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Abstract 

Breast cancer is believed to be driven by epigenetic regulation of genes implicated in cell proliferation, survival, and differentiation. 
Recently, aberrant N 

6 -methyladenosine (m 

6 A) decorations turned up as crucial epigenetic regulator for malignant breast cancer, which 

may serve as new targets for breast cancer treatment. Here we briefly outline the functions of m 

6 A and its regulatory proteins, including 
m 

6 A “writers,” “readers,” and “erasers” on RNA life fate, recapitulate the latest breakthroughs in understanding m 

6 A modification 

and its regulatory proteins, and the underlying molecular mechanisms that contribute to the carcinogenesis and the progression of 
breast cancer, so as to provide potential epigenetic targets for diagnosis, treatment and prognosis in breast cancer. 

Neoplasia (2021) 23, 551–560 

Keywords: m 

6 A modification, Epigenetics, Methyltransferase, Demethylase, m 

6 A reader, Breast cancer 

 

 

 

 

 

 

 

 

 

✩

c  

I  

o
e  

1  

A  

C  

f  

o  

b
r  
Introduction 

Breast cancer is the leading cancer and the main cause of cancer-related
mortality for women all around the world according to the research in 2021
[1] . Although progress has been made in both understanding and treating
breast cancer, nearly 30 percent of patients suffer relapse or metastasis which
is the major cause of breast cancer-related mortality due to the shortage
of effective treatment or preventive strategy [2] . Despite progressive genetic
abnormalities, accumulating studies revealed that breast cancer can be also
driven by epigenetic alterations [3] . However, the molecular mechanisms
by which epigenetic alterations are regulated and drive breast cancer remain
elusive. 
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N 

6 -methyladenosine (m 

6 A) modification was discovered and partially 
haracterized in a great variety of cellular mRNAs in the 70s decade [ 4 , 5 ].
t is the most abundant internal methylation in mRNA [6] . Establishment
f methylated RNA immunoprecipitation sequencing (MeRIP-seq/m 

6 A-seq) 
nables the investigation of the m 

6 A RNA methylomes and the mapping over
8,000 m 

6 A sites in the transcripts of more than 7,000 human genes [ 7 , 8 ].
pproximately 90% of all m 

6 A sites are conserved with G-A-C and A-A-
 motifs [9] . m 

6 A modification is a post-transcriptional methylation which
ormed by transferring the methyl group to the nitrogen atoms at 6 th position
f adenosine from S -adenosylmethionine [10] . m 

6 A modification is regulated
y the methyltransferase (“writer”), demethyltransferase (“eraser”) and m 

6 A 

ecognized RNA binding protein (“reader”), and determines RNA life fate,
ncluding RNA splicing, translocation, stability and translation [ 11 , 12 ].
ccumulating evidence indicates that dysregulation of m 

6 A modification 
nd its corresponding proteins contribute to the tumorigenesis and the
rogression of cancer [13] . 

In the current review, we briefly outline the roles of m 

6 A modification
nd its regulatory proteins on RNA life fate, recapitulate the recent advances
n understanding m 

6 A modification and its regulatory proteins, and the
nderlying molecular mechanisms that assist breast cancer carcinogenesis 
nd progression, so as to provide potential epigenetic targets for diagnosis,
reatment and prognosis in breast cancer. 
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6 A modification determines RNA life fate 

The reversible modification of m 

6 A is regulated by the cooperation of
methyltransferase (“writer”) and demethyltransferase (“eraser”) [11] . The
m 

6 A “writer” complex methyltransferase complex is composed of core
methylation subunits, including methyltransferase-like 3 (METTL3) and
methyltransferase-like 14 (METTL14), and methylation cofactors, including
Wilms tumor 1-associated protein (WTAP), RNA binding motif protein
15/15B (RBM15/15B), Vir like m 

6 A methyltransferase associated protein
(VIRMA, synonym: KIAA1429), zinc finger CCCH-type containing 13
(ZC3H13) and Cbl proto-oncogene like 1 (CBLL1, synonym: HAKAI) [14] .
Among them, METTL3 plays a methyltransferase catalytic role, METTL14
structurally serves as an upholder for METTL3 [15] . Methylation cofactors,
such as WTAP, promotes m 

6 A modification through guiding METTL3
and METTL14 to the nuclear speckles, while RBM15/RBM15B could
interact with METTL3 in a WTAP-dependent manner and participate
in the modulation of m 

6 A modification of certain RNAs [12] . VIRMA
associates with alternative polyadenylation and preferentially mediates m 

6 A
methylation of mRNA close to the stop codon and 3 ′ UTR [16] . ZC3H13
cooperates with other cofactors, like WTAP, to affect 3 ꞌ UTR methylation
[17] . CBLL1 interacts with WTAP/ZC3H13/VIRMA complex and affects
some extents of m 

