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Background: Functional and structural alterations in the gray matter have been

observed in patients with knee osteoarthritis (KOA). However, little is known about white

matter changes in KOA. Here, we evaluated fractional anisotropy (FA), mean diffusivity

(MD), axial diffusivity (AD), and radial diffusivity (RD) to investigate potential alterations in

the white matter of patients with KOA.

Methods: A total of 166 patients with KOA, along with 88 age- and sex-matched

healthy controls were recruited and underwent brain magnetic resonance imaging (MRI).

Diffusion tensor imaging (DTI) data were collected and analyzed using tract-based

spatial statistics (TBSS). Statistical significances were determined at p < 0.05 and were

corrected by the threshold-free cluster enhancement (TFCE) method. Then, we evaluated

potential correlations between FA, MD, AD, RD values and disease duration, Western

Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, and visual

analog scale (VAS) scores.

Results: FA values for the body of corpus callosum, splenium of corpus callosum,

bilateral superior longitudinal fasciculus, cingulum, bilateral superior corona radiata, and

right posterior corona radiata were significantly higher in patients with KOA than in healthy

controls (p < 0.05, TFCE corrected). Compared with healthy controls, patients with KOA

also had significantly lower MD, AD, and RD values of the genu of corpus callosum,

body of corpus callosum, splenium of corpus callosum, corona radiata, right posterior

thalamic radiation, superior longitudinal fasciculus, and middle cerebellar peduncle (p <

0.05, TFCE corrected). Negative correlations were detected between WOMAC scores

and AD values for the body of the corpus callosum and the splenium of the corpus

callosum (p < 0.05, FDR corrected).
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Conclusion: Patients with KOA exhibited extensive white matter alterations in

sensorimotor and pain-related regions. Longitudinal observation studies on the causation

between abnormalities in the white matter tracts and KOA is needed in the future.

Keywords: knee osteoarthritis (KOA), diffusion tensor imaging, white matter, tract-based spatial statistics,

neuroimaging

INTRODUCTION

Osteoarthritis (OA) is a common cause of pain and disability
in the elderly (1) and predominantly affects the knee joint (2).
Knee osteoarthritis (KOA) affects at least 15–18% of people
globally (3), reduces multiple facets of the quality of life (QOL),
and induces an enormous healthcare burden in industrialized
societies (4). The risk factors for developing knee osteoarthritis
are age, obesity, and articular malalignment (2). According
to clinical guidelines, the first therapeutic principle for is to
relieve knee pain (5). However, the pathology of KOA is not
well-understood, thus restricting the development of specific
therapeutic protocols for clinical practice.

It is generally believed that the key factor underlying KOA
is inflammation due to the breakdown of joint tissues from
mechanical loading, aging, or other factors (6, 7). However, these
peripheral abnormalities do not fully account for the intensity of
pain in patients with chronic musculoskeletal pain (8) because
substantial discordance exists between radiographic OA of the
knee when compared to knee pain (9, 10). With the development
of neuroimaging techniques, researchers have found that the
central neural system plays a key role in KOA (11). For example,
several recent studies reported abnormal functions of the gray
matter in the lateral prefrontal cortex, parietal lobule, anterior
cingulate cortex, insula and limbic cortical, which were involved
in altered pain processing in KOA patients (12–14). These
findings were further validated by the observation of structural
changes in the graymatter in other neuroimaging studies (15, 16).
Given that the observed alterations in the structure and function
of the gray matter arise from the adaption or maladaption of
the brain to certain conditions such as prolonged nociceptive
input from chronic knee pain, it is reasonable to hypothesize
that the white matter could also be affected by this condition.
However, little is known about white matter alterations in
patients with KOA.

Abbreviations: 3DT1, three-dimensional T1-weighted; ACC, anterior cingulate

cortex; ACR, American College of Rheumatology; AD, axial diffusivity; BET, brain

extraction tool; BMI, body mass index; CC, corpus callosum; CRPS, chronic

complex regional pain syndrome; DTI, diffusion tensor imaging; FA, fractional

anisotropy; FDR, false discovery rates method; FDT, FMRIB’s diffusion toolbox;

FMS, fibromyalgia syndrome; FOV, field of view; GMV, gray matter volume; HC,

healthy control; IBS, irritