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The FAK inhibitor BI 853520 inhibits spheroid formation and orthotopic
tumor growth in malignant pleural mesothelioma
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Abstract
No tyrosine kinase inhibitors are approved for malignant pleural mesothelioma (MPM). Preclinical studies identified focal
adhesion kinase (FAK) as a target in MPM. Accordingly, we assessed the novel, highly selective FAK inhibitor (BI 853520)
in 2D and 3D cultures and in vivo. IC50 values were measured by adherent cell viability assay. Cell migration and 3D growth
were quantified by video microscopy and spheroid formation, respectively. Phosphorylation of FAK, Akt, S6, and Erk was
measured by immunoblot. ThemRNA expression of the putative tumor stem cell markers SOX2, Nanog, CD44, ALDH1, c-myc,
and Oct4 was analyzed by qPCR. Cell proliferation, apoptosis, and tumor tissue microvessel density (MVD) were investigated in
orthotopic MPM xenografts. In all 12 MPM cell lines, IC50 exceeded 5 μM and loss of NF2 did not correlate with sensitivity. No
synergism was found with cisplatin in adherent cells. BI 853520 decreased migration in 3 out of 4 cell lines. FAK phosphory-
lation was reduced upon treatment but activation of Erk, Akt, or S6 remained unaffected. Nevertheless, BI 853520 inhibited
spheroid growth and significantly reduced tumor weight, cell proliferation, and MVD in vivo. BI 853520 has limited effect in
adherent cultures but demonstrates potent activity in spheroids and in orthotopic tumors in vivo. Based on our findings, further
studies are warranted to explore the clinical utility of BI 853520 in human MPM.

Key messages
& Response to FAK inhibition in MPM is independent of NF2 expression or histotype.
& FAK inhibition strongly interfered with MPM spheroid formation.
& BI 853520 has been shown to exert anti-tumor effect in MPM.
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Introduction

Malignant pleural mesothelioma (MPM) is a highly ag-
gressive malignancy with a strong link to prior asbestos
exposure. Invasive growth, locoregional spread, and fre-
quent local recurrence are considered to be responsible
for its dismal overall survival (OS), which ranges from 9
to 14 months [1]. Despite the modest OS benefit achieved
by adding bevacizumab to standard cisplatin plus
pemetrexed chemotherapy [2], no other molecularly
targeted drugs could so far enter the clinical practice for
this fatal malignancy. Focal adhesion kinase (FAK), also
known as protein tyrosine kinase 2 (PTK2), is a ubiqui-
tously expressed 125-kDa non-receptor tyrosine kinase
which consists of three distinct domains: a central catalytic
domain, a C-terminal FAT domain, and an N-terminal
FERM domain [3, 4]. FAK is located in the cytosol, where
it is particularly prominent in focal adhesions that interact
with different extracellular matrix components [5].
Accordingly, during homeostatic conditions, FAK activa-
tion mainly relies on signals from integrins and growth
factor receptors, leading to autophosphorylation of the
Y397 site in the N-terminal domain [3, 4, 6–8]. FAK over-
expression has been preferentially linked to a more aggres-
sive tumor behavior, particularly by promoting tumor cell
proliferation, survival, motility, invasion, stem cell renew-
al, angiogenesis, and metastasis [4, 6, 7, 9–11]. In this
context, there is emerging evidence for a functional role
of FAK gene amplification and protein overexpression dur-
ing tumor progression in different tumor types including
lung, breast, colorectal, thyroid, kidney, and pancreatic
cancers as well as astrocytoma and osteosarcoma [10,
12–14]. Of note, recent studies demonstrated that FAK
activation is an important regulator of the immunosuppres-
sive tumor microenvironment and thus promotes immune
evasion in murine models of squamous cell carcinoma and
pancreatic cancer [15, 16].

Recognition of the crucial role of FAK in the aforemen-
tioned tumor promoting functions prompted the development
of FAK small molecule inhibitors and their application for
cancer therapy [3, 6, 9, 14]. Early preclinical data provided a
clear scientific rationale for the anti-tumorigenic effects medi-
ated by FAK inhibitors, though concerns were raised about
their potential toxicity via interacting with ATP binding sites
on other tyrosine kinases [3]. This led to the development of
novel small molecules with high selectivity for FAK which
can prevent the autophosphorylation [3, 11]. These ATP-
competitive small molecule inhibitors are effective in

preclinical models representing a variety of malignancies in-
cluding MPM [17–19].