6 A [18] . In addition, METTL16 was currently discovered
as an m 

6 A “writer” that primarily targets ncRNAs, lncRNAs, and pre-mRNAs
[19] . Two reported demethyltransferases those erase m 

6 A modification are
AlkB homolog 5 (ALKBH5) and fat mass and obesity-associated (FTO)
protein, both belonging to the AlkB dioxygenase family which demethylate
N -methylated nucleic acids [12] . Notably, FTO has moderate effect on
m 

6 A or m 

6 A m 

levels in mRNA but preferred to demethylate N 

6 , 2’-O-
dimethyladenosine (m 

6 A m 

) in snRNA [20] . m 

6 A m 

is abundant in both
mRNA and snRNA, and is involved in the RNA’s stability and splicing
[ 21 , 22 ]. m 

6 A modification and m 

6 A “readers” have an important role in
the metabolism and the translation of mRNA [6] . Different sub-location of
“readers” may exert different functions on RNA life fate [23] . The “readers”
located in the nucleus, such as heterogeneous nuclear ribonucleoproteins
(hnRNPs), including HNRNPG, HNRNPC, and HNRNPA2B1 and YTH
domain containing 1 (YTHDC1) are involved in RNA stabilization, RNA
splicing, RNA export, RNA structure switching, X chromosome inactivation
and microRNA maturation [ 23 , 24 ]. The “readers” located in the cytoplasm,
such as YTH domain-containing family protein 1-3 (YTHDF1-3), YTH
domain containing 2 (YTHDC2), Fragile X mental retardation 1 (FMR1),
proline-rich coiled-coil 2A (PRRC2A), insulin-like growth factor 2 mRNA-
binding proteins 1-3 (IGF2BP1-3) and eukaryotic initiation factor 3 (eIF3),
mainly contribute to the translation and degradation of mRNA [ 6 , 24 , 25 ]
( Fig. 1 ). 

The expression of m 

6 A modification and 

regulatory proteins in breast cancer 

Epigenetic marks, such as DNA methylation, histone modifications, can
be prognostic and predictive biomarkers in oncology. As the most abundant
internal methylation in mRNA, m 

6 A modification along with its regulatory
proteins can serve as promising biomarkers for breast cancer. 

The expression of m 

6 A writers in breast cancer 

Although, several studies reported that the expressions of m 

6 A
methylation, METTL3 and METTL14 were increased in breast tumor
and promoted breast cancer progression [ 26 −29 ], another studies showed
opposite perspective that METTL3 and METTL14 may be low expressed
in breast cancer [30] . Wu et al explored the mRNA expression of m 

6 A
regulators in both breast cancer samples and public datasets (TCGA and
NCOMINE), revealing that METTL3 and METTL14 were down- 
egulated in breast cancer [30] . Additionally, Gong et al also analyzed the
xpression of METTL14 and ZC3H13 in multiple bioinformatics databases, 
nd found that these 2 genes negatively associated with the overall survival 
nd may play a tumor-suppressing role in breast cancer [31] . While the
nconsistency between serval previous studies and Wu’s or Gong’s study may 
ue to the heterogeneity of cancer cell and the unequal expression of proteins
nd mRNAs which is frequently occurred in cancer. It is probably that 

ETTL3 and METTL14 are indeed not prognostic markers in breast cancer, 
ut involved in specific process and stage of pathogenesis which contribute 
o the regulation of breast cancer. TCGA data show that the expression of

TAP is reduced 1.9-fold in breast cancer samples as compared with normal 
issue. Moreover, low mRNA level of WTAP is associated with ER ( + ) or PR
 + ) status, and high mRNA level is found to be associated with basal-like and
ormal breast-like breast cancer [30] . The expression of VIRMA mRNA is 
igh and negatively related to patients’ survival time in breast cancer [32] . 

he expression of m 

6 A erasers in breast cancer 

The m 

6 A “erasers”, FTO and ALKBH5, were reported to be tumor 
romotor in breast cancer [ 33 , 34 ]. The increase of FTO was observed in
uman HER2( + ) breast cancer and highly correlated with poor prognosis of
atients [33] . TCGA data also reveal that the mRNA expression of ALKBH5

s elevated 1.5-fold in breast cancer [30] . However, analysis of data from
NCOMINE revealed that FTO and ALKBH5, were decreased in breast 

ancer [30] . 

he expression of m 

6 A readers in breast cancer 

YTHDF1/2/3 and YTHDC1/2 have recently been identified as “reader”
f m 

6 A modification on mRNA, they display a preferential reorganization for 
 

6 A-methylated mRNA [35] . A recent study reported that YTHDF1 and 
THDF3 were most frequently amplified and associated with poor survival 

ime of breast cancer patients through analyzing TCGA data [36] . IGF2BP 

amily proteins (IGF2BP1/2/3) have been recognized as important regulators 
n breast cancer progression for a long time [ 37 , 38 ]. Although the expression
evel of IGF2BP1 is low in breast cancer, it is necessary for clonogenic
rowth of breast cancer cells [39] . IGF2BP2 and IGF2BP3 are aberrantly 
verexpressed in triple-negative breast cancer (TNBC) and associated with 
oor patients’ survival [38] . eIF3 is a huge complex comprised of 13 non-
dentical subunits, from eIF3a to eIF3m, in human cells. It has been reported
hat the expressions of eIF3d and eIF3e are increased in breast cancer cell lines
nd promote carcinogenesis of breast cancer [ 40 , 41 ]. It was reported that
IF3f was significantly down-regulated in ER ( + ) breast cancer cells [42] ,
hile the expressions of eIF3m and eIF3h are obviously higher in TNBC 

han those in non-TNBC or in normal breast tissues [ 43 , 44 ]. The expression
evels of HNRNPA2B1 and HNRNPC are also higher in breast cancer cells 
 45 , 46 ]. However, Liu, et al reported that in their study, higher expression
f hnRNPA2B1 correlated with longer median survival time of breast cancer 
atients [47] . 

In summary, m 

6 A modification is probably not a prognostic marker for 
reast cancer, and the expression of m 

6 A regulatory proteins is more complex
n breast cancer or cell lines than m 

6 A modification. The targets regulated by
 

6 A modification and m 

6 A regulatory proteins probably exert the function 
n breast cancer, which raise an open question and need to be understood. 

 

6 A modification regulates breast cancer 
rogression 

Recently, accumulating evidence indicates that m 

6 A modification plays 
mportant roles in breast cancer progression. m 

6 A modification and m 

6 A 

egulatory proteins regulate the expressions of proto-oncogenes or tumor 
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Fig. 1. m 

6 A modification determines RNA life fate. Shown here is the working model of methyltransferase complex, demethylases, and m 

6 A binding 
proteins. A, adenosine; m 

6 A, N 

6 -methyladenosine; m 

6 A m 

, N 

6 , 2’-O-dimethyladenosine; A m 

, 2’-O-methyladenosine; snRNA, small nuclear RNA; m 

7 G, N 

7 - 
methylguanosine; AAA (n) , polyadenylation. 
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suppressor genes through modulating the RNA life fate during breast cancer
progression [ 27 , 33 ]. Alternatively, m 

6 A regulatory proteins also participate
in breast cancer progression via m 

6 A independent manner [ 32 , 48 ]. m 

6 A
regulatory proteins are highly connected with breast cancer cell proliferation,
metastasis, invasion, drug-resistance, and so on [30] . Thus, m 

6 A regulatory
proteins are promising targets for breast cancer treatment. 

m 

6 A modification modulates the growth of breast tumor 

m 

6 A “writer” complex components exhibit either promoting or inhibiting
effects on the growth of breast tumor. The interfering of METTL3
expression could decrease cell proliferation and promote apoptosis in breast
cancer. Using gene-specific m 

6 A-qPCR, Wang et al identified Bcl-2 as
the downstream effector of METTL3 [26] . Another study revealed that
METTL3 showed high co-expression with hepatitis B X-interacting protein
(HBXIP) which is reported as an oncogene for breast cancer[27]. HBXIP is
able to increase the expression METTL3 through inhibiting miRNA let-7g.
In turn, increased METTL3 upregulates the expression of HBXIP through
enhancing m 

6 A modification in HBXIP’s mRNA which results in tumor
malignant growth [27] . A recent study revealed that METTL3 regulated
m 

6 A-induced expression of LINC00958. m 

6 A-modified LINC00958 is up-
regulated in breast cancer cells and facilitates the tumor progression via miR-
378a-3p/YY1 axis [49] . During METTL14-mediated m 

