�C for 30 min.

14. The fixed cells can be stored at �20�C or �80�C for up to 6 weeks, or immediately proceed to

rehydration.

Rehydration �10–15 min

15. Before starting the rehydration, prepare the 10X Genomics Single Cell kit for loading into the

controller as soon as the cells are rehydrated.

16. Equilibrate the methanol-fixed cells on ice for 5 min.

17. Centrifuge at 1000 rcf for 5 min at 4�C.
18. Transfer the supernatant to a new tube without disrupting the cell pellet (save the supernatant in

case not enough cells were pelleted at this step).

19. Resuspend the cell pellet with an appropriate volume of wash-resuspension buffer based on the

starting cell concentration and assuming�50% cell loss (refer to the 10X Genomics user manual

Cell Suspension Volume Calculator Table for more information). Gently mix with a regular-bore

pipette tip.

20. Filter the sample through a 40 mm Flowmi Cell Strainer if there are large clumps.

21. Count cells using a hemocytometer or automated cell counter to determine cell concentration.

Proceed to scRNA-seq with the 10x Genomics Single Cell protocols.

Single-cell RNA-seq

Note: Figure 2 summarizes the steps in the bioinformatics pipeline detailed below for analysis

of the scRNAseq data

22. Capture single cells using a 10X Chromium Controller (10X Genomics) and prepare libraries as

described in the Single Cell 3’ Next GEM V3.1 Reagent Kits User Guide (10X Genomics, https://

support.10xgenomics.com/single-cell-gene-expression/library-prep/doc/user-guide-chromium-

single-cell-3-reagent-kits-user-guide-v31-chemistry).

23. Quantify the barcoded sequencing libraries by quantitative PCR using the KAPA Library Quan-

tification Kit (KAPA Biosystems, Wilmington, MA).

24. Sequence the libraries using a Novaseq 6000 (Illumina) with custom sequencing settings of

28 bp and 91 bp for read 1 and 2, respectively, to obtain a sequencing depth of �5 3 104 reads

per cell.

Alignment, 10X cell barcode demultiplexing, quality control, and batch correction
Alignment and cell demultiplexing

25. Use CellRanger v3.0.0 software with the default settings for demultiplexing cells according to

their 10X cell barcodes and for aligning reads with STAR software to the human GRCh38 tran-

scriptome reference downloaded from https://www.gencodegenes.org/ (contains all protein-

coding and long non-coding RNA genes based on human GENCODE version 33 annotation)

and the SARS-Cov2 virus genome MT246667.1, https://www.ncbi.nlm.nih.gov/nuccore/

MT246667.1.
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Note:We built a custom reference genome using the CellRanger software mkref function (see

GEO: GSE154567).

QC and filtering

26. Remove ambient RNA derived from lysed cells using the SoupX package (Young and Behjati,

2020).

27. Use the single cell analysis R package Seurat v3.1.5 for data analysis (Stuart et al., 2019).

28. For quality control and filtering out low quality cells, select only cells expressing more than 200

genes (defined as genes detected in at least 3 cells), UMI counts more than 500 and fewer than

20% mitochondrial genes. To minimize doublet contamination for each dataset, remove cells

with a high number of genes detected using a fit model generated from the suggested ‘‘multi-

plet rate’’/ ‘‘number of cells recovered’’ ratio as in the 10X Genomics user manual (Carraro et al.,

2020).

Figure 2. Overview of scRNA-seq data analysis

A step-wise approach for systematic data processing, cell type identification, differential gene expression and

pathway analysis is shown, as well as recommended software programs for each step.
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Note:

Figure 3 shows an example of ambient RNA removal (Figures 3A and 3B), and filtering of low-

quality cells (Figure 3C).

In our data, three patient groups were used: moderate COVID-19 (CM), severe COVID-19

(CS), and recovering (CR).

Selection of cutoff range for filtering cells with mitochondrial content can vary from 1% to 20%.

In our case, despite using a permissive value, very few cells had large mitochondrial gene

content.

The following codes have been deposited in GitHub using R markdown (https://github.com/

ivonyao/Cell-Type-Specific-Immune-Dysregulation-in-Severely-Ill-COVID-19-Patients/tree/

main/r%20code%20and%20markdowns).

Sample code (Please note: assign your own data directory to DataDir):

library(Seurat)

library(ggplot2)

library(SoupX)

library(DropletUtils)

library(dplyr)

### SoupX procedure

DataDir = c(’�/covid19scRNAseq/CM1_2/outs’, ’�/covid19scRNAseq/CM1_2/outs/filtered_-

feature_bc_matrix’)

#Load 10X Data to SoupX and Seurat

sc = load10X(DataDir[1])

## Loading raw count data

Figure 3. Single cell demultiplex, quality control, and batch correction

(A and B) HBA2 and HBB expression before and after ambient RNA clean up with SoupX.

