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Developing a Black Carbon-
Substituted Multimedia Model for 
Simulating the PAH Distributions in 
Urban Environments
Chunhui Wang1, Shenglu Zhou1, Yue He2, Junxiao Wang1, Fei Wang1 & Shaohua Wu1

A multimedia fugacity model with spatially resolved environmental phases at an urban scale was 
developed. In this model, the key parameter, organic matter, was replaced with black carbon (BC) 
and applied to simulate the distributions of phenanthrene (Phe), pyrene (Pyr) and benzo[α]pyrene 
(BaP) in Nanjing, China. Based on the estimated emissions and measured inflows of air and water, the 
Phe, Pyr and BaP concentrations in different environment media were calculated under steady-state 
assumptions. The original model (OC-Model), BC-inclusive model (dual C-Model) and improved model 
(BC-Model) were validated by comparing observed and predicted Phe, Pyr and BaP concentrations. 
Our results suggested that lighter polycyclic aromatic hydrocarbons (PAHs) were more affected by BC 
substitution than their heavier counterparts. We advocate the utilization of sorption with BC in future 
multimedia fate models for lighter PAHs based on the comparison of the calculated and observed values 
from measured and published sources. The spatial distributions of the Phe, Pyr and BaP concentrations 
in all phases were rationally mapped based on the calculated concentrations from the BC-Model, 
indicating that soil was the dominant sink of PAHs in terrestrial systems, while sediment was the 
dominant sink of PAHs in aquatic systems.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that are carcinogenic and 
mutagenic to humans and toxic to all living organisms1,2. The United States Environmental Protection Agency 
(US EPA) has identified 16 PAHs as priority pollutants, and these PAHs are also listed in the 1998 protocols on 
persistent organic pollutants under long-range transboundary air pollution3. Therefore, investigating the fate of 
PAHs in multimedia environments is very important to assess their ecological and human health risk. However, 
due to the complicacy of the chemicals and the paucity of systematic regional monitoring data for various envi-
ronmental phases, predicting the fate and distribution of environmental multimedia has become an essential step 
in linking emission sources, environmental distribution, and human exposure4. Among various multimedia fate 
models, the fugacity model has been developed and applied to predict the fate of organic chemicals5.

Fugacity models are based on the fugacity concept, whereby the fugacity of a compound in a specific envi-
ronmental phase is directly related to its concentration by means of the fugacity capacity of the phase6,7. One 
important assumption of fugacity models is that the bulk phases are completely mixed with the homogeneous 
concentrations of the modeled chemical5,8–10. Recently, 69 surface soil samples from Nanjing were measured for 
PAHs, and a fairly large variation was found among the sampling locations1. Thus, relatively large uncertainty 
resulted from ignoring the spatial variation, and no valuable information was obtained on the spatial distribution 
of the modeled chemicals5. Multimedia models with regional segments have been conducted in several studies, 
but few have been attempted at an urban scale4,5,11.

Multimedia fugacity models assume that organic matter is entirely responsible for the capacity of solids to 
sorb organic chemicals. However, increasing evidence has suggested that the existing organic matter partitioning 
paradigm is not sufficient to explain the sorption to environmental solids of hydrophobic organic contaminants 
that can obtain a planar configuration12. An increasing number of studies have indicated that black carbon (BC) 
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leads to enhanced sorption of planar and aromatic organic compounds13–15. The formation process of BC is sim-
ilar to PAHs, as the two compounds are both formed by fossil fuel combustion (traffic, industry, coal, and oil); 
part of their formation results from the combustion of biomass (forest fires and residential wood burning)1,16. 
BC consists of the combustion-derived carbon fraction, including residues, of initial fuel (char) as well as highly 
condensed carbonaceous products (soot)17, which are ubiquitous in the environment. The fraction of BC to total 
organic carbon (TOC) ranges from 5–18% in sediment samples around the world18, but most PAHs are bound to 
the BC fraction19. Generally, BC contents are approximately 1–15% of the TOC, and therefore, in several cases, 
BC can be expected to more strongly contribute to overall sorption than all the other organic matter constitu-
ents16. Prevedouros et al.12 developed a BC-inclusive multimedia model for predicting the fate of organics and 
found that lighter PAHs were more affected by BC inclusion than their heavier counterparts.