6 A methylation in
breast cancer, long non-coding RNA LNC942 exerts carcinogenic function
as the upstream regulator for METTL14, whereas, CXCR4 and CYP1B1 are
identified as direct targets of METTL14 which is also regulated by LNC942.
LNC942 is able to promote the mRNA stability of CXCR4 and CYP1B1
for breast cancer proliferation and progression [29] . However, another study
demonstrated opposite results that overexpression of METTL14 significantly
suppressed cell viability and colony formation ability of MDA-MB-231 cells
[30] . Due to the conflict results, we queried breast cancer cell lines data from
DepMap portal ( https://depmap.org/portal/ ), which is a cancer dependency
database generated by cell depletion assay using either CRISPR or RNAi
method, to help evaluate the role of METTL14. Using CRISPR method,
METTL14 was essential in most of breast cancer cell lines. However, using
RNAi method, METTL14 was non-essential in most of breast cancer cell
lines ( Table 1 ), which suggests low expression of METTL14 is enough
to exert its function on the viability of breast cancer cell. A recent study
showed that VIRMA was able to promote breast cancer proliferation.
Through RIP-seq analysis, Qian et al found that the mRNA of CDK1
in the cell cycle was mostly associated with the oncogenic activities of
VIRMA. Interestingly, VIRMA increased the stability of CDK1 mRNA in
n m 

6 A-independent manner [32] . CBLL1 negatively contributes to the
arcinogenesis and malignant of breast cancer. CBLL1 functions as a co-
epressor of ER α through interfering with the recruitment of SRC-1 and
RC-2 which are coactivators of ER α. Functionally, Gong et al revealed that
BLL1 overexpression could hindered the proliferation and migration of 
reast cancer cells [50] . 

Like the “writer” complex, m 

6 A “eraser” also exert essential roles during
reast cancer cell proliferation [51] . FTO enhances cell proliferation and
olony formation of breast cancer cells [33] . Mechanistically, FTO induces
he mRNA degradation of BNIP3, an apoptosis-inducing protein, through 
odulating m 

6 A in the 3 ′ UTR [33] . FTO also play an oncogenic role
n breast cancer through modulating energy metabolism, which involves 
he promotion of glycolysis and lactic acid production through PI3K/AKT
ignaling pathway [52] . Knockdown of ALKBH5 inhibits breast cancer cell
roliferation and colony formation [34] . The expression of ALKBH5 can
e induced by hypoxia. Induced ALKBH5 promotes the mRNA stability
nd the expression of NANOG, which in turn enhances breast cancer stem
ells (BCSCs) [34] . According to these independent studies, m 

6 A “erasers”
lay an oncogenic role in breast cancer. Thus, the m 

6 A “erasers” may be
romising targets for breast cancer treatment. m 

6 A “readers” are major players
n breast cancer due to their RNA binding property. The expression of
GF2BP1 is low in breast cancer cells, but it is necessary for the clonogenic
rowth of breast cancer cells [39] . Furthermore, IGF2BP2 interacts with
seudogene-transcribed RPSAP52 to stimulate the proliferative pathways in 
reast cancer [53] . Consistently, IGF2BP3 contributes to breast cancer cell
roliferation via binding the mRNA of CD44 and enhancing the expression
f CD44, which increases IGF2 levels in fibroblasts [54] . Additionally,
GF2BP3 promotes cell proliferation by blocking the maturation of miR-
614, which protects TRIM25 mRNA from degradation mediated by miR-
614 [55] . Additionally, IGF2BP3 serves as an RNA sponge for long
on-coding RNA CERS6-AS1. Due to the binding of CERS6-AS1 to
GF2BP3, the mRNA stability of CERS6 is increased, which results in
he promotion of cell proliferation and the suppression of cell apoptosis
56] . Although the authors didn’t investigate whether these functions of
GF2BPs relied on m 

6 A modification of the RNA, the functions of IGF2BPs
as exerted through their RNA binding capacity, indicating that m 

6 A
odification might contribute to the recognition of RNAs. Knockdown of

IF3d suppresses breast cancer cell proliferation through inhibiting Wnt/ β-
atenin signaling [40] . eIF3h serves as a prognostic marker, of which
mplification or overexpression regulates the proliferation, survival, and 
ransformation of breast cancer cells [57] . Inhibition of HNRNPC hindered
he proliferation of MCF-7 and T47D cells [46] . In this process, dsRNA

https://depmap.org/portal/
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Table 1 

