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APOBEC3 (A3) genes are members of the AID/APOBEC gene family
that are found exclusively in mammals. A3 genes encode antiviral
proteins that restrict the replication of retroviruses by inducing
G-to-A mutations in their genomes and have undergone extensive
amplification and diversification duringmammalian evolution. Endog-
enous retroviruses (ERVs) are sequences derived from ancient retro-
viruses that are widespread mammalian genomes. In this study we
characterize theA3 repertoire and use the ERV fossil record to explore
the long-term history of coevolutionary interaction between A3s and
retroviruses. We examine the genomes of 160 mammalian species
and identify 1,420 AID/APOBEC-related genes, including representa-
tives of previously uncharacterized lineages. We show that A3 genes
have been amplified in mammals and that amplification is positively
correlated with the extent of germline colonization by ERVs. More-
over, we demonstrate that the signatures of A3-mediated mutation
can be detected in ERVs found throughout mammalian genomes and
show that in mammalian species with expanded A3 repertoires, ERVs
are significantly enriched for G-to-A mutations. Finally, we show that
A3 amplification occurred concurrently with prominent ERV invasions
in primates. Our findings establish that conflict with retroviruses is a
major driving force for the rapid evolution of mammalian A3 genes.
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Activation-induced cytidine deaminase/apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like (AID/

APOBEC) superfamily proteins are cellular cytosine deaminases
that catalyze cytosine-to-uracil (C-to-U) mutations. AID/APOBEC
family proteins contain a conserved zinc-dependent catalytic
domain (Z domain) with the HxE/PCxxC motif and are closely
associated with important phenomena found in vertebrates
such as immunity, malignancy, metabolism, and infectious dis-
eases (reviewed in refs. 1 and 2). For instance, AID induces
somatic hypermutation in B cells and promotes antibody di-
versification (2), and APOBEC1 (A1) regulates lipid metabo-
lism by enzymatically editing the mRNA of apolipoprotein B
gene (3). The physiological roles of APOBEC2 (A2) and
APOBEC4 (A4) remain unknown, but APOBEC3 (A3) genes
are known to encode antiviral factors that restrict the replica-
tion of retroviruses (4) and other viruses (5–7).
While most AID/APOBEC family genes are conserved in ver-

tebrates, A3 genes are specific to placental mammals (1). Fur-
thermore, whereas AID, A1, A2, and A4 genes are singly encoded
in each vertebrate including mammals, dramatic expansion of the
A3 repertoire occurred in many mammalian lineages, including
primates (8). A3 genes are grouped into 3 classes (A3Z1, A3Z2,
and A3Z3) on the basis of their conserved Z domain sequences (4,
8, 9). For example, human A3 genes are composed of 7 paralogs
(A3A, A3B, A3C, A3D, A3F, A3G, and A3H). Of these, A3A, A3C,
and A3H (which in other mammals are referred to as A3Z1, A3Z2,
and A3Z3, respectively) contain a single Z domain, while the other
4 genes harbor double Z domains: A3Z2-A3Z1 for A3B and A3G
and A3Z2-A3Z2 for A3D and A3F (8, 9).

The conflict between human A3G protein and HIV type 1
(HIV-1) has been studied particularly intensively. Human A3G
proteins are incorporated into HIV-1 particles and enzymatically
induce C-to-U mutations in viral cDNA, causing guanine-to-
adenine (G-to-A) mutations in the viral genome (10, 11). A3G-
mediated mutations lead to the accumulation of lethal mutations
and ultimately abolish viral replication. On the other hand, an HIV-
1–encoding protein, viral infectivity factor (Vif), counteracts this
antiviral action by degrading A3G in a ubiquitin-proteasome–
dependent manner (4). Such conflicts between A3 proteins and
modern viruses (particularly retroviruses) have been reported in a
broad range of mammalian species and viruses infecting them
(reviewed in ref. 9), and consistent with this, A3 genes contain
strong signatures of diversifying selection (12–14).
Endogenous retroviruses (ERVs) are retrotransposon lineages

that are thought to have originated from ancient exogenous ret-
roviruses via infection of germline cells (15, 16). ERVs occupy a
substantial fraction of mammalian genomes, demonstrating ex-
tensive germline invasion by retroviruses. To combat ERVs and
other intragenomic parasites, mammals have developed defense
systems such as Krüppel-associated box domain-containing
(KRAB) zinc finger proteins (17) and PIWI-interacting RNAs
(18). A3 proteins have been shown to suppress the replication of
reconstructed ERVs in cell cultures (15, 19) and in a transgenic
mouse model (20). Furthermore, previous studies identified the
signature of A3-mediated G-to-A mutations in ERVs indicating
that ancient retroviruses experience attacks by A3 proteins (15,
16, 19, 21). In this study, we examine the history of evolutionary
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interaction between ERVs and A3 genes via genomic analysis of
160 mammalian species.

Results
Identification and Classification of Mammalian AID/APOBEC Family
Genes. We screened whole genome sequence (WGS) data of
160 mammalian species in silico and extracted 1,420 sequences
disclosing homology to the conserved Z domains of AID/APOBEC
family genes (8) (SI Appendix, Fig. S1 and Datasets S1–S3). Phy-
logenetic reconstructions revealed that these Z domain loci group
into 9 clades, 7 of which represent the canonical AID/APOBEC
lineages (AID, A1,A2, A3Z1, A3Z2,A3Z3, andA4) (Fig. 1 A and B).
We also identified additional, previously uncharacterized line-
ages, designated UA1 and UA2 (Fig. 1 A and B). UA1 genes
were only found in basal eutherian mammal groups: afrotherians
(elephants, tenrecs, and sea cows) and xenarthrans (armadillos).
UA2 genes were only found in marsupials (infraclass Marsupialia)
(Fig. 1C). These phylogenetic relationships were supported by
multiple methods (Fig. 1A and SI Appendix, Fig. S2A). In addition,
HxE and PCxxC motifs corresponding to the canonical catalytic
domain of AID/APOBEC proteins were found in UA1 and UA2
gene sequences (SI Appendix, Fig. S2B). The UA1 and UA2 genes
contain signatures of purifying selection (SI Appendix, Fig. S2C)
indicating they are protein-coding members of the AID/APOBEC
family. Indeed, theUA2 gene in opossum (Monodelphis domestica)
was annotated as APOBEC5 in a previous study (22).
As summarized in Fig. 1B, we detected 157 AID, 166 A1, 157

A2, 266 A3Z1, 362 A3Z2, 146 A3Z3, 153 A4, 9 UA1, and 4 UA2
genes in 160 species of mammalian genomes. Interestingly, A3Z1
and A3Z2 genes were highly amplified, while the other family
genes were not (Fig. 1 B and C). We also found that some se-
quences, particularly those of A3 genes, were pseudogenized
(Fig. 1B). The numbers of A3 Z domains were different among
species. In particular, A3Z1 and A3Z2 genes in Perissodactyla,
Chiroptera, Primates, and Afrotheria were highly amplified (Fig.
1C and SI Appendix, Fig. S3). Consistent with previous reports
(12, 23, 24), canonical A3 genes were not detected in marsupials
or monotremes (order Monotremata). Furthermore, A3Z1 was
commonly absent in Rodentia, while A3Z3was absent in Strepsirrhini
and Microchiroptera. Amplification of A3Z3 genes was not de-
tected in any mammalian groups except for Carnivora (carni-
vores), in which duplicated A3Z3 genes were almost entirely
pseudogenized (SI Appendix, Fig. S4).