(C) Before and after quality control for nFeature_RNA (gene number per cell), nCount_RNA (UMI) and percent.mt (percentage of mitochondrial

genes).
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## Loading cell-only count data

## Loading extra analysis data where available

seu <- Read10X(DataDir[2])

seu <- CreateSeuratObject(counts = seu, project = "CM1_2")

seu <- SCTransform(object = seu, verbose = T)

seu <- RunPCA(object = seu, verbose = T)

seu <- RunUMAP(object = seu, dims = 1:30,verbose = T)

seu <- FindNeighbors(object = seu, dims = 1:30, verbose = T)

seu <- FindClusters(object = seu, resolution = 0.5, verbose = T)

#Check gene expression to ensure minimal RBC ambient RNA contamination

FeaturePlot(seu, features=c("HBA2", "HBB", "HBD"), max.cutoff="q90")

Clusters <- seu$seurat_clusters

sc = setClusters(sc,Clusters)

sc = autoEstCont(sc)

out = adjustCounts(sc)

#check correction quality

CM1_2 <- CreateSeuratObject(counts = out, project = "CM1_2")

CM1_2 <- SCTransform(object = CM1_2, verbose = T)

CM1_2 <- RunPCA(object = CM1_2, verbose = T)

CM1_2 <- RunUMAP(object = CM1_2, dims = 1:30,verbose = T)

CM1_2 <- FindNeighbors(object = CM1_2, dims = 1:30, verbose = T)

CM1_2 <- FindClusters(object = CM1_2, resolution = 0.5, verbose = T)

FeaturePlot(CM1_2, features=c("HBA2", "HBB", "HBD"), max.cutoff="q90")

write10xCounts(’�/covid19scRNAseq/CM1_2/outs/desoup2’, out)

##QC process

CM1_2=Read10x(�/covid19scRNAseq/CM1_2/outs/desoup2’)

CM1_2 <- CreateSeuratObject(counts = CM1_2, project = "CM1_2")

CM1_2[["percent.mt"]] <- PercentageFeatureSet(CM1_2, pattern = "^MT-")

VlnPlot(CM1_2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

ncells <- c(500,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000)

multiplets <- c(0.4,0.8,1.6,2.3,3.1,3.9,4.6,5.4,6.1,6.9,7.6)

curva <- data.frame(multiplets,ncells)

ggplot(curva, aes(multiplets, ncells)) +

geom_point() +

geom_smooth(method = "lm")

fit <- lm(multiplets � ncells, curva)

model <- function(x){

0.0007589*x + 0.0527214

}

perc <- model(ncol(CM1_2))

q = (100 - perc)/100
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feature_limit <- quantile(CM1_2$nFeature_RNA, q)

VlnPlot(object=CM1_2,c("nFeature_RNA", "nCount_RNA", "percent.mt"), pt.size = 0.1)

CM1_2 <- subset(CM1_2, subset = nFeature_RNA > 200 & nCount_RNA>500 &nFeature_RNA <

feature_limit & percent.mt < 20)

CM1_2$group="Moderate"

CM1_2$patient=’’CM1_2’’

##QC check

VlnPlot(CM1_2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

save(CM1_2, file="CM1_2.rds")

Batch correction and identification of major immune cell types

29. Normalize the data using default normalization and data scaling from the Seurat package, which

is a log normalization and linear model for data scaling.

30. The batch correction packageHarmonywith Seurat 3 wrapper can be used for data integration due

to consideration of computation power (Korsunsky et al., 2019). Process the batch correction with

PCA (Principal Component Analysis) using the 5000 most variable genes, and use the first 20–30

independent components for downstream unbiased clustering with a resolution of 0.4.

31. Use the UMAP (Uniform Manifold Approximation and Projection) method for visualization of un-

supervised clustering. Use the Seurat RunUMAP function for UMAP reduction using the first 20

harmonized dimensions for immune cell types and 30 harmonized dimensions for immune cell

subsets. Apply default settings embedded in the Seurat RunUMAP function, with min.dist of 0.3

and n_neighbors of 30.

Note:

For batch correction, the Harmony package requires less computing power compared to the

Seurat Integration vignette.

The number of PCs, genes, and resolution used can vary depending on sample quality.

Generally, 20–30 PCs and 2000–5000 most variable genes will suffice, but testing with

user-specific data is recommended. An estimation of the number of PCs can be calculated us-

ing the JackStrawPlot() or ElbowPlot() functions in Seurat, and in our dataset, 20 or 30 were

appropriate, however, users should test their data to determine the optimal number. Please

see https://satijalab.org/seurat/articles/pbmc3k_tutorial.html#determine-the-dimensionality-

of-the-dataset-1.