Merlin, a frequently inactivated tumor suppressor pro-
tein in MPM, is encoded by the neurofibromatosis type 2
(NF2) gene [20]. Merlin-deficient MPMs exhibit in-
creased FAK expression and tumor cell invasion [21,
22]. In a recent clinical phase I study, MPM patients
progressing rapidly on prior treatments showed prolonged
stable disease when treated with GSK2256098, a specific
FAK inhibitor. Interestingly, in this study, patients with
merlin-deficient tumors had a significantly better
progression-free survival (PFS) than those with merlin-
positive tumors [23]. Another study showed similarly bet-
ter PFS in an advanced MPM patient with unknown mer-
lin status treated with VS-6063, also known as defactinib
[24]. These clinical studies are in line with in vitro data,
where the FAK inhibitor VS-4718 prominently reduced
proliferation and triggered apoptosis in merlin-deficient
tumor cells [19]. Notably, Kato et al. reported that E-
cadherin expression is a predictive biomarker for VS-
4718 FAK in merlin-negative MPM patients [25].
However, a recent phase 2, double-blinded, placebo-
controlled study (COMMAND) investigating another
FAK inhibitor (VS-6063) in MPM patients randomized
by merlin status of the tumor had to be prematurely
stopped due to futility (NCT01870609).

Based on these controversial studies, further preclinical
investigations are necessary to better understand the inter-
play between FAK and E-cadherin functions particularly
in MPM and, furthermore, to identify novel markers that
help to stratify patients for FAK inhibitor susceptibility.

BI 853520 is a novel highly specific FAK inhibitor that
has previously demonstrated a good oral bioavailability in
mice and led to tumor growth inhibition in a panel of 21
different human carcinomas and in human fibrosarcoma at
doses as low as 6 mg/kg [26, 27]. This is the first study
investigating the anti-tumor potential of BI 853520 in dif-
ferent in vitro and in vivo models of human MPM.

Materials and methods

Cell culture

SPC111, SPC212, and M38K cell lines were initially
established from human biphasic MPMs, kindly provided by
Prof. R. Stahel (SPC111 and SPC212, University of Zurich,
Zurich, Switzerland) and Prof. V.L. Kinnula (M38K,
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University of Helsinki, Helsinki, Finland). The P31 epitheli-
oid MPM cell line was kindly provided by Prof. K. Grankvist
(University of Umea, Umea, Sweden). The non-malignant
mesothelial cell lineMet5a (ATCCCRL-9444) was purchased
from the American Type Culture Collection. Meso and VMC
primary cell lines were established at the Medical University
of Vienna (ethics approval number: BTHORAXBANK^ 904/
2009). Histological subtype distribution among these cell lines
are listed in Table 1. Cells were cultured in RPMI-1640 or
DMEM plus 10% fetal calf serum (FCS) (Sigma Chemical
Co., St. Louis, MO), 100 U/ml penicillin, and 10 mg/ml strep-
tomycin (Sigma Chemical Co., St. Louis, MO). Cell lines
were kept at 37 °C in a humidified incubator with 5% CO2.

Chemosensitivity assays

In order to assess the short-term effect of BI 853520
(Boehringer Ingelheim) on cell viability, total protein
amount–based sulforhodamine B (SRB) assays were per-
formed in 12 MPM cell lines and in the immortalized me-
sothelial line Met5a. Additionally, BI 853520 and cisplatin
(Teva Hungary) combination treatments were done in one
merlin-positive (SPC212) and one merlin-negative cell line
(P31). SRB assays were executed as published previously
[28]. Briefly, cells were seeded in 96-well plates 24 h be-
fore drug exposure to be afterwards treated with different
concentrations of cisplatin and BI 853520 for 72 h.
Regarding combination treatments, we calculated combi-
nation indices (CI) according to Chou and Talalay [29]
with the CalcuSyn software (Biosoft, Ferguson, MO). CI
values < 0.9, from 0.9 to 1.1, or > 1.1 indicated synergism,
additive effects, or antagonism between BI 853520 and
cisplatin, respectively.