Evolution of Mammalian A3 Genes Under Strong Selection Pressures.
We used comparative genomic approaches to investigate the
evolutionary history of mammalian A3 genes. As shown in Fig.
2A, the positional conservation (Shannon entropy) scores in
A3Z1, A3Z2, and A3Z3 genes tended to be much higher than
those found in other AID/APOBEC family genes, indicating
strong diversifying selection. We detected codon sites evolving
under diversifying selection by calculating dN/dS ratios using the
branch-site model (25). Although the catalytic domains, which
are composed of HxE and PCxxC motifs (1, 2, 4), were highly
conserved among the 7 AID/APOBEC family proteins, we de-
tected the signature of diversifying selection at numerous sites
(Fig. 2B). Comparisons to human A3A (A3Z1 ortholog in pri-
mates) (26), A3C (A3Z2 ortholog in primates) (27), and A3H
(A3Z3 ortholog in primates) (28) revealed that these sites are
preferentially detected in a structural region called loop 7, which
recognizes substrate nucleic acids (Fig. 2B). Furthermore, most
of the sites under diversifying selection are located on the pro-
tein surface (Fig. 2B).
Investigation of amplified A3 loci revealed that the majority of

A3 genes are encoded in the canonical A3 genomic locus (8, 9),
flanked by the CBX6 and CBX7 genes (Fig. 3A and Dataset S4),
indicating that amplification of A3 genes has mainly occurred via
tandem gene duplication. However, there are exceptions to this

rule: 3 primate species, Saimiri boliviensis, Aotus nancymaae, and
Otolemur garnettii, were found to encode more A3 loci outside
the canonical locus than within it (Fig. 3B). The A3 genes in
these 3 primates were mostly encoded at entirely distinct loci
(Fig. 3C) and exhibit double-domain (A3Z2–A3Z1) and intron-
less structures (SI Appendix, Fig. S5A and Dataset S5) indicating
they likely originated via retrotransposition of spliced mRNA
(29). These retrotransposed A3 genes in New World monkeys
were more closely related to the human A3G gene than the other
double-domain A3 genes in humans (SI Appendix, Fig. S5B).
Although most were pseudogenized (Fig. 3D), some retain rel-
atively long ORFs (SI Appendix, Fig. S5C). In particular, 1 of the
retrotransposed A3 genes in A. nancymaae (referred to as
“outside #3”) retains a full-length ORF (SI Appendix, Fig. S5C).
Indeed, this gene is annotated in the Ensembl gene database
(http://www.ensembl.org; Release 97; ENSANAG00000031271).
Moreover, analysis of public RNA-sequencing (RNA-Seq) data
revealed that mRNA of outside #3 is expressed in a broad range
of tissues in A. nancymaae (SI Appendix, Fig. S5D). Taken to-
gether, these data show that A3G-like genes have been amplified
via retrotransposition in New World monkeys, and some of these
amplified genes are likely functional.

ERVs Evidence a Long-Running Conflict Between Retroviruses and A3
Genes. To explore the impact of A3 activity on ERVs and their
ancient exogenous ancestors, we performed comparative analysis
of transposable elements (TEs) in 160 mammalian genomes. As
shown in Fig. 4A and SI Appendix, Fig. S6, the TE composition of
mammalian species varies with respect to the proportions of
DNA transposons, SINEs, LINEs, and ERVs. To investigate the
accumulation level of G-to-A mutations in ERVs, we measured
the strand bias of the G-to-A mutation rate in ERVs and other
TEs. Since A3 proteins selectively induce G-to-A mutations on the
positive strand of retroviruses, strand bias can be an indicator of
A3 attack on retroviruses. Consistent with previous reports (30–
32), preferential accumulation of G-to-A mutations was observed
in human ERVs but not in other human TEs (Fig. 4B). We next
classified mutation patterns based on the dinucleotide context. As
shown in Fig. 4C, ERVs in the human genome preferentially
exhibited GG-to-AG or GA-to-AA mutations, consistent with the
reported preferences of human A3G (GG-to-AG) and A3D, A3F,
and A3H (GA-to-AA mutations) (10, 33–39). Additionally, some
ERVs exhibited G-to-A hypermutation (Fig. 4D).
To explore the potential impact of A3 gene amplification on

ERVs, we first assessed the accumulation level of G-to-A mu-
tations across all mammalian ERVs (SI Appendix, Fig. S7), then
examined the association between 1) accumulation of G-to-A
mutations in ERVs and 2) the number of A3 Z domains. This
revealed a strong positive correlation (Fig. 4E) (Pearson’s cor-
relation coefficient = 0.69, P < 1.0E-15) wherein the possession
of fewer A3 genes (e.g., nonplacental mammals and rodents) is
associated with lower accumulation levels, and a higher number
of A3 genes (e.g., simiiformes and some chiropterans) is associ-
ated with higher accumulation levels.