Sample code:

library(Seurat)

library(cowplot)

library(harmony)

library(dplyr)

library(ggplot2)

load("CM1_2.rds")

load("CM3_4.rds")

load("CM5.rds")

load("CR13_14.rds")

load("CR15_16.rds")

load("CR17_18.rds")
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load("CS7_8.rds")

load("CS9_10.rds")

load("CS11_12.rds")

covid=merge(x=CM1_2, y=c(CM3_4, CM5, CR13_14, CR15_16, CR17_18, CS7_8, CS9_10,

CS11_12))

covid<- covid%>%

Seurat::NormalizeData(verbose = T) %>%

FindVariableFeatures(selection.method = "vst", nfeatures = 5000) %>%

ScaleData(verbose = T, features = rownames(covid)) %>%

RunPCA(pc.genes = covid@var.genes, npcs = 20, verbose = T)

covid<- covid%>%

RunHarmony("patient", plot_convergence = TRUE)

covid<- covid%>%

RunUMAP(reduction = "harmony", dims = 1:20) %>%

FindNeighbors(reduction = "harmony", dims = 1:20) %>%

FindClusters(resolution = 0.4) %>%

identity()

DimPlot(covid, reduction="umap", label=T)

save(covid, file="covidharmony.rds")

Identification of major immune cell types

32. Identify major immune cell types using the key genes presented in Table 1 and illustrated in Fig-

ure 4, and verify cluster identification using at least one other method (see also Notes below this

step).

a. T cells can be identified as clusters expressing CD3G and either CD4 (CD4 T cells) or CD8A

and CD8B (CD8 T cells) (Figure 4A).

b. NK cells cluster close to CD8 T cells due to shared expression of cytotoxic genes, but lack

CD3G and express TYROBP and FCGR3A, which encode DAP12 and CD16, respectively (Fig-

ure 4B). Additional lymphocytes may also be observed, includingMKI67-expressing prolifer-

ating lymphocytes (Figure 4C).

Table 1. Marker genes for identification of major peripheral blood cell type

Key cluster genes Other cluster genes Genes not expressed

CD4 T cells CD3G, CD4 IL7R, TRAT1 CD8A, CD8B

CD8 T cells CD3G, CD8A, CD8B CCL5, GZMA, GZMH,
NKG7, CTSW

CD4

NK cells TYROBP, FCGR3A CCL5, GZMA, GZMH,
NKG7, CTSW

CD14

Monocytes and cDCs TYROBP, CD14/FCGR3A/
HLA genes

LYZ, S100A8, FCN1

pDCs JCHAIN,
SERPINF1, LILRA4

PLD4, ITM2C, MZB1

B cells MS4A1 CD79A, BANK1,
IGHD, IGHM

Plasma cells JCHAIN ITM2C, MZB1 MS4A1,
SERPINF1, LILRA4

Erythrocytes HBA1, HBA2, HBB CA1

Platelets PF4 PPBP
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c. Monocytes share expression of TYROBP with NK cells, but they cluster separately from NK

cells and T cells (Figure 4B). They also express CD14 and/or FCGR3A.

d. Conventional DCs (cDCs) are identified as cells that express high levels of HLA genes and

CD74, and lack CD14 and FCGR3A, but cluster with monocytes (Figure 4B), in contrast to

plasmacytoid DCs (pDCs), which cluster separately and express SERPINF1 (Figure 4D) and

LILRA4.

e. B cells are identified as cells expressingMS4A1 (encodes CD20), although antibody-produc-

ing plasma cells lack MS4A1 expression (Figure 4D).

f. Plasma cells express JCHAIN, but they share expression of this and several other genes with

plasmacytoid DCs (pDCs) (Figure 4D). Unlike pDCs, however, plasma cells do not express

SERPINF1 (Figure 4D) and LILRA4, so these genes can be used to distinguish them.

Note:

Contaminating erythrocytes (HBA2) and platelets (PF4) can be identified and excluded along

with any other undesired or undefined populations (Figures 4E and 4F).

Figure 4. Identification of major blood cell subsets

UMAP of all cells. (A–E) Major immune cell subsets were identified as: A) CD4 and CD8 T cells (CD3G and either CD4 or CD8B); (B) NK cells (cells

expressing TYROBP and FCGR3A that cluster with CD8 T cells), monocytes (cells expressing CD14 and/or FCGR3A that cluster together), and cDCs

(express high HLA genes and cluster near monocytes); (C) proliferating lymphocytes (MKI67 clustering with lymphocytes); (D) B cells (MS4A1), plasma

cells (express JCHAIN but lack MS4A1 and SERPINF1), and pDCs (JCHAIN and SERPINF1); and E) erythrocytes (HBA2) and platelets (PF4) cells. (F)

Identified immune cell subsets are indicated. Undefined and undesired subsets such as erythrocytes and platelets can be excluded from subsequent

analysis. UMAPs before and after exclusion are shown. Figure modified from (Yao et al., 2021).

ll
OPEN ACCESS

STAR Protocols 2, 100582, June 18, 2021 11

Protocol



After major immune cell types have been defined, further dimensionality reduction analyses

can be performed to identify subsets of immune cells (see Table 2 for key genes). For instance,

performing dimensionality reduction of B and plasma cells permits identification of immature,

naı̈ve, activated, memory and plasma cells (Figure 5), and classical and non-classical mono-

cytes can also be distinguished by dimensionality reduction of monocytes and DCs (Figure 6).