Analysis of in vitro cell migration by time-lapse video
microscopy

2D video microscopy measurements were performed and
analyzed as previously described [30]. Briefly, cells were
seeded in 24-well plates (Corning Incorporated, Corning,
NY) and cultured in DMEM medium supplemented with
10% FCS. Medium was changed to CO2-independent me-
dium (Invitrogen, Carlsbad, CA) with 10% FCS and 4 mM
glutamine, and cells were kept in a custom-designed incu-
bator built around an inverted phase-contrast microscope
(World Precision Instruments, Sarasota, FL). Every 5 min,
images from three distinct neighboring microscopic fields
were taken for at least 48 h. After 24 h of observation, BI
853520 was added and cells were finally observed for an-
other 72 h. Individual cells were tracked for the first 24 h
after treatment with a cell tracking program, their position
parameters were extracted, and migrated distance was cal-
culated as previously described [31].

Tumor cell spheroid assay

In order to obtain MPM cell line–derived spheroid cultures,
5 × 103 MPM cells (SPC212 or P31) were seeded in triplicate
in DMEM/Ham’s F-12 medium (Biochrom) in ultra-low at-
tachment 24-well plates (Thermo Scientific). Medium was
supplemented with 20 ng/ml basic fibroblast growth factor
(FGF) (PeproTech), 20 ng/ml epidermal growth factor
(Sigma), and 2% B27 supplement (Gibco). BI 853520 was
added at 0.1 μM and 1 μM. Ninety-six hours following plat-
ing, spheroids in all wells were photographed. Spheres with a
diameter above 100 μm were counted. Diameters were mea-
sured by using ImageJ software.

Table 1 Histological subtype,
merlin status, and IC50 values for
each cell line

Cell line Histological subtype Merlin status IC50 of BI 853520 (μM)

Met5a Immortalized mesothelial cell − 9

Meso49 Epithelioid MPM − 5.5

Meso53 Biphasic MPM + 5.5

SPC111 Biphasic MPM − 5.6

P31 Epithelioid MPM − 5.9

VMC20 Epithelioid MPM − 5.9

VMC23 Epithelioid MPM − 5.8

M38K Biphasic MPM + 6.6

VMC40 Biphasic MPM − 7.5

Meso62 Sarcomatoid MPM − 8.8

SPC212 Biphasic MPM + 10.2

VMC6 Epithelioid MPM − 11.5

VMC12 Epithelioid MPM + 11.3
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Western blot analysis

For merl in and E-cadherin expression analysis ,
subconfluent cultures of all 12 cell lines were processed.
To determine the impact of FAK inhibition on cell signal-
ing, SPC111, P31, SPC212, or M38K cells were seeded
into 6-well plates and—after 24 h of recovery—treated
with BI 853520 or solvent. Subsequently, cells were ex-
tracted in RIPA buffer (Fisher Scientific, Waltham, MA,
Cat. No.: 3168890) containing protease inhibitor cocktail
(Fisher Scientific, Cat. No.: 78430) to later separate pro-
teins by SDS-PAGE. Proteins were blotted onto nitrocel-
lulose membranes and immunostained with the following
primary antibodies from cell signaling: merlin (#6995), E-
cadherin (#3195), Erk (#9102), p-Erk (#9101), Akt
(#9272), p-Akt (#4058), S6 (#2215), p-S6 (#2217), FAK
(#3285), p-FAK (Tyr-397, #8556), and β-tubulin (#2128).
For antibodies, a dilution of 1:1000 was applied, followed
by horseradish peroxidase–coupled secondary antibody
(Thermo) incubation and development by ECL Reagent
(GE Healthcare, GE Healthcare, Dassel, Germany) with
a developer machine (Curix60 AGFA Type 9462/106).

Analysis of tumor stem cell marker expression

For tumor spheroid formation, MPM cells were seeded as
described above and treated with 0.1 μM and 0.5 μM BI
853520 for 4 days. Total RNAwas isolated with TRIzol and
reverse transcribed withMMLVreverse transcriptase (Thermo
Fisher Scientific) and random hexamer primers. The resulting
cDNAs were analyzed using TaqMan gene expression assays
on the Applied Biosystems 7500 Fast Real-Time PCR System
(Assay IDs: ALDH1A1 Hs00946916; CD44 Hs01075854;
GAPDH Hs02786624; Myc Hs01570247; NANOG
Hs02387400; Oct4 Hs04260367; SOX2 Hs01053049;
Thermo Fisher Scientific). Gene expression was calculated
by the ΔΔC(T) method using GAPDH as reference gene.

Orthotopic in vivo MPM xenograft model

In order to develop orthotopically growing MPM tumors, two
million P31 cells were inoculated into the chest cavity of 8-
week-old female SCID mice from our colony. Animals were
randomly stratified into treatment and control groups once
tumor nodules had a macroscopically visible size (based on
our preliminary experiments 28 days following tumor implan-
tation). Regarding treatment, mice received solvent or
20mg/kg BI 853520 (dissolved inmethylcellulose) orally five
times a week on consecutive days (one cycle with 5 days on
and 2 days off treatment). Animals were weighed three times a
week and the experiment was ended on the 20th day of treat-
ment. Finally, MPM tumor nodules were harvested, weighed,
and fixed in formalin and embedded in paraffin (FFPE) or

stored as frozen tissue. All mentioned animal experiments
were performed according to the ARRIVE guidelines [32]
and to the animal welfare regulations of the host institutes
(permission number: PEI/001/2574-6/2015).

Evaluation of apoptosis and tumor vascularization
in vivo

Serial frozen sections were cut from each tumor. For the anal-
ysis of apoptosis, terminal deoxynucleotidyl transferase–
mediated dUTP nick-end labeling (TUNEL) was accom-
plished according to the manufacturer’s instructions (Roche
Diagnostics). DAPI was used to label nuclei and slides were
scanned by TissueFAXS (TissueGnostics GmbH, Vienna,
Austria). Apoptosis was quantified as the percentage of
TUNEL-positive nuclei among DAPI-labeled ones. To ana-
lyze the effect of FAK inhibition on angiogenesis, consecutive
frozen sections were stained for microvessels with CD31
(clone SZ31, Dianova). Intratumoral microvessel density
analysis was performed by using the StrataQuest software
(TissueGnostics, Vienna, Austria).

Assessment of tumor cell proliferation by Ki67
labeling

Ki67 immunohistochemistry was performed as described ear-
lier [33]. Three-micrometer sections from formalin-fixed and
paraff in -embedded (FFPE) tumor nodules were
deparaffinized and rehydrated with decreasing alcohol con-
centrations. Following heat-induced antigen retrieval in citrate
buffer (pH 6.0), slides were incubated with the Ki67 antibody
(mouse mAb, Dako Cytomation, clone MIB-1, dilution
1:100) for 30 min. UltraVision LP detection system (Lab
Vision Corporation, Fremont, CA) was used to detect anti-
body binding according to the manufacturer’s recommenda-
tions. 3-3-Diaminobenzidine (Dako) was applied for color
development. Each analyzed slide was counterstained with
Mayer’s hematoxylin (Sigma) and images were taken using
a bright-field microscope (Axio Imager, Carl Zeiss). Labeling
index was determined by using the automated image analysis
application ImmunoRatio [34]. At least 2000 tumor cells were
counted to obtain the mean percentage of Ki67-positive MPM
tumor cells per sample.

Statistical analyses

In order to compare two groups, Mann-Whitney U tests were
performed. Kruskal-Wallis and Dunn’s multiple comparison
tests were used for more than two groups. P values below 0.05
were considered statistically significant. For all statistical
analyses, the GraphPad Prism 5.0 software (GraphPad Inc.,
San Diego, CA) was applied.
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Data accessibility

Data and commercially not available material is available
from the corresponding authors upon reasonable request.