List of reported functions of m 

6 A regulatory proteins in breast cancer. 

Gene name 
Role in RNA 
modification Role in cancer Mechanism m 

6 A regulation References DepMap a 

METTL3 writer Oncogene Promoting the expression of Bcl-2 through m 

6 A modification m 

6 A dependent [26] Essential 
Oncogene Promoting the expression of HBXIP through enhancing m 

6 A modification and be suppressed by 
let-7g 

m 

6 A dependent [27] 

Oncogene Promoting the expression of LINC00958 through enhancing m 

6 A m6A dependent [49] 
Tumor 
suppressor 

Inhibiting the expression of COL3A1 by m 

6 A modification m 

6 A dependent [48] 

Oncogene Promoting the expression of miR-221-3p by increasing pri-miR-221-3p m 

6 A mRNA modification m 

6 A dependent [65] 
METTL14 writer Oncogene Promoting the expression of hsa-miR-146a-5p Unkown [28] Essential b 

Oncogene Promoting the expression of CXCR4 and CYP1B1 through m 

6 A modification which are the targets 
of LNC942 

m 

6 A dependent [29] 

VIRMA cofactor Oncogene Increasing the stability of CDK1 mRNA m 

6 A independent [32] Very 
essential b 

CBLL1 cofactor Tumor 
suppressor 

Interfering with the recruitment of coactivators of ER α: SRC-1 and SRC-2 m 

6 A independent [50] Essential 

FTO eraser Oncogene Inducing BNIP3 mRNA degradation through modulating m 

6 A m 

6 A dependent [33] Partial- 
essential c 

Oncogene Promoting glycolysis and lactic acid production through PI3K/AKT signaling pathway Unkown [52] 
Oncogene Promoting miR-181b-3p/ARL5B signaling pathway Unkown [58] 

ALKBH5 eraser Oncogene Inducing by hypoxia and promoting the mRNA stability and the expression of NANOG m 

6 A dependent [34] Partial- 
essential 

YTHDF3 reader Oncogene Promoting the translation of ST6GALNAC5, GJA1 and EGFR through m 

6 A modification m 

6 A dependent [62] No data 
IGF2BP1 reader Tumor 

suppressor 
Promoting the degradation of UCA1 through recruiting the CCR4-NOT1 deadenylase complex Unkown [63] Partial- 

essential c 

Oncogene Interacting with lncRNA KB-1980E6.3 and promoting c-Myc mRNA stability through modulating 
m 

6 A 
m 

6 A dependent [66] 

IGF2BP2 reader Oncogene Interacting with pseudogene-transcribed RPSAP52 Unkown [53] Partial- 
essential 

Oncogene Suppressing the transcription of miR-200a by destabilizing the mRNA of the progesterone receptor 
(PR) 

Unkown [38] 

IGF2BP3 reader Oncogene Promoting the expression of CD44 via binding the mRNA of CD44 Unkown [54] Partial- 
essential c 

Oncogene Inhibiting TRIM25 mRNA degradation mediated by miR-3614 through blocking the maturation 
of miR-3614 

Unkown [55] 

Oncogene Promoting the mRNA stability of CERS6 as an RNA sponge for long non-coding RNA 
CERS6-AS1 

Unkown [56] 

Oncogene Suppressing the transcription of miR-200a by destabilizing the mRNA of the progesterone receptor 
(PR) 

Unkown [38] 

Oncogene Promoting the expression of SOX2 by binding to the mRNA of SLUG Unkown [64] 
Oncogene Promoting the expression of BCRP via binding to BCRP mRNA Unkown [70] 

eIF3d reader Oncogene Promoting Wnt/ β-catenin signaling Unkown [40] Very 
essential c 

eIF3h reader Oncogene Catalyzing the deubiquitylation of YAP and resulting in the stabilization of YAP m 

6 A independent [44] Essential c 

HNRNPC reader Oncogene Regulating Alu-enriched dsRNA and the down-stream interferon response Unkown [46] Very 
essential 

HNRNPA2B1 
reader Oncogene Promoting ERK1/2 and STAT3 pathway Unkown [58] Partial- 

essential c 

Tumor 
suppressor 

Regulating ERK-MAPK/Twist, GR- β/TCF4, STAT3 and WNT/TCF4 signaling pathways Unkown [47] 

a Data were retrieved from breast cancer cell lines dataset from DepMap portal ( https://depmap.org/portal/). Very essential, dependency score ≤ -1.0; Essential, -0.1 < dependency score ≤ -0.5; 

Partial essential, -0.5 < dependency score ≤ 0; Non-essential, dependency score > 0. For RNAi data, Combined RNAi (Broad, Novartis, Marcotte) dataset was queried. For CRISPR data, CRISPR 

(Avana) Public 21Q1 dataset was queried. Lower dependency score from either CRISPR or RNAi data was chosen for default. 
b Conflict with RNAi data. 
c Supported by both RNAi data and CRISPR data. 

https://depmap.org/portal/
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(

sensor RIG-I induced interferon response, resulted in the suppression of
cell proliferation. Moreover, suppression of HNRNPC also induces Alu-
enriched dsRNA which eventually resulted in nonsense-mediated RNA decay
[46] . HNRNPA2B1 increases the carcinogenesis of breast cancer which is
attributable to ERK1/2 and STAT3 pathway stimulation [58] . 