Investigators should not rely exclusively on the marker genes indicated here but should also

check other differentially expressed genes between clusters (e.g., top 10 or top 20) to confirm

cell identities. Comparison to Human Cell Atlas (Immune System) or other immune subset

RNAseq datasets can be helpful. Cell type identification can also be performed using compu-

tational packages such as SingleR, which applies cell identification labels from reference data-

sets to the test dataset based on gene expression profiles. However, it is important that

appropriate reference datasets are used, and the expression of key markers should be veri-

fied. Whichever method is used, caution should be exercised to verify that subsets are

correctly identified.

Statistical analyses

Differential gene expression (DEG)

Once major cell types have been identified, up- or downregulated genes in a cell type of interest

from COVID-19 patient groups can be determined.

33. Calculate differentially expressed genes between groups for each cell type using Mode-based

Analysis of Single-cell transcriptomics (MAST) (Finak et al., 2015). Comparisons are made be-

tween two patient groups at a time, for example CD8 T cells from Severe vs Moderate

COVID-19 or Severe vs. Recovering.

Sample code:

load("CD8.rds")

library(ggplot2)

library(Seurat)

library(cowplot)

library(dplyr)

library(ggpubr)

library(calibrate)

library(MAST)

Idents(CD8)="group"

DimPlot(CD8, label=T, split.by="group")

Table 2. Identification of immune cell subsetsa

UMAP clusters Subset Key cluster genes

B cells and plasma cells immature IL7R

mature and activated IGHM, IGHD, IL4R

activated CD69

plasma cells CD27, CD38, JCHAIN

memory AIM2

Monocytes and DCs classical monocytes CD14

non-classical monocytes FCGR3A

cDCs (DC2) high HLA genes and CD74 plus CD1C, FCER1A, CLEC10A (DC2
markers)

pDCs SERPINF1, LILRA4
aNote that the immune cell subsets are representative examples and are not meant to be comprehensive.
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levels(CD8)=c("Moderate", "Severe", "Recovering")

CD8$celltype=Idents(CD8)

CD8_Moderate_vs_Severe=FindMarkers(CD8, ident.1="Moderate", ident.2="Severe", test.

use="MAST")

write.csv(CD8_Moderate_vs_Severe, "CD8_Moderate_vs_Severe.csv")

34. Transfer CSV files to Excel and sort the data into genes that are upregulated or downregulated

between groups, with an adjusted P-value (FDR) cutoff of < 0.01 (or other thresholds as deemed

appropriate).

Note: Comparisons in gene expression are made based on what is defined as ‘‘ident.1’’ and

‘‘ident.2’’. If the average log fold change is positive, this indicates gene expression is

increased in ident.1 compared to ident.2. If the average log fold change is negative, gene

Figure 5. Identification of B and plasma cell subsets

UMAP of B and plasma cells only.

(A) B and plasma cell clusters were identified as immature B cells (IL7R), naı̈ve and activated B cells (IGHM, IGHD, IL4R), activated B cells (CD69), plasma

cells (CD27, CD38, JCHAIN) and memory B cells (AIM2).

(B) Identified subsets are indicated.

Figure 6. Identification of monocyte and DC subsets

UMAP of monocytes and DCs only.

(A) Monocyte clusters and pDCs were identified as classical monocytes (CD14), non-classical monocytes (FCGR3A), and pDCs (SERPINF1, LILRA4).

(B) cDCs are predominantly DC2 cells (HLA-DRB1, CD1C, FCER1A, CLEC10 and low or no monocyte gene expression).

(C) Identified subsets are indicated.
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expression is decreased in ident.1 vs ident.2. Because lists of DEGs are loaded into other anal-

ysis platforms later, it is important to name DEG lists in such a way that it is clear what com-

parison is being made based on what is defined as ident.1 and ident.2.

Functional enrichment analysis

35. Upload gene lists of up- or downregulated DEGs (FDR < 0.01) into Webgestalt (Liao et al., 2019)

to perform over-representation analysis using the Gene Ontology (GO) database (http://

geneontology.org) for non-redundant biological processes in each immune cell type. This al-

lows identification of biological processes that are over-represented from user provided

DEGs between severity groups in each cell type. Results are based on the hypergeometric

test to evaluate enrichment P-values for GO biological processes which are then adjusted for

multiple comparisons (FDR < 0.05). Enriched gene sets provide an overview of altered biological

processes in circulating immune cell types between patient groups.

36. Download gene sets for further analysis such as calculation of pathway module scores.

Note: Many alternative programs for functional enrichment analysis are available, such as

DAVID (https://david.ncifcrf.gov/tools.jsp), EnrichR (https://maayanlab.cloud/Enrichr/), and

Gene Set Enrichment Analysis (GSEA, https://www.gsea-msigdb.org/gsea/index.jsp).

Pathway module analysis

37. Use enriched gene sets for biological processes of interest returned from functional enrichment

analysis to define pathway modules for each cell type.