Results

Response to FAK inhibition in adherent MPM cell
models in vitro is independent of merlin expression
and histological subtype

In order to investigate whether histological subtype andmerlin
or E-cadherin expression influence the sensitivity of MPM
cells to FAK inhibition in vitro, we determined the IC50 values
by performing SRB assays of adherently grown cells follow-
ing 72 h of BI 853520 treatment (Fig. 1 and Table 1). None of
the 12MPM cell lines in our panel expressed E-cadherin (data
not shown). All cell lines demonstrated IC50 values above
5 μM including three cell lines with very low sensitivity
(IC50 values above 10 μM, Fig.1b). In our panel of cell lines,

sensitivity to BI 853520 showed no association with histolog-
ical subtype or merlin expression (Supplementary Fig. 1).

BI 853520 does not synergize with cisplatin in vitro

Since certain FAK inhibitors demonstrated a synergistic effect
with cisplatin in other malignant diseases [9], cell viability
was also measured when BI 853520 was applied in combina-
tion with cisplatin. In these experiments, we used the relative-
ly sensitive and merlin-negative P31 and the more resistant
and merlin-expressing SPC212 cells. The CI index calcula-
tions demonstrate that at the majority of concentrations, only
additive or even antagonistic interactions are achievable
(Supplementary Fig. 2).

FAK inhibition reduces MPM cell motility in a cell
type–dependent manner

Because FAK is a known regulator of actin remodeling
and focal adhesion dynamics, we also measured the
in vitro migratory activity in the presence of BI 853520.

Fig. 1 BI 853520 has limited
growth inhibitory potential in 2D
MPM cell cultures. MPM cells
(n = 12) were treated with
different concentrations of BI
853520 and incubated for 72 h.
Dose-response curves (mean ±
SEM) from three independent
experiments are presented for
more sensitive (a) and more re-
sistant (b) cell lines
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The cell lines SPC111, SPC212, P31, and M38K were
selected for the further experiments to represent both ep-
ithelioid and biphasic and merlin-expressing as well as
merlin-negative subtypes. The average migrated distance
of the four different MPM cell lines was measured in the
first 24 h following treatment with BI 853520 or solvent
(Fig. 2). Of note, BI 853520 showed an anti-migratory
effect even at the 1 μM concentration which is way below
the IC50 values for cell viability in three of the four cell
lines. Interestingly, SPC212 cells with very low sensitivity
in adherent growth assay demonstrated a strong migration
inhibitory response. The cell line with the lowest baseline
motility, i.e., P31, showed a slight increase in migration at
this concentration.

BI 853520 efficiently reduces FAK phosphorylation
but not the activation of Akt, S6, or Erk

In order to examine if FAK is activated in MPM cells and
whether BI 853520 can interfere with FAK phosphoryla-
tion, we performed time-course immunoblot analyses in
adherent cultures (Fig. 3 and Supplementary Fig. 3).
While the FAK inhibitor led to a rapid and sustained de-
crease (i.e., from 30 min to 24 h) of Tyr397 phosphory-
lation in the four cell lines studied (SPC111, SPC212,
P31, and M38K), we did not observe a sustained and
consequent reduction in Akt, S6, or Erk phosphorylation.
After 24 h of BI 853520 treatment, the FAK phosphory-
lation remained inhibited but there was no difference in

the cells in downstream activation when compared to the
24-h solvent-treated controls.

FAK inhibition interferes with MPM cell spheroid
formation

Because FAK inhibitors were previously found to have an
impact on tumor-initiating cell populations [19], we per-
formed spheroid formation assays by culturing SPC111,
SPC212, P31, and M38K cells under serum-free and non-
adherent conditions (Fig. 4). While all four cell lines read-
ily formed spheroids after 96 h under control conditions,
we observed a cell line–dependent significant reduction in
spheroid numbers at concentrations lower than the IC50

values pertinent to adherent MPM cell growth. P31 cells
were not capable of forming spheroids in the presence of
0.1 or 1 μM BI 853520. Of note, despite the significant
reduction in spheroid numbers, the diameter of the spher-
oids was not affected by BI 853520 in SPC212 cells.
Importantly, similar to the adherent cell cultures, 24-h
FAK inhibition led to a decrease in the phosphorylation
of Tyr397 in all four cell lines; however, no reduction in
Akt, S6, or Erk phosphorylation was observed in spheroid
cultures (Supplementary Fig. 4). Notably, treatment of
MPM spheroids with 0.1 or 0.5 μM BI 853520 did not
change the expression of the putative tumor stem cell
markers SOX2, Nanog, CD44, ALDH1, c-myc, and Oct4
(Supplementary Fig. 5).