m 

6 A modification modulates the metastasis of breast tumor 

Breast cancer metastasis is an enormous challenge for treatment. m 

6 A
modification and regulatory proteins also participate in the process of
metastasis. COL3A1 promotes the metastatic ability of TNBC cells.
METTL3 can methylate the mRNA of COL3A1 resulting in decreased
expression of COL3A1 and inhibited metastasis [48] . Additionally, increased
expression of METTL14 and METTL14-mediated m 

6 A modifications
enhance the metastasis capacity of breast cancer cells through reshaping the
miRNA/mRNA network which is most enriched in cancer [28] . hsa–miR–
146a–5p is identified as one of the miRNA targets of METTL14 in this
remodeled miRNA/mRNA network [28] . VIRMA is able to promote breast
cancer metastasis via increasing the mRNA stability of CDK1 [32] . CBLL1
inhibits breast cancer cell migration through suppressing ER α activation [50] .
RBM15/15B is reported positively correlated with invasive breast carcinoma
[ 59 , 60 ]. m 

6 A “writer” most likely modulates a complicated group of targets,
which form a network and feed multiple cancer pathways. Further researches
need to consider to extend their downstream investigation to a larger scope,
which might figure out the discordance presented in the current independent
studies. m 

6 A “erasers”, FTO and ALKBH5, were also supposed to contribute
to breast cancer metastasis [ 33 , 34 ]. FTO is able to promote the migration and
the invasion of HER2( + ) breast cancer cells through miR-181b-3p/ARL5B
axis [61] . m 

6 A “readers” are also major players in breast cancer metastasis.
Recently, an important study reported that YTHDF3 was correlated with
the prognosis of breast cancer and promoted breast cancer brain metastasis
[62] . Chang et al found that YTHDF3 knockdown inhibited transmigration
across the blood-brain barrier in a mouse model [62] . Mechanistically,
YTHDF3 increased the translation of the key brain metastasis genes such
as ST6GALNAC5, GJA1 and EGFR in an m 

6 A-dependent manner [62] .
Another study showed that IGF2BP1 inhibited lncRNA UCA1-mediated
breast cancer cell invasion. IGF2BP1 interacts with lncRNA UCA1 and
triggers UCA1 degradation via recruiting the CCR4-NOT1 deadenylase
complex [63] . Similarly, IGF2BP2 and IGF2BP3 were reported to promote
the metastasis of TNBC collaboratively through recruiting CCR4-NOT1
deadenylase complex [38] . They can suppress the transcription of miR-200a
by destabilizing the mRNA of the progesterone receptor (PR). In turn, miR-
200a could directly target the mRNAs of IGF2BP2 and IGF2BP3 [38] .
Interestingly, Zhou, et al have confirmed that elevated eIF3h in breast cancer
cells exerts an oncogenic role as deubiquitylating enzyme which catalyzes
the deubiquitylation of YAP, resulting in the stabilization of YAP and breast
tumor invasion and metastasis [44] . It is worth noting that eIF3h is known
as a subunit of translation initiation factor eIF3, which is also known as
m 

6 A reader. eIF3h functioned neither as translation initiation factor nor m 

6 A
reader in Zhou’s research. eIF3d can also contribute to breast cancer invasion
through Wnt/ β-catenin pathway [40] . Liu, et al revealed that HNRNPA2B1
expression was not only negatively associated with breast cancer metastasis.
Through multiple in vitro and in vivo experiments, Liu, et al also confirmed
that HNRNPA2B1 could inhibit breast cancer metastasis, which involved
complicated regulation of ERK-MAPK/Twist, GR- β/TCF4, STAT3 and
WNT/TCF4 signaling pathways [47] . However, whether HNRNPA2B1
worked depending on its m 

6 A reader activity remains unclear ( Fig. 2 ). 

m 

6 A modification modulates the clinical outcomes of breast cancer 

Drug tolerance and stemness of cancer cells are 2 important things
that affect clinical outcomes of breast cancer [64] . METTL3/miR-221-
p/HIPK2/Che-1 axis is found to be involved in Adriamycin resistance in
CF-7 breast cancer cells. METTL3 is able to methylate pri-miR-221-

p resulting in elevated expression of mature miR-221-3p. Consequently, 
iR-221-3p down-regulates HIPK2 through targeting the 3’UTR of HIPK2 

esulting in increased level of Che-1 which is a target of HIPK2. Thus,
he METTL3/miR-221-3p/HIPK2/Che-1 axis enhances drug resistance 
n adriamycin-resistant MCF-7 cells [65] . A recent study revealed that
 hypoxia-induced lncRNA KB-1980E6.3 could promote the stem-like 
roperties of breast cancer stem cells (BCSCs) through the recruitment of
GF2BP1. The interaction between IGF2BP1 and lncRNA KB-1980E6.3 is 
mportant for m 