Correlation of A3 Gene Amplification and Diversification with ERV
Activity. We examined the association between ERV invasions
and A3 gene family expansion. As shown in Fig. 5 A and B, we
found that the number of A3 Z domains was positively associated
with the percentage of ERVs in mammalian genome (in Poisson
regression, coefficient = 0.14, P < 1.0E-15). Thus, species in
which a greater proportion of the genome is composed of ERVs
tend to have a higher number of A3 genes. Exceptions occur in
the rodent family Muridae, as well as in 2 other species,
hedgehog (Erinaceus europaeus) and opossum (M. domestica). In
all of these outlier species, a large proportion of the genome is
composed of ERV sequences, but relatively few or no A3 genes
appear to be present (SI Appendix, Fig. S8A). As might be
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expected, ERVs in these outlier species exhibited lower accumu-
lation levels of G-to-A mutations overall (Fig. 5B). In addition,
many of the ERVs identified in these species are relatively young
(SI Appendix, Fig. S8 B–D) indicating that they derive from recent
genome colonization events and have been incorporated into the
germline without encountering A3-mediated mutation.

To investigate the association of A3 gene family expansion with
ERV activity, we focused on primates because the evolutionary
history of primate ERVs has been explored in depth and is rela-
tively well characterized. We assessed the age of ERV invasions in
each species using a genomic distance-based method and found
that ERVs prominently invaded in the common ancestors of
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Simiiformes (including Hominoidea, Old World monkeys, and
NewWorld monkeys) around 50 million years ago (Fig. 5 C, Left).
In contrast, ancestors of prosimians (including Lemurs, Lorisoids,
and Tarsiers) did not experience prominent ERV invasion in this
period. Furthermore, simians encoded higher numbers of A3
genes than prosimians (except for O. garnettii), suggesting that A3
gene amplification occurred early in the divergence of simian
species (Fig. 5 C, Middle).
We investigated the timing of the formation of the double-

domain A3G gene (i.e., A3G gene with A3Z2-A3Z1 structure) us-
ing the Ensembl gene database (www.ensembl.org/). We found that
simian primates encoded the double-domain (A3Z2-A3Z1) A3G
gene, whereas prosimians did not, suggesting that the emergence of
double-domainA3G genes also occurred during this period (Fig. 5C,
Right). Absence of a double-domain A3G gene in prosimians is
supported by the finding that no A3Z2-A3Z1 genetic structures
were observed in prosimian genomes (Fig. 3A). Overall, the timing
of A3 gene amplification and diversification in primates was highly
concordant with the timing of the prominent ERV invasions.

Discussion
Mammalian A3 family genes possess potent antiviral activities
and are thought to have diversified during their evolution to
allow targeting of a broader range of viruses (8, 12–14). ERVs
provide a rich fossil record for retroviruses, enabling unique in-
sights into the long-term coevolutionary interactions between
retroviruses and their hosts. In the present study, we used the

ERV fossil record to explore the coevolutionary history of A3
genes and ERVs.
When examining the ERV fossil record, it is vital to keep in