Fig. 2 Cell line–dependent mi-
gratory response to BI 853520
treatment. SPC111, SPC212, P31,
and M38K cell cultures were
treated with 1 μM BI 853520 or
solvent in CO2-independent me-
dium supplemented with 10%
FBS. Cell migration was ob-
served by video microscopy for
72 h. Average migrated distance
was analyzed in the 48- to 72-h
period after treatment. BI 853520
treatment reduced the migratory
potential of SPC111, SPC212,
and M38K cells. Interestingly, a
slight increase in the migration of
P31 cells could be seen

236 J Mol Med (2019) 97:231–242



BI 853520 reduces growth, proliferation,
and microvessel density of orthotopically growing
human MPM xenografts in mice

In order to investigate whether the in vitro effects translate to
in vivo inhibitory potential, an orthotopic MPM model was
established by injecting P31 cells—the cell line with the stron-
gest response to FAK inhibition in spheroid formation—into
the thoracic cavity of immunocompromised SCID mice (Fig.
5). There was a significant reduction in the tumor load as
quantified by the total tumor weight dissected from the tho-
racic cavity after 3 weeks of per OS treatment with 20 mg/kg
BI 853520 in a schedule of 5 days on and 2 days of (Fig. 5a).
Notably, BI 853520 treatment did not influence weight loss in
the mice (Fig. 5b). Figure 5c shows representative hematox-
ylin and eosin (H&E) staining in xenograft tumors of either
BI 853520- or solvent-treated mice. Mechanistically, the
proliferation of tumor cells in the orthotopic tumors was
decreased significantly in the BI 853520-treated animals
(Fig. 6a, b); however, we did not observe increased apopto-
sis (as detected by TUNEL labeling) in these tumors
(Supplementary Fig. 6). Importantly, vascularization of hu-
manMPMxenograft tumorswas significantly reduced byBI
853520 treatment (Fig. 6c, d).

Discussion

In the current study, we demonstrate the impact of the
FAK inhibitor BI 853520 on MPM tumor growth in 2D
and 3D in vitro cultures and in an in vivo orthotopic
model of human MPM. FAK is a multifunctional non-
receptor protein tyrosine kinase, and its role in the pro-
gression of a variety of cancer types has now been abun-
dantly demonstrated [35]. Importantly, inhibiting FAK by
using small molecule inhibitors—such as BI 853520—
that prevent the autophosphorylation seems to be a reli-
able approach [3, 11].

Relatively high IC50 values were measured in our panel
of cell lines in adherent cell viability assays. In contrast, BI
853520 treatment could interfere with spheroid formation
at much lower concentrations. In support of this, another
FAK inhibitor, namely PND-1186, was reported to selec-
tively induce cancer cell apoptosis in a 3D environment
[36]. Similarly, the FAK inhibitor VS-6062 demonstrated
a greater effect in anchorage-independent growth of ovar-
ian cancer cells when compared to cells in adherent cul-
tures [18]. Hence, the significant 3D growth inhibitory ef-
fect of BI 853520 in human MPM cultures is important
because there is accumulat ing evidence in drug

Fig. 3 BI 853520 reduces FAK phosphorylation without major impact on
Erk, Akt, or S6 activation in vitro. Time-dependent Western blot assays
illustrate the impact of 1μMBI 853520 treatment on Erk1/2, Akt, S6, and
FAK phosphorylation in two merlin-expressing (SPC212, M38K) and

two merlin-negative MPM cell lines (SPC111, P31). While FAK phos-
phorylation on Tyr397 was efficiently inhibited in all four cell lines, no
downstream inactivation was seen in Erk, Akt, or S6. As loading control
β-tubulin was applied
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development suggesting that 3D tumor cell cultures (vs.
2D monolayers) more accurately model in vivo tumor
complexity and thus provide more reliable data for subse-
quent in vivo and clinical testing [37, 38]. MPM progres-
sion is especially relevant in this regard because tumor
spheroids are often present in the pleural effusions of
MPM patients and contribute to tumor spread within the
pleural cavity [39].