6 A-induced mRNA stability of c-Myc [66] . IGF2BP3 is also
eported to associate with TNBC [67] and facilitates the initiation of tumor
nd the stemness of BCSCs in TNBC through regulating SOX2 expression.
n this process, SLUG, as an important functional downstream of IGF2BP3,
ediates the regulation of SOX2 by IGF2BP3 [68] . Besides, IGF2BP3 was

hown to be essential for the stemness of breast cancer cells, which could
e regulated by miR-34a [69] . Preferential expression of IGF2BP3 in TNBC
ontributes to the resistance to many chemotherapeutics [70] . Suppression of
GF2BP3 in TNBC cells significantly increased the sensitivity to doxorubicin
nd mitoxantrone of cancer cells. The mechanism underlines that IGF2BP3
egulates breast cancer resistance protein (BCRP), which is a major effector
f drug resistance in breast cancer [70] . 

The expression of HNRNPA2B1 is higher in tamoxifen-resistant LCC9 
ells than that in MCF-7 cells which are tamoxifen-sensitive cells. In

CF-7 cells, ectopic expression of HNRNPA2B1 could alter miRNA 

ranscriptome [45] . However, the involved pathways, the roles of altered
iRNA transcriptome and downstream effectors involving in endocrine- 

esistance necessitates further elucidation of detailed mechanisms [45] . 
Since some conflict results were observed in multiple independent studies.

e also checked the roles of m 

6 A regulatory proteins in DepMap portal.
hrough the results we can conclude that most of m 

6 A regulatory proteins
re at least partial essential in breast cancer cell lines ( Table 1 ). 

xperimental methods to identify m 

6 A specific 

egulation of individual RNA 

It has been difficult for researchers to pick out individual RNAs of
nterest that bear m 

6 A marks and this has required the development of
 number of new techniques. Researchers also could not exclude the
nterferences from contaminating RNA species which was co-purified with 
arget mRNA. A lot of studies didn’t distinguish whether their purposed
odel worked in m 

6 A dependent manner. m 

6 A-seq (or MeRIP-seq) engaging
mmunoprecipitation and high-throughput sequencing technologies opens 
p the era of “Epitranscriptome” [71] . Dedicated and detailed reviews on
echnologies investigating epitranscriptome were previously published [23] . 
o facilitate the following studies focus on m 

6 A modification or m 

6 A
egulatory proteins in breast cancer, we summarized necessary experiments 
hose identifying individual RNAs that contained m 

6 A, and those exclude the
nterferences from contaminating RNA species which was co-purified with 
arget mRNA. 

eRIP-qPCR 

Methylated RNA immunoprecipitation (MeRIP) is widely used in 
 

6 A related studies. Immunoprecipitated and purified with m 

6 A antibody,
 

6 A marked RNAs could be subjected to reverse transcription and
PCR to confirm the m 

6 A enrichment of RNA of interest (ROI) or to
ompare m 

6 A enrichment of ROI between different samples/treatments [7]
 Fig. 3 A). 
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Fig. 2. m 

6 A modification modulates the growth and the metastasis of breast tumor. Shown here is molecules and pathways regulated by m 

6 A regulatory 
proteins resulting in enhanced or suppressed breast tumor growth and metastasis. Arrows indicate activation to downstream molecules or pathways, and flat 
lines indicate inhibition to downstream molecules or pathways. Bold arrows indicate m 

6 A dependent manner, dashed lines indicate m 

6 A independent manner, 
and solid arrows or lines indicate unknown manner. Red arrows or flat lines indicate to enhance breast tumor growth and metastasis, blue arrows or flat lines 
indicate to suppress breast tumor growth and metastasis. The red box means high expression, the blue box means low expression, and the gray box means 
unreported expression in breast cancer. “?”, unknown mechanism. (Color version of figure is available online.) 
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RIP-qPCR or CLIP-qPCR 

RNA immunoprecipitation (RIP)-qPCR or cross-linking
immunoprecipitation (CLIP)-qPCR is useful for the determination of
interaction between the protein of interest and the RNA of interest.
Both techniques depend on antibody to immunoprecipitate RNA-protein
complex, and include reverse transcription, and qPCR analysis of RNA
of interest. The differences are CLIP-qPCR uses ultraviolet (UV) light to
crosslink proteins to RNAs that are in close proximity, and the following
isolation is done stringently [72] ( Fig. 3 A). 
ual luciferase reporter assay 

Dual luciferase reporter assay uses a reporter DNA conjugated with 
uciferase to quantify the regulation to the reporter. Weng, et al inserted 
ild type or m 