Based on the above analysis, this study attempted to improve the multimedia urban model (MUM) struc-
ture20, which included developing and evaluating a spatially resolved solution. We compared the simulated 
results among the original model (OC-Model), BC-inclusive model (dual C-Model)12, and BC-substituted model 
(BC-Model), which assumed that BC is entirely responsible for the capacity of solids to sorb organic chemicals, 
to determine the best model to simulate the environmental distribution of PAHs in Nanjing, China. Air, vegeta-
tion, water, soil, sediment, and organic film (“pure” film plus particles are covered on impervious surfaces) were 
included in the model20. The model was based on the steady-state, level III fugacity model of Mackay21, and the 
spatially distributed emissions of PAHs in the Nanjing urban areas from January 2012 – December 2013 were esti-
mated and then used as the representative data for contemporary emissions. This study should provide a useful 
tool for modeling the distribution of PAHs in urban environments.

Methods
Study area descriptions.  Nanjing was selected as a prototype city. The city is an ancient capital of six dynas-
ties with a history of more than 2500 years and a profound cultural background. As a main port along the Yangtze 
River, Nanjing is a complex industrial base dominated by electronics, automobile, and chemical industries. 
Each environmental medium in Nanjing has been heavily contaminated by many types of pollutants, including 
PAHs1,22,23. The study region was divided into 36 grid cells (4 km × 4 km). Each grid cell was constructed with six 
connected phases representing air, water, soil, sediment, vegetation, and organic film. Figure 1 shows the location 
of the study area and model segment.

Model structure.  Like other fugacity models, three key variables, including fugacity (f, Pa), fugacity capacity 
[Z, mol/(m3 Pa)], and transfer rate coefficients [D, mol/(Pa h)], were employed in this model to describe the envi-
ronmental distribution and fate processes. Z is specific to the properties of the contaminant and the environmen-
tal media. D represents the inter-media transport and transformation processes, including diffusion, advection, 
and degradation, and is related to the chemical transfer flux. The concentration of the contaminant within a phase 
(c, mol/m3) is a product of f and Z. The original and developed Z values for each phase are listed in the Supporting 
Information (Tables S1–S3). In addition, air, water, soil, sediment, vegetation, and organic film were defined as 
the six bulk phases for modeling the distribution of PAHs in the area. The Supporting Information (Tables S4 and 
S5) shows the D values and steady-state mass-balance equations used in the model. The spatial variations of air, 
water, soil, sediment, vegetation, and organic film were taken into consideration, and these environmental media 
were divided into 36 individual cells, each 4 × 4 km2 in area. The major chemical transfer, transformation, and fate 

Figure 1.  Location of the study area and model segment. (The cartographic software is ArcGIS 10.0, http://
www.esri.com/).
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processes are illustrated in Fig. 2. The model was applied to simulate the distribution of three chemicals, namely, 
phenanthrene (Phe), pyrene (Pyr) and benzo[α]pyrene (BaP), which were selected as illustrative chemicals for 
the wide range of PAH physical-chemical and partitioning properties.

Parameterization.  The parameters used in the model calculations include various environmental param-
eters, physical-chemical properties of Phe, Pyr and BaP, and flux matrixes among various media. Most of the 
data were obtained from the literature or from the model default value4,24. Information on the dimensions and 
areas of the various environmental media for the segments were derived from remote sensing discrimination. 
The physical-chemical properties of the three chemicals used as input data into this model were derived from 
Prevedouros et al.12, and the KBC (BC-water partition coefficient) and KBC-A (BC-air partition coefficient) of the 
three chemicals were derived from Prevedouros et al.2. The physical-chemical properties of Phe, Pyr and BaP are 
shown in Table S6. The rain rate and runoff rate were derived from local meteorological and hydrological data. 
In June 2014, 69 composite surface soil samples were collected from the Nanjing urban areas. The distribution of 
soil sampling sites is illustrated in Fig. 3. For each 10 m × 10 m sampling site, five soil subsamples (four corners 
and one center) were taken and bulked together to form one composite sample. All the samples were air-dried at 
room temperature for one week, sieved to 20-, 60-, and 100-mesh size particles after removing stones, residual 
roots, and other materials, and then stored in amber glass containers at −4 °C until analysis. The soil organic 
matter (SOM) contents were determined by the combustion oxidation-titration method25. The soil BC contents 
were determined by the method described by He and Zhang26 using a Heraeus CHN-O-Rapid elemental analyzer 
(GmbH, Hanau, Germany). The SOM and soil BC content results for each grid in the study area are shown in 
Table S7. In this research, the concentration of BC aerosol was derived from Tian et al.27. The content of BC in 
water suspended particulates was obtained from Huang and Zhang28. The concentration of BC in sediment was 
derived from Huang and Zhang29.