Cancer stem cells or tumor-initiating cells are defined as a
small subpopulation of tumor cells with the potential to self-
sustain and also to maintain tumor growth [19]. Previous stud-
ies in different tumor types (includingMPM) [19] put forward
the hypothesis that FAK inhibitors might preferentially target
tumor-initiating cells that are capable of non-adherent growth
and are thought to be enriched in tumor spheroids [19, 35]. BI
853520 treatment, however, did not alter tumor stem cell
marker (SOX2 [40], ALDH1 [19, 40], NANOG [40], c-myc
[40], CD44 [41], Oct4 [40, 41]) expressions of human tumor
spheroids formed by different MPM cell lines. Based on our
results, BI 853520 thus cannot be considered a selective in-
hibitor of tumor-initiating cells in human MPM spheroids.

FAK inhibitor sensitivity has been linked to merlin and
E-cadherin expression in previous studies [18, 19, 25]. E-

cadherin was found to be responsible for FAK inhibitor
treatment failure in NF2-deficient MPM cells [25]. This
is congruent with an in vitro study in bladder cancer, in
which E-cadherin knockdown led to restoration of FAK
inhibitor–mediated suppression of cancer cell invasion
and migration [42]. Unfortunately, in our panel of cell
lines, there were no E-cadherin-expressing MPM cells
preventing us to study its impact on treatment responsive-
ness. With regard to NF2 expression, we found no signif-
icant difference in the adherent growth inhibitory potential
of BI 853520; however, only four NF2-expressing cell
lines were present in our panel.

The majority of MPM cell lines have considerable migra-
tory activity, and integrin-mediated cell adhesion is
reorganized during malignant progression [28, 30, 43]. In line
with these data, in the current study, FAK inhibition led to a
decrease in MPM migration in three out of four tested MPM
cell lines. Since direct pharmacological targeting of integrins
remains challenging, interfering with FAK as a potent down-
stream kinase might represent a viable approach to indirectly
inhibit certain integrin functions.

Despite the relatively high BI 853520 IC50 values ob-
served in our adherent cell growth assays, BI 853520

Fig. 4 BI 853520 inhibits MPM
cell spheroid growth. a
Representative photomicrographs
demonstrating the impact of BI
853520 treatment on spheroid
growth following 96 h of drug
exposure. b, c There was no
significant change in spheroid
diameters, but a significant dose-
dependent reduction in spheroid
numbers was seen. For all condi-
tions, at least three independent
experiments were performed.
Bars represent mean ± SEM and
asterisks indicate significant
(P < 0.05) differences when com-
pared to control
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alone resulted in significantly decreased tumor load and
tumor cell proliferation in an orthotopic model of human
MPM. This is in line with previous studies using other
FAK inhibitors in mouse models of human MPM [19].
Importantly, we could demonstrate that BI 853520 in-
hibits in vivo angiogenesis. This finding further supports
the notion that FAK regulates endothelial cell migration
and promotes angiogenesis and thus can serve as an ad-
ditional target for anti-angiogenic cancer therapy [44].
The promising results from trials using first-line
bevacizumab, cisplatin, and pemetrexed combinations in
MPM patients underline the importance of anti-
angiogenic therapies in this particular malignancy [45].
Importantly, FAK as a downstream element integrates
proangiogenic signals received both via VEGFRs and
integrin receptors, and as such, it might further increase
the efficacy of VEGFR-directed therapeutic modalities
[9, 46]. For example, in vivo studies in pancreatic neu-
roendocrine tumors indicated reduced incidence and
number and size of liver metastases following the com-
bination of another FAK inhibitor (OXA-11) with
VEGFR2 blockade [9]. Additionally, a recent study on
ovarian cancer mouse models showed that combining
anti-angiogenic agents with FAK inhibitors clearly re-
duces tumor growth and, moreover, that FAK inhibitor
treatment following anti-angiogenic therapy withdrawal
inhibits tumor rebound [46].