6 A sites-mutated (A to T) 3’ coding region of MYB or
YC right before the stop codon of luciferase to show that METTL14 

egulated the mRNA stability of MYB or MYC through m 

6 A sites [73] .
his method is an alternative easy way to confirm an m 

6 A specific regulation
f target RNA, when the m 

6 A sites in RNA of interest are known
 Fig. 3 B). 



Neoplasia Vol. 23, No. 6, 2021 Understanding the roles of N6-methyladenosine in breast cancer R. Fang, L. Ye and H. Shi 557 

Fig. 3. Experiments identify m 

6 A specific regulation of individual RNA. Shown here is schematic diagrams of (A) methylated RNA immunoprecipitation 
(MeRIP)-qPCR, RNA immunoprecipitation (RIP)-qPCR, cross-linking immunoprecipitation (CLIP)-qPCR, (B) dual luciferase reporter assay, (C) site-specific 
cleavage, and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET) technologies. m 

6 A, N 

6 -methyladenosine; 
IP, immunoprecipitation; qPCR, quantitative polymerase chain reaction; LUC, luciferase; CMV, cytomegalovirus promoter; A, adenosine; TLC, thin-layer 
chromatography. 
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Site-specific cleavage and radioactive-labeling followed by 
ligation-assisted extraction and thin-layer chromatography (SCARLET) 

SCARLET was established to accurately decide whether an m 

6 A is
presented at a given site of mRNA/lncRNA [74] . The method uses a chimeric
DNA oligonucleotide with 2’-OMe/2’-H modifications to guide RNase H
to create a site-specific cleavage at the 5’ end of candidate m 

6 A site. The
cleaved site is radiolabeled with 32 P and splint-ligated to a 116 nt ssDNA
oligonucleotide. The resulted fused RNA-DNA oligonucleotide is purified
and digested to generate mononucleotides with 5’ phosphate and determined
 c  
y thin-layer chromatography [74] . The method can confirm any m 

6 A site at
RNA or lncRNA from a total-RNA sample without additional purification

tep ( Fig. 3 C). 

otential targeted therapeutic strategies based 

n m 

6 A modification in breast cancer 

Several new drugs targeting DNA methylases or histone modifying 
nzymes have been approved for the treatment of cancer, and epigenetic
hemical intervention to influence gene expression has become an active
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field of international research on new drug development [ 75 , 76 ]. Given the
critical role of m 

6 A regulatory proteins in breast cancer, they are expected
to be promising drug targets for cancer treatment. Metformin, which was
previously regarded as anti-diabetic medicine, is capable of inhibiting breast
cancer cell proliferation by down-regulating the expression of METTL3. This
study suggests that drug repurposing is a valuable approach for the screening
of m 

6 A inhibitors, due to the possibility that FDA approved medications may
exert m 

6 A regulatory functions [77] . Recently, the researchers developed small
molecule inhibitors CS1 and CS2, which target m 

6 A “eraser” FTO in cancer
[78] . The inhibitor could occupy FTO catalytic "pocket" to stop the m 

6 A
modified oligonucleotides into function, thus inhibiting the demethylation
function of FTO. The inhibitors showed effective anti-leukemia effect in
PDX mouse model, and the clinical trials showed a satisfactory anti-cancer
effect. Moreover, it is worth noting that the anti-cancer effect of CS1 and CS2
in diverse solid tumors was verified, including breast cancer [78] . Their study
suggests that to develop applicable selective and effective inhibitors of m 

6 A
regulatory protein for clinical use may well provide more effective strategies to
treat breast cancer, especially when combined with other therapeutic agents
for cancers that are resistant to existing therapies. 

Conclusion 

Although m 

6 A has been the focus of many studies in recent years,
our knowledge about it is far from complete. From the current studies,
METTL3, METTL14, FTO, ALKBH5, YTHDF3 and IGF2BP1 are proved
to exert functions dependent on m 

6 A modification in breast cancer. However,
whether the other m 

6 A modulators regulate breast cancer progression
replying on m 

6 A modification is unanswered ( Table 1 ). 
Given that cancer is proven to be driven by epigenetic alteration, and

alteration of mRNA controls the expression of oncogenes, targeting m 

6 A
regulatory proteins can serve as a new approach for precisely modifying
epitranscriptome of cancer and benefiting cancer treatment. Development
of enzyme inhibitor of m 

6 A “writer” and “eraser” can control the addition
and removal of m 

6 A marks which control RNA life fate. Development of
competence of m 

6 A reader can specify the RNA to be regulated. Combined
interventions of “writer”, “eraser” and “reader” may make specific control of
RNA life fate come true. 
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