The air and water flows were described by matrixes of flow rates for their inter-regional movements. Airflow 
rates were calculated from the annual mean wind speed30. The external source concentrations of PAHs in the air 
and validation data were measured using polyurethane foam passive air samplers deployed throughout the city 
for a 3 month period in 2014. Twenty water samples were collected from rivers and lakes in the Nanjing urban 
areas to explore the external source concentrations of PAHs and to construct validation data. The advections in 
water and air for each grid in the study area are shown in Table S7. The distributions of the air and water sampling 
sites are illustrated in Fig. 3. The data for the water flow rates and water flux matrixes were collected from the 
Nanjing City Water Resources Bulletin31. Parameter values for the study area summarized in Tables S8, Table S9 
and S10 contain the parameter values for chemical transfer.

Estimated emissions.  In this study, seven major sources were considered: coking production, primary 
aluminum production, transport petroleum combustion, non-transport petroleum combustion, industrial coal 
combustion, domestic coal combustion, and biomass burning. However, biomass burning, such as straw and fire 
wood burning, has rarely occurred in recent years in our research area. Primary aluminum is also not produced 
in the Nanjing urban areas, and domestic coal combustion has been replaced by coal gas and natural gas in these 
urban areas. Therefore, only four sources were considered in this research: transport petroleum combustion, 
non-transport petroleum combustion, industrial coal combustion, and coking production. The emissions from 
these sources were then distributed across the grid cells in the model for the gridded region.

The emission estimates in our study were based at the urban street level (known as the township level division 
in China), but no energy consumption data were available at this level. Zhang et al.32 found that the consumption 
of transport petroleum, non-transport petroleum and industrial coal linearly correlated with secondary plus ter-
tiary GDPs (GDP23). Energy consumption data on a provincial scale as well as data of the county and street level 
during January 2012 – December 2013 were collected from yearbooks33–38. The main coking production data were 

Figure 2.  Transfer processes between the adjacent phases and phase cell. The processes are designated Dij. A, W, 
V, F, S, and Sed represent air, water, vegetation, organic film, soil and sediment media, respectively.
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collected from official published sources38. Thus, the energy consumption for each street was estimated, the data 
were integrated into each grid using a Geographic Information System, and the emissions were calculated using 
the emission factors39. Figure 4 illustrates the spatial distribution of the Phe, Pyr and BaP emissions in the Nanjing 
urban areas. The total emissions of Phe, Pyr and BaP in the Nanjing urban areas were estimated as 7.05t, 1.16 and 
1.22t during January 2012 – December 2013, respectively.

Sensitivity analysis and uncertainty analysis.  Sensitivity analysis is an important methodology used to 
test the sensitivity of the model to parameter changes and identify the most influential parameters for the model 
output. In this research, sensitivity analysis was performed for all the inputs parameters. Each parameter was 
individually adjusted by ± 10%, and the sensitivity coefficient (S) was calculated by the following formula:

= ∆ ∆S Y Y X X[ / ]/[ / ] (1)k i i i i

where Xi (i is the index of the input variable) denotes the input parameter of the model, Y denotes the output of 
the model when the test parameter is adjusted ± 10%, and Δ refers to perturbations.

Monte Carlo simulations were performed to evaluate the overall uncertainty of predictions based on the prob-
ability distributions of the input parameters. This method computes results based on repeated random sampling 
and statistical analysis. The model can be formulated as follows:
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where g(r) is the random variable, f(r) is the distribution density function, and <g> is the mathematical expecta-
tion of g(r). The approximate formula can be converted into:
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However, most of the inputs had negligible influence on the output of the model. For this reason, all input param-
eters and their uncertainty were estimated according to their distribution, for which coefficients of variation 
were calculated to describe the distribution of the parameters based on the literature data. In this study, key input 
parameters were selected according to the sensitivity coefficient (S) > 0.237. The values of the key input parameters 

Figure 3.  The distribution of sampling sites in the Nanjing urban areas. (The cartographic software is ArcGIS 
10.0, http://www.esri.com/).

http://www.esri.com/
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were randomly selected within their respective probability distributions. The Monte Carlo simulations were 
repeatedly run 10000 times using Oracle Crystal Ball to obtain the distribution of the output.