38. Use the union of genes listed in the enriched gene sets in all COVID-19 groups for biological

processes of interest to determine pathway modules within each immune compartment. For

example, if ‘‘response to type I interferon’’ in CD8 T cells is enriched in Moderate vs Severe

groups, and in Severe vs Recovering groups, the union of both gene sets forms the pathway

module.

39. Calculate pathway module scores using the AddModuleScore function of the Seurat package,

which calculates the average expression of each gene signature list subtracted from the aggre-

gated expression of control feature sets. All analyzed features are binned based on averaged

expression, and the control features are randomly selected from each bin. Pathway module

scores can be calculated for single cells and individual patients within groups.

Sample code for pathway module scores for the biological process ‘‘response to type I interferon’’ in

single cells:

load("CD8.rds")

library(ggplot2)

library(Seurat)

library(cowplot)

library(dplyr)

library(future)

library(ggpubr)

library(calibrate)

Idents(CD8)="group"

levels(CD8)=c("Moderate", "Severe", "Recovering")

CD8$group=Idents(CD8)

Idents(CD8)="subtype"

#Define list for module

ll
OPEN ACCESS

14 STAR Protocols 2, 100582, June 18, 2021

Protocol

http://geneontology.org
http://geneontology.org
https://david.ncifcrf.gov/tools.jsp
https://maayanlab.cloud/Enrichr/
https://www.gsea-msigdb.org/gsea/index.jsp


responseT1IFN<-list(c("MX1", "ISG15", "IFI6", "IRF7", "MX2", "STAT1", "ISG20", "XAF1",

"IFITM1", "BST2", "SP100", "IFIT3", "IFIT1", "OAS1", "OAS2", "IFITM2", "IFI35", "ADAR",

"SAMHD1", "HSP90AB1", "STAT2", "IFNAR1", "SETD2", "OASL", "PTPN11", "C19orf66",

"PSMB8", "IRF9", "EIF2AK2", "NDUFA13", "PLSCR1"))

#Module score and stats

my_comparisons <- list(c("Moderate", "Severe"), c("Moderate", "Recovering"), c("Recovering",

"Severe"))

Method <- "kruskal.test"

Test <- "wilcox.test"

CD8=AddModuleScore(object = CD8, features = responseT1IFN, ctrl = 100, name = "response-

T1IFN1")

Idents(CD8)="group"

#Clean graph, no stats

VlnPlot(object = CD8, features = c("responseT1IFN11"), pt.size = 0.0000, cols=c("#03A0FF",

"#FF2600", "#7E7D7E")) +

stat_summary(fun = mean, geom=’errorbar’,aes(ymax = ..y.., ymin = ..y.., group = factor

("group")),

width = 0.75, linetype = "dashed", colour="black", size=1.5)+xlab("Patient Group")+

ylab("Response to type I interferon")+

ggtitle(label = element_blank())+theme(axis.text.x = element_text(angle = 30))

#Use this to plot default meta data, which is cells

responseT1IFN.score3=CD8@meta.data

#Makes dot plot of cells with stats

ggdotplot(responseT1IFN.score3, "group", "responseT1IFN11", order=c("Moderate", "Severe",

"Recovering"),

color="black", legend="none", xlab="Patient Group",

ylab="response to type I IFN", binwidth=0.03)+stat_compare_means(comparisons=

my_comparisons)+

stat_compare_means(method=Method, paired=FALSE, size=6)+

stat_summary(fun = mean, geom=’errorbar’,aes(ymax = ..y.., ymin = ..y.., group = factor("group")),

width = 0.5, linetype = "dashed", colour="black", size=.75)+geom_boxplot()

Sample code for pathway module scores for the biological process ‘‘response to type I interferon in

individual patients:

#Module score and stats

my_comparisons <- list(c("Moderate", "Severe"), c("Moderate", "Recovering"), c("Recovering",

"Severe"))

Method <- "kruskal.test"

Test <- "wilcox.test"

CD8=AddModuleScore(object = CD8, features = responseT1IFN, ctrl = 100, name = "response-

T1IFN1")

Idents(CD8)="group"

responseT1IFN.score<-aggregate(CD8$responseT1IFN11, by=list(CD8$patient), FUN=mean)

responseT1IFN.dot<-CD8@meta.data

responseT1IFN.dot$group<-factor(responseT1IFN.dot$group, levels = c("Moderate", "Severe",

"Recovering"))
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responseT1IFN.dot1<-responseT1IFN.dot[,c( "group", "patient", "responseT1IFN11")]

responseT1IFN.dot2<-aggregate(responseT1IFN.dot1$responseT1IFN 1, by=list(response-

T1IFN.dot1$patient), FUN=mean)

colnames(responseT1IFN.dot2)<-c("patient", "responseT1IFN11")

responseT1IFN.dot2<-merge(responseT1IFN.dot2, unique(responseT1IFN.dot1[,c("patient",

"group")]))

#Clean graph, no stats

ggdotplot(responseT1IFN.dot2, "group", "responseT1IFN11", order=c("Moderate", "Severe",