mind that it is necessarily an incomplete record of retrovirus
evolution. The vast majority of ERV sequences are fixed in the
gene pool of host species, but since 1) fixation of any novel allele
is extremely unlikely in the absence of strong selection and
2) most ERV insertions are likely to be selectively neutral at
best, it is reasonable to assume that the fixed ERVs we observe
in the genomes of contemporary species represent a tiny subset
of all of the ERVs that colonized their ancestors genomes.
Furthermore, the ERV fossil record is presumably heavily biased
toward retrovirus lineages that target germline cells, and there
may have been many ancestral retrovirus lineages that never
generated germline copies. Nonetheless, the fixed ERVs that are
found in contemporary genomes are a unique source of retro-
spective information about the ancestral interactions between
retroviruses and their hosts. Furthermore, because A3 genes
restrict retrovirus replication via DNA editing, ERV sequences
can contain genomic signatures that reveal information about
their interactions with this particular group of restriction factors.
We show a strong positive correlation between A3 Z copy

number and the extent to which G-to-A mutations have accu-
mulated in ERV sequences (Fig. 4E). This finding reinforces the
previously proposed concept (15, 16, 19, 21) that the accumulation
of G-to-A mutations in ERVs reflects the antiviral activity of A3
proteins. We further show that mammalian species that have
accumulated more ERVs (measured as a proportion of their
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genome) tend to have higher A3 Z copy numbers (Fig. 5 A and
B). In addition, our analysis revealed that A3 amplification oc-
curred concurrently with prominent ERV invasions in primates.
Overall, our findings provide evidence that the evolution of
mammalian A3 genes has been shaped by a long-running evo-
lutionary conflict with retroviruses, including those retroviruses
that have actively invaded mammalian genomes during their
evolution, leading to the generation of fixed ERV loci.
The loop 7 region of A3 proteins is thought to determine the

sequence specificity of viral nucleotide substrates (40). Our analysis
indicates that this region has evolved under strong diversifying se-
lection (Fig. 2B), consistent with the idea that rapid evolution in
mammalian A3 genes has been driven by interaction with viruses.
Since the genes examined are not orthologous, the variation we
observed may reflect diversification that occurred following gene
duplication. In addition, it is well established that HIV-1 Vif, an
antagonist of A3G activity, specifically binds to loop 7, leading to its
degradation (41, 42). This raises the possibility that Vif-like proteins
encoded by ancestral retroviruses and/or ERVs may have exerted
diversifying selective pressure on A3s. Indeed, remnants of vif gene-
like ORFs have been identified in endogenous lentiviruses (43–45).
In addition, it has recently been reported that herpesviruses encode
ribonucleotide reductase large subunits that degrade human A3
proteins (5, 46, 47) and that the A3 antagonists of Epstein–Barr

virus and Kaposi’s sarcoma-associated herpesvirus specifically rec-
ognize the loop 7 structure of A3B (5). Therefore, A3 antagonists
encoded by viruses other than retroviruses may also have exerted
selective pressure on the loop 7 structures of A3 genes.
Most A3 genes are encoded in the canonical A3 locus and have

been amplified by tandem gene duplication (Fig. 3 A and B).
However, we also detected duplicated A3 genes outside this region
in 3 primate species (S. boliviensis, A. nancymaae, and O. garnetti)
(Fig. 3 B and C and SI Appendix, Fig. S5). All of these intronless
A3G-like genes were amplified by retrotransposition. Furthermore,
some are transcribed and may be functional (SI Appendix, Fig. S5).
A3 genes have been amplified in multiple lineages of mammals,

but in addition, many A3 genes have been lost or pseudogenized
(Fig. 1C and SI Appendix, Fig. S3). For example, the A3Z1 gene
was lost in Rodentia, and the A3Z3 gene was lost in Strepsirrhini
and Microchiroptera. These findings might be attributed to
genotoxic potential of these A3 genes: uncontrolled A3 expression
can be harmful, and exogenous expression of human A3A (A3Z1
ortholog) in cell cultures triggers cytotoxic effects (48–50). Simi-
larly, the aberrant expression of some human A3 proteins, par-
ticularly A3A (51, 52), A3B (A3Z2–A3Z1 ortholog) (51–54), and
A3H (A3Z3 ortholog) (55), can contribute to cancer development
by inducing somatic G-to-A mutations in the human genome.
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Unlike the A3Z1 and A3Z2 genes, A3Z3 is highly conserved in
most mammals and is not amplified in most mammalian lineages.
Exceptions occur in carnivores and some other species; however,