Results and Discussion
Model Validation.  Two procedures were used to test the validity of the model. One procedure assessed 
the calculated predictions by comparing the observations and predictions of the PAH concentrations in the 
bulk phase (air, water, soil, vegetation, and sediment). The other compared the prediction results among the 
BC-Model, dual C-Model and OC-Model.

As shown in Fig. 5, almost no difference in the Phe concentrations in the air phase was observed among the 
OC-Model, dual C-Model and BC-Model. The maximum difference between the calculated and the measured 
concentrations was 0.14 log-units for Phe in the air phase. However, large differences in specific cells, such as 
2, 17 and 21, were found for Phe in the water phase. The results could be attributed to ignore the PAHs from 
external water sources when simulating the fate of PAHs because of the water areas are very small in these cells. 
Compared to the OC-Model and dual C-Model, the soil Phe concentrations in the BC-Model were closer to the 
measured values. The absolute differences between the calculated and the measured mean concentrations were 
0.49 log-units for the BC-Model, 1.52 log-units for the OC-Model, and 1.24 log-units for the dual C-Model. The 
calculated Phe concentration results in all phases for the BC-Model, dual C-Model and OC-Model are illustrated 
in the Supporting Information (Fig. S1); the available observed data for the Phe concentrations were collected 
from published data40,41. The independently measured mean Phe concentrations were 591.4 ng/g and 5.05 ng/g 
for vegetation and sediment, respectively, compared to 627.00 ng/g and 1.18 ng/g for the BC-Model, 1.63 ng/g 
and 0.5 ng/g for the dual C-Model, and 1.62 ng/g and 0.1 ng/g for the OC-Model, respectively. Obviously, the pre-
diction results of the Phe concentrations in the BC-Model were closer to the observed values from the published 
sources. Unfortunately, measured data on organic film are not available. The calculated mean concentrations in 
the organic film decreased in the following order: BC-Model (−0.97 log mol/m3) > OC-Model (−1.67 log mol/
m3) > dual C-Model (−2.51 log mol/m3).

Additionally, no difference in the Pyr concentrations in the air phase among the three models was found, and 
the predicted values versus the observed values were similar. In the water phase, the distribution of the calculated 
Pyr concentration was similar to that of the Phe concentration. In the soil phase, the calculated Pyr concentra-
tions in the OC-Model and dual C-Model were the same but lower than the calculated value in the BC-Model, 
which was closer to the measured values in the most grids. However, their concentration differences fell within 
1 log-unit. The calculated Pyr concentration results in the other phases are illustrated in Fig. S2. The differences 

Figure 4.  Annual average emissions of Phe, Pyr and BaP in the Nanjing urban areas from January 2012 – 
December 2013. (The cartographic software is ArcGIS 10.0, http://www.esri.com/).
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of the calculated Pyr concentrations in vegetation, sediment and organic film among the three models also fell 
within 1 log-unit. Compared to the observed values from published data40,41, the absolute differences between 
the calculated and measured mean concentrations in vegetation fell within 1 log-unit, but the difference was 
greater than 1 log-unit in the sediment phase. In all cases, the difference between the modeled concentrations of 
the BC-Model, dual C-Model and OC-Model fell within 0.5 log-unit for BaP. Compared to the observed values, 
almost no difference in BaP modeled concentration was observed in the air phase. The average difference between 
the calculated and measured concentrations fell within 0.5 and 0.1 log-units for BaP in water and soil, respec-
tively, which are acceptable for this type of study. The calculated BaP concentration results in the other phases are 
illustrated in the Supporting Information (Fig. S3). Compared to the observed values from published data40,41, the 

Figure 5.  Comparison between the measured and modeled concentrations in different phases.
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absolute differences between the calculated and measured mean concentrations in vegetation and sediment are 
both approximately 0.5 log-unit. The scatter plots of predicted versus observed values are illustrated in Fig. S4.

Based on the results of the abovementioned analysis, the BC-Model did not cause any considerable varia-
tions to the air levels and water levels of the grids containing PAHs from external water sources when simulat-
ing the fate of PAHs. However, the BC-Model caused increases in other environmental phase concentrations 
related to increase solid partitioning, except for BaP. In other words, the difference of the calculated concentration 
decreased with an increasing molecular weight of PAH in the three models. Our results are similar to the findings 
of Prevedouros et al.42, which indicated that lighter PAHs were more affected by BC inclusion than their heavier 
counterparts in all cases. In this study, we simulated the distributions and inventories of Phe, Pyr and BaP using 
the BC-Model, which provided more accurate simulations compared to the observed values from measured and 
published sources. The predicated results are as follows.