"Recovering"), color="black", fill=c("#03A0FF", "#03A0FF", "#03A0FF", "#03A0FF",

"#03A0FF", "#FF2600", "#FF2600", "#FF2600", "#FF2600", "#FF2600", "#FF2600","#7E7D7E",

"#7E7D7E","#7E7D7E","#7E7D7E", "#7E7D7E","#7E7D7E"), legend="none", xlab="Patient

Group", ylab="response to type I interferon", binwidth=0.03)+stat_summary(fun = mean, geo-

m=’errorbar’,aes(ymax = ..y.., ymin = ..y.., group = factor("group")), width = 0.5, linetype =

"dashed", colour="black", size=.75)

#Dot plot with stats

ggdotplot(responseT1IFN.dot2, "group", " responseT1IFN11", order=c("Moderate", "Severe",

"Recovering"), color="black", fill=c("#03A0FF", "#03A0FF", "#03A0FF", "#03A0FF",

"#03A0FF", "#FF2600", "#FF2600", "#FF2600", "#FF2600", "#FF2600", "#FF2600","#7E7D7E",

"#7E7D7E","#7E7D7E","#7E7D7E", "#7E7D7E","#7E7D7E"), legend="none", xlab="Patient

Group", ylab="response to type I interferon", binwidth=0.02)+stat_compare_means

(comparisons = my_comparisons)+stat_compare_means(method=Method, paired=FALSE,

size=6)+

stat_summary(fun = mean, geom=’errorbar’,aes(ymax = ..y.., ymin = ..y.., group = factor

("group")), width = 0.5, linetype = "dashed", colour="black", size=.75)

Note: Sample code includes plots with and without statistical information; depending on how

graphs are formatted it may be preferable to generate graphs in R and add statistical values in

a different program better suited for editing.

Canonical pathway, upstream regulator, and causal network analyses

Ingenuity Pathway Analysis (IPA, Qiagen) is commercial software that provides a number of compu-

tational methods for functional enrichment and network analysis of transcriptomics (and other omics)

data via a graphical user interface. Alternative, non-commercial options for gene product interaction

visualization include STRING (https://string-db.org/) as well as Cytoscape (https://cytoscape.org/).

40. Use IPA for the following analyses:

a. Canonical pathway analysis:Most commonly used functional enrichment algorithms (such as

DAVID, Webgestalt, GSEA) designate a pathway or process as being ‘‘over-represented’’ or

‘‘enriched’’ based on the same pattern of expression within genes (i.e., up- or down-regula-

tion). However, activation of a pathway may require concurrent up-regulation of key genes as

well as down-regulation of others (such as an inhibitor). IPA’s canonical pathway analysis is

based on manually curated and highly granular information on over 700 pathways that incor-

porates the differential expression pattern of member genes when calculating activation

scores. Canonical pathway analysis can be performed on all major immune cell types by

inputting differentially expressed genes (FDR < 0.01) for each cell type (classical monocytes,

NK cells, CD8 T cells, CD4 T cells, and B cells) in pairwise comparisons of patient conditions

(Moderate, Severe, Recovering). Note that for each comparison (e.g., Severe vs. Moderate in

a specific cell type) differentially up and down-regulated genes (FDR < 0.01) and their log2[-

fold change] values should be imported into IPA and a core analysis performed. Enrichment

of canonical pathways is determined using Fisher’s exact test with Benjamini Hochberg

adjusted P-values (FDR). Simultaneously, pathway activation status is assessed to determine
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whether significantly enriched pathways (FDR < 0.01) were activated or inhibited based on

IPA’s knowledgebase of expected expression and phosphorylation patterns of gene prod-

ucts in a given canonical pathway using a z-score statistic: a positive z-score indicating acti-

vation and negative z-score indicating inhibition. A summary bubble chart of canonical

pathway analysis is shown in Figure 7.

Note:

A larger positive or negative z-score implies more confidence in the activation/inhibition sta-

tus of a given pathway, but not its enrichment.

Not every significantly enriched canonical pathway has a z-score due to insufficient informa-

tion on the expected pattern of expression among its member genes in IPA’s knowledgebase.

Non-commercial methods for building gene regulatory networks such as SCENIC (Van de

Sande et al., 2020) and NicheNet (Browaeys et al., 2020), are alternatives to IPA.

b. Upstream regulator/mechanistic network and causal network analyses: These can be per-

formed as part of IPA’s core analysis using differentially expressed genes (FDR < 0.01) for

each immune cell type in pairwise comparisons of COVID-19 conditions. The goal of this

analysis is to identify regulators whose activation or inhibition is expected to result in gene

expression patterns similar to those from the user’s inputted data. The direction of expres-

sion of the differentially expressed genes is compared to IPA’s knowledgebase using a sta-

tistical model (Kramer et al., 2014) to identify key putative regulators and construct a mech-

anistic regulatory network. An overlap P-value is used to measure enrichment of network-

regulated genes in the dataset and an activation z-score is calculated to identify likely regu-

lating molecules based on statistically significant patterns of up- and downregulation as well

as the expected activation state (activated or inhibited) of each regulator.