Previous studies indicated that FAK inhibitorsmight enhance
the effect of various chemotherapeutic agents such as paclitaxel
and cisplatin in ovarian cancer and pancreatic neuroendocrine
tumors, respectively [9, 47]. In the current study, two cell lines
were tested in combination with cisplatin, but no synergisms
were detected in adherent growth assays.Nevertheless, the com-
bination of BI 853520with other cytotoxic or targeted treatment
modalitiesdirectlyreducingMPMcellsurvivalmightprove tobe
efficient in future studies.For instance,wehave recently reported
thatMPMcells co-expressvariousFGFsandFGFreceptors and,
moreover, that inhibition of FGF receptor activity reducesMPM
cellgrowthandmigrationandsynergizeswithchemo-andradio-
therapy in vivo [48]. Because novel multitarget inhibitors have
already been developed that can target certain tyrosine kinases
and FAK simultaneously (e.g., PHM16, a novel dual FAK/
FGFR2 inhibitor with potent anti-tumor and anti-angiogenic ac-
tivities [49]), the simultaneous inhibition of FAKandFGFRs is a
promising novel approach that should be investigated in human
MPMmodels as well.

The recent phase 3 MAPS (Mesothelioma Avastin
Cisplatin Pemetrexed Study) trial demonstrated increased
OS in unresectable MPM from adding bevacizumab to
standard-of-care chemotherapy [2], indicating that targeting
the tumor vasculature might be an effective anti-MPM strate-
gy. Despite this development, the prognosis of MPM remains
dismal, and no additional molecularly targeted therapeutic op-
tion for MPM patients is available. The failure of the phase 2

Fig. 5 In vivo effect of BI 853520
in orthotopically growing human
MPM xenografts. a P31 cells
were orthotopically injected into
SCID mice. Following 28 days of
tumor inoculation, 20 mg/kg BI
853520 or solvent was adminis-
tered orally for 3 weeks five times
per week. After treatment, mice
were sacrificed and their MPM
tumor load was quantified.
Tumor-bearing mice treated with
BI 853520 had significantly lower
tumor loads (vs. solvent-treated
controls; *P = 0.0183). b Relative
bodyweight was decreased by the
time of termination, but no sig-
nificant difference was found be-
tween BI 853520- and solvent-
treated animals. c Microscopy
images of representative hema-
toxylin and eosin (H&E) staining
in MPM xenograft tumors of ei-
ther BI 853520- or solvent-treated
mice. Scale bar 100 μm
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placebo-controlled study of defactinib (VS-6063) in subjects
with MPM (COMMAND), taken together with our finding
that FAK inhibition can interfere with MPM spheroid growth
in vitro and tumor growth and angiogenesis in vivo, highlights
the importance of exploring combination therapeutic options
to fully exploit the anti-tumor activity of FAK inhibitors in this
fatal malignancy.

Conclusion

In conclusion, by investigating a large panel of MPM cell
lines, we found that BI 853520, a novel, highly selective
FAK inhibitor, has only limited activity in adherent 2D cell
cultures, but it effectively inhibits the growth of 3D tumor
spheroids. Moreover, BI 853520 blocked the growth of
orthotopically growing human MPM xenografts in vivo.
Additional studies are needed to further delineate the thera-
peutic value of BI 853520 in MPM.
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Fig. 6 BI 853520 inhibits tumor cell proliferation and angiogenesis in
orthotopically growing humanMPM in mice. a Representative images of
Ki67 immunohistochemistry in MPM xenograft tumors of either BI
853520- or solvent-treated tumor-bearing mice. Scale bar 100 μm. b
Quantification of Ki67-labeling indicates significant inhibitory effect of
BI 853520 treatment onMPM cell proliferation (P = 0.0012). c Impact of

BI 853520 treatment on tumor angiogenesis. Representative immunoflu-
orescence images of frozen sections from control and BI 853520-treated
tumors labeled with DAPI (blue) and anti-CD31 Ab (green). d There was
a significant reduction inmicrovessel densities (MVDs) in the BI 853520-
treated (20 mg/kg) group (P = 0.0159)
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