almost all duplicated A3Z3 genes identified in these species were
pseudogenized (SI Appendix, Fig. S4). Moreover, phylogenetic
relationships and the pattern of the premature stop codon
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positions (SI Appendix, Fig. S4) indicate that the duplication–
pseudogenization events have happened twice independently
during carnivore evolution. These observations support that
while the A3Z3 gene is indispensable for the hosts, its dupli-
cation might be genotoxic.
A3 proteins can suppress retroviral replication in a G-to-A

mutation-independent fashion (e.g., inhibition of reverse tran-
scription) (56–59). We could not address this dimension of
ERV–A3 interaction because of the technical difficulty of
assessing the mutation-independent effect of A3 proteins on
retroviruses using only genomic information. It should also be
noted that the number of A3 genes counted in this study might
underestimate the true value because of relatively low resolution
of many whole genome sequences. Moreover, we particularly
focused on the numbers and sequences of the Z domain of AID/
APOBEC family genes, and we could not fully address whether
1) some 2 Z domains compose a double domain gene and 2)
there are splicing variants. Nevertheless, this is to our knowledge

the most comprehensive investigation of A3 gene evolution
performed to date.

Materials and Methods
Sequence Data. WGS assemblies and RNA-Seq data analyzed in this study are
summarized in Datasets S1 and S6, respectively. Mammalian TE sequences were
obtained using RepeatMasker (version open-4-0-9) (http://repeatmasker.org)
with Repbase RepeatMasker libraries (version 20181026) (60). RMBlast was
selected as the search engine, and RepeatMasker was run with the options “-q
xsmall -a -species <species>”where <species> denotes the species name of the
analyzed genome (Dataset S7).

Genome Screening. Similarity search-based screens of sequence databanks
were performed using the database-integrated genome-screening (DIGS)
tool (61) which provides a relational database framework for performing
systematic tBLASTn-based screening of WGS databanks (61). We used AID/
APOBEC polypeptide sequences of 5 species (human, mouse, cow, megabat,
and cat) as queries for DIGS (SI Appendix, Fig. S1 A–C and Dataset S2). The
resultant list of hits (i.e., sequences disclosing homology to AID/APOBEC
family genes) was filtered to remove short and low-similarity matches
(tBLASTn bitscore < 50). In the DIGS hit sequences, a partial sequence region
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[referred to as conserved region (8)] of AID/APOBEC family genes was
extracted and used in downstream analyses (SI Appendix, Fig. S1A). Because
the conserved regions of AID/APOBEC family genes are located on a single
exon (SI Appendix, Fig. S1C) the set of loci identified via DIGS could readily
be interrogated using phylogenetic approaches. We selected sequences
that covered >70% of the conserved region (SI Appendix, Fig. S1D) and
constructed multiple sequence alignments (MSAs) using the L-INS-I algo-
rithm as implemented in MAFFT (version 7.407) (62). A phylogenetic tree
was reconstructed using the neighbor-joining (NJ) method (63) as imple-
mented in MEGAX (64). Only alignment sites with the >85% site coverage
were used for phylogenetic construction. Additional tree-based filtering of
the underlying dataset was performed prior to construction of a final tree: a
preliminary tree was constructed, and subsequently, phylogenetic outlier
sequences, which have extremely long external branches (i.e., standard-
ized external branch length > 5), were detected and discarded from
downstream analyses. The final set of AID/APOBEC-related loci is summarized
in Dataset S3.

To investigate the genomic context of AID/APOBEC-related loci, the
polypeptide sequences of genes flanking the canonical A3 locus (i.e., CBX6
and CBX7) were used as queries for DIGS. Genomic synteny was illustrated
using ggplot2 (https://ggplot2.tidyverse.org/) with the R library ggquiver
(https://github.com/mitchelloharawild/ggquiver).