Notes:

In our experience, interpretation of the results from this analysis can be challenging. For the

upstream regulator/mechanistic network analysis, one issue we faced was identification of a

Figure 7. Canonical pathway analysis

For each immune cell type, differentially expressed genes between Severe vs. Moderate and Severe vs. Recovering

COVID-19 patients were imported into IPA for core analysis. Significantly enriched canonical pathways between

disease group comparisons across cell types were identified using FDR < 0.01. The activation/inhibition state of a

given pathway was determined using z-scores. The bubble chart depicts a select number of canonical pathways that

were significantly enriched in most cell types between patient groups. Figure modified from (Yao et al., 2021).
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very large number of candidate regulators in each comparison (e.g., Severe vs. Moderate in

NK cells), which was further compounded by the many different comparisons being per-

formed. To overcome this challenge, we focused on the Severe vs. Moderate COVID-19 com-

parison and selected one representative upstream regulator, IRF7, to build a mechanistic reg-

ulatory network (Figure 8). IRF7 was chosen because it was consistently identified as one of the

most significantly enriched upstream regulators across cell types (except monocytes). In addi-

tion, although a regulator’s own differential expression in the inputted data is not considered

when calculating its significance by IPA, IRF7 was highly differentially expressed across im-

mune cell types in our data, further increasing confidence in its selection as a critical coordi-

nator of the host immune response in COVID-19.

Similar challenges can be encountered when applying the causal network analysis in IPA.

While resembling upstream regulator analysis in some respects, causal network analysis builds

relationships based on identifying a ‘‘master regulator’’ that modulates a number of ‘‘interme-

diate regulators’’ whose downstream targets correspond to the gene expression patterns in-

putted by the user (Kramer et al., 2014). Once again, this analysis yielded many potential mas-

ter regulators in our dataset given the many cell types and comparison groups. Since a unique

feature of this project was inclusion of patients recovering from severe SARS-CoV-2 infection,

which provided an opportunity to investigate development of humoral immunity in COVID-

19, we focused on B cell transcriptional responses between Recovering vs. acute Severe pa-

tients by performing causal network analysis on differentially upregulated genes in Recov-

ering patients. Furthermore, similar to the upstream analysis, we selected the most significant

candidate master regulator that was itself differentially expressed in the scRNA-seq B cell

data—SYK. The resulting causal network’s structure was built on SYK as its ‘‘root’’ and was con-

nected to 40 other regulators which in turn modulated 139 DEGs in B cells of Recovering vs.

Severe COVID-19 patients (Figure 9).

Figure 8. Upstream regulator analysis

(A) Differentially expressed gene patterns for immune cells were leveraged to identify IRF7 as a putative master

regulator in Severe vs. Moderate COVID-19. The regulatory network, with IRF7 as the key orchestrator, was

constructed based on the overlap between the patterns of differential gene expression and IPA’s knowledgebase

across cell types as assessed by Fisher’s exact test P-value and a z-score, with a positive z-score indicating activation

and negative z-score indicating inhibition. Note that each member of this network is itself a regulator of other gene

targets in each cell type.

(B) Heatmap highlighting whether a given member of the regulatory network is expected to be activated or inhibited

in each immune cell population in Severe versus Moderate groups. This analysis implies that the IRF7 network is

inhibited in monocytes, but activated in other immune cells. Figure modified from (Yao et al., 2021).
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EXPECTED OUTCOMES

Following these step-wise guidelines should provide investigators with the necessary tools to suc-

cessfully extract single cell-level transcriptional information from peripheral blood immune cells of

COVID-19 patients. Below we describe additional issues, how to address them, and the expected

outcomes for this protocol.

Using this protocol, it is possible to identify major immune cell types, including CD4 and CD8 T cells,

NK cells, B and plasma cells, monocytes, cDCs and pDCs (Figure 4). Undefined or undesired cells,

such as contaminating erythrocytes and platelets, can be excluded from subsequent analysis

(Figure 4F).

It may be possible to identify subsets of major immune cell types when performing dimensionality

reduction with all PBMCs. Alternatively, additional dimensionality reduction analyses can be per-

formed to facilitate subset identification, such as analysis of B and plasma cells to reveal naı̈ve, acti-

vated and memory B cells and plasma cells (Figure 5), and monocytes and DCs to more clearly visu-

alize clusters of classical versus non-classical monocytes, cDCs and pDCs (Figure 6). As expected, we

observed only small proportions of cDCs and pDCs (Figures 4 and 6). Expression of FCER1A and

Figure 9. Causal network analysis

IPA causal network analysis was applied to B cell transcriptional profiles of Recovering vs. Severe groups to identify

putative mechanistic relationships between regulators. One of the most significantly enriched ‘‘master regulators’’

was SYK, which was itself differentially upregulated, and orchestrated a causal network comprised of 40 other

regulators. This analysis suggests that activation of SYK-regulated pathways is a key driver of humoral responses in

patients recovering from severe SARS-Cov2 infection. Figure modified from (Yao et al., 2021).
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CLEC10 with low or no expression of monocyte genes indicated that the cDCs were predominantly

DC2 cells (Figure 6C).