Spatial Distribution.  The spatial distributions of the Phe, Pyr and BaP concentrations in all phases were 
mapped based on the calculated results. As shown in Figs S5–S7, the spatial distributions of the Phe, Pyr and 
BaP concentrations in air, soil, vegetation, and film are very similar, and the patterns in water and sediment are 
alike. The higher Phe concentrations in the former group were mainly distributed in the central north-south axis, 
while the lowest Phe concentrations were distributed around the north of Purple Mountain (segment 23). This 
phenomenon could be due to traffic and population distribution in the study areas and effected by the chemical 
properties of Phe. The spatial distribution of Pyr was similar to that of Phe, which is attributed to their similar 
physical-chemistry properties. As shown in Fig. S7, the BaP concentration patterns in air, soil, vegetation, and 
film are very similar to the emission data, indicating that the areas at risk of BaP exposure are narrowly distrib-
uted around the emission sources. A recognizable difference in segment 4 occurred between the emission data, as 
shown in Fig. S7_a and S7_b, which is probably due to the influence of advective flow. Compared to the emission 
map, the spatial distributions of Phe, Pyr and BaP in water and sediment showed unique characteristics. The 
higher Phe, Pyr and BaP concentrations were mainly distributed in segments containing the Yangtze River flow, 
indicating that rivers are also an important risk diffusion pathway for PAHs.

Inventory.  The model predictions for the inventory in each grid are shown in Tables S11–S13. In many cases, 
most of the total Phe, Pyr and BaP resided in the soil, except for some segmentations mainly located in the river 
cells, where the total amounts of Phe, Pyr and BaP are predominantly in the sediment. Thus, soil and sediment 
serve as the predominant PAH sinks, as soil and sediment possessed the highest PAH retention times in the 
multimedia phases. In addition, the sediment and soil volumes were also important factors for their high stor-
age capacity. The highest Phe, Pyr and BaP concentrations among all phases were in organic film, but the total 
amounts were low because of the small volume of organic film.

Sensitivity and uncertainty of the model.  As no differences in the source, distribution and contribution 
of the input parameters were observed between different segments, the sensitivity and uncertainty analysis results 
in one cell could be representative on the entire region43. Segment 27 was selected as an example for the sensitivity 
and uncertainty analyses. The sensitivities and uncertainties of the modeled concentrations in all the phases to 
the input parameters of Phe, Pyr and BaP in the OC-Model, dual C-Model and BC-Model were analyzed. The 
Supporting Information (Tables S14–S16) shows the absolute values of the sensitivities to the key parameters con-
trolling the Phe, Pyr and BaP concentrations in all phases. The key parameters for the various phases were appar-
ently different. The soil phase was affected by the highest number of key parameters in all phases, while the water 
was least affected. The key parameters were selected for Monte Carlo simulations according to the results of the 
sensitivity analysis. All the distributions of the key parameters were well fitted to log-normal distributions accord-
ing to comparisons between the statistics of the fitted distribution. The results of the uncertainty analysis for the 
Phe, Pyr and BaP concentrations in all phases are illustrated in the Supporting Information (Tables S17–S19). The 
model outputs of the Phe, Pyr and BaP concentrations in soil and sediment had apparently higher uncertainties 
than those in the other phases due to the increased numbers of key parameters in the soil and sediment phases. 
Little difference of the key parameters was observed for the three chemicals among the BC-Model, dual C-Model 
and OC-Model. In addition, large differences of the value ranges in soil, vegetation, film and sediment phases 
were found for lighter PAHs in the BC-Model, dual C-Model and OC-Model, but the value ranges were similar 
for heavy PAHs. However, the model validation results are the same even under extreme conditions when the two 
extreme uncertainty values fell within 1 log-unit.

Conclusion
In this study, a spatially resolved MUM model was developed. The key parameter, organic carbon, was displaced 
with BC, and model predictions were validated by comparing the observations and predictions of PAH concen-
trations. Our results suggested that lighter PAHs were more affected by BC substitution than their heavier coun-
terparts. Based on the comparison of the calculated and observed values from measured and published sources, 
we advocate the utilization of sorption with BC in future multimedia fate models for lighter PAHs. The spatial 
distributions of the Phe, Pyr and BaP concentrations in all phases were rationally mapped based on the calculated 
concentrations of the BC-Mode, indicating that soil was the dominant sink of PAHs in terrestrial systems, while 
sediment was the dominant sink of PAHs in aquatic systems.
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