Sequence Analysis. In-frame MSAs of nucleotide sequences were constructed
using the codon-based alignment algorithm implemented in MUSCLE (65).
Codon sites with >50% site coverages were used for downstream analyses.
Logo plots of the amino acid sequences were generated using weblogo3
(66). Positional Shannon’s entropy score was calculated for amino acid MSAs
using tools available via the Los Alamos HIV-1 sequence database website
(www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_one.html). A dN/dS
ratio test using the branch-site model as implemented in Hyphy MEME (25)
was used to detect codon sites under diversifying selection. The phyloge-
netic tree for this test was constructed using maximum likelihood method as
implemented in MEGAX (64).

Mutation Strand Bias Analysis. To assess the accumulation level of G-to-A
mutations in ERVs and other TEs, the strand bias of the G-to-A mutation
rate was calculated. First, we calculated the number of nucleotide changes
relative to consensus for each TE integrant using the pairwise sequence
alignment generated by RepeatMasker. TE integrants with low-confidence
alignments (<1,000 Smith–Waterman score) were excluded from the analy-
sis. Next, G-to-A mutation rates in the positive and negative strands of each
TE were calculated. Finally, the strand bias score was defined as a ratio of the
G-to-A mutation rate between the positive and negative strands (i.e., the
mutation rate in the positive strand was divided by the one in the negative
strand). The strand bias score was calculated for each TE integrant or each TE
group. Statistical significance of the strand bias was evaluated by Fisher’s
exact test. False discovery rate was calculated according to the Benjamini–
Hochberg method (67).

Estimation of Insertion Dates of ERVs. Insertion dates of ERV loci were esti-
mated using both 1) ortholog distribution-based and 2) genetic distance-
based methods. Ortholog distribution-based estimation was performed for
ERVs in human and mouse genomes. Liftover chain files were downloaded
from UCSC genome browser (https://genome.ucsc.edu/) (Dataset S8). The
Liftover program (http://genome.ucsc.edu/cgi-bin/hgLiftOver) and chain file
were used as the basis for attempting to convert the genomic coordinates of
ERV integrants in one species genome to those found in another species

using the option “minMatch=0.5.” If conversion succeeded, we inferred that
the orthologous copy of the ERV integrant was likely present in the corre-
sponding genome. In the case of mouse ERVs, we first converted genomic
coordinates of ERVs in Mm9 to those in Mm10, which is the latest version of
the mouse reference genome. Subsequently, the genomic coordinates in
Mm10 converted to those in the genomes of increasingly distantly related
species. Insertion dates of ERVs were estimated from the ortholog distri-
butions according to the scheme summarized in SI Appendix, Fig. S9.

Genetic distance-based estimation of insertion dates was performed for
ERVs by calculating the genetic distance of each ERV integrant from a
consensus sequence representing the specific lineage the ERV derived from.
The distribution of genetic distances was summarized using the Landscape
function implemented in RepeatMasker. Genetic distances were converted to
the age estimations under the assumption of a neutral molecular clock. For
Primates, Insectivora, and Marsupialia a neutral rate of 2.2 × 10−9 mutations
per year per site (68) was used. For Rodents, which experience relatively
rapid rates of neutral change (69), a rate of 7.0 × 10−9 mutations per year
per site was used. For each of these 2 groups, the estimated insertion dates
using these rates were highly concordant between the genetic distance-
based and ortholog distribution-based methods (SI Appendix, Fig. S9).

RNA-Seq Analysis of AID/APOBEC Family Genes. RNA-Seq dataset used in the
present study is summarized in Dataset S6. RNA-Seq reads were trimmed by
Trimmomatic (version 0.36) (70) and subsequently mapped to the reference
genomes using STAR (version 020201) (71). Reads mapped on the identified
loci of AID/APOBEC family genes were counted using featureCounts (version
1.6.4) (72). Only reads mapped to unique genomic regions were counted.
Read counts were normalized to the total number of uniquely mapped
reads, and expression levels were measured as fragments per kilobase per
million mapped fragments.

Data Availability. The data, associated protocols, code, and materials in this
study are available at https://giffordlabcvr.github.io/A3-Evolution/.
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