LIMITATIONS

Isolating, processing and performing scRNA-seq in circulating immune cells of COVID-19 patients is

a complex and time-consuming task. This protocol summarizes our experiences, challenges and so-

lutions for this project. Several important limitations and suggested solutions are discussed below.

Neutrophils are very sensitive to freezing, so they were not present in the illustrated dataset, but it

may be possible to preserve and detect neutrophils if fresh rather than frozen samples are used. We

have not, however, evaluated the impact of methanol fixation on neutrophils.

Viability of frozen buffy coat cells (60%–70%) is lower than PBMCs isolated from fresh blood samples

using a density medium such as Ficoll or Leukopak. Erythrocyte contamination can also be expected,

but erythrocytes can be reduced by FACS sorting. Thus, buffy coats are a good alternative if PBMC

isolation is not available with your preferred bio-banking center.

We attempted to multiplex our samples using cell hashing (Stoeckius et al., 2018) by staining the

cells with TotalSeq cell hashing antibodies (BioLegend) immediately after FACS sorting, but unfor-

tunately, we found that this approach was incompatible with methanol fixation and we were unable

to demultiplex the combined samples. Therefore, if methanol-fixed samples need to be analyzed

separately, they must be captured separately, and if samples are combined for capture, they must

be from the same patient group. Alternative methods that might be useful are also discussed in

the troubleshooting section.

Immune cell subsets that have not been well characterized by scRNA-seq may be difficult to identify.

Cell annotation packages such as SingleR (https://bioconductor.org/packages/release/bioc/html/

SingleR.html) can be useful but should be used with caution because reliability will depend on the

reference datasets used to define them (Aran et al., 2019). Cell activation states may also be difficult

to distinguish if they exist as a continuum rather than discrete populations of naı̈ve vs. activated vs.

memory cells, but pseudotime trajectory analysis may be useful in these cases (Cano-Gamez et al.,

2020).

Pathway analysis using IPA can often result in identification of many upstream regulators and causal

networks. While this may be helpful from an exploratory standpoint, it is often difficult to digest the

large amount of information generated. We opted to limit our analysis to the most statistically sig-

nificant candidates that were themselves differentially expressed in our data.

TROUBLESHOOTING

Problem 1

Cell clumps and clogs during sorting (before step 1).

Potential solution

Add 2–5 mM EDTA to the cell suspension prior to sorting to reduce cell clumping. Filter cells before

sorting using 70 mm strainers. Utilize multiple sorters to reduce the time needed to sort cells.

Problem 2

Limited sorter availability (before step 1).

Potential solution

If it is not possible sort all the samples in one day, sorting can be spread out over a period of time.

This has the potential to introduce batch effects, however, so if simultaneous sorting with multiple

sorters is not an option, care should be taken to randomize samples, use the same reagents and
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procedures throughout all the sample processing steps, and check that batch correction successfully

removes batch effects during the data analysis.

Problem 3

Erythrocyte contamination (step 5).

Potential solution

Remove erythrocytes by FACS sorting and/or by excluding erythrocytes identified during scRNA-

seq analysis.

Problem 4

Cell hashing didn’t work for methanol-fixed cells (before step 6).

Potential solution

We only evaluated cell hashing with oligonucleotide-barcoded antibodies before methanol fixation;

we did not evaluate antibody labeling after methanol fixation. Oligonucleotide-barcoded lipids,

which can also be used to label whole cells and nuclei (McGinnis et al., 2019) are now available as

CellPlex from 10X Genomics, although it is unclear whether methanol fixation would also interfere

with lipid labeling. Alternatively, a recent report demonstrated sample demultiplexing by computa-

tional analysis of SNPs (Kang et al., 2018), which might be an option if it isn’t possible to hash the

samples for multiplexing.

Problem 5

Too many regulator candidates identified in IPA (step 37).

Potential solution

This is a common issue when using IPA’s upstream andmaster regulator features. Refining significant

candidates will depend on the aim of the project; for example, it is possible to limit identified reg-

ulators to therapeutic drugs or small molecules if that is the primary goal. In our case, we selected a

regulator by requiring it to be the highest ranked candidate identified by IPA that was itself signif-

icantly differentially expressed in our dataset. Our primary motivation was to define a limited set

of upstream and master regulators that were highly likely to coordinate the observed transcriptional

response of immune cells in COVID-19. However, a limitation of this approach is that potentially

important regulators can be post-transcriptionally modified and therefore not be differentially ex-

pressed. Finally, alternative methods for identifying regulatory networks in scRNA-seq data are

freely available (Browaeys et al., 2020; Van de Sande et al., 2020) and can be compared to IPA.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by Sina Gharib (sagharib@uw.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All code used for data analysis not included in this manuscript is available upon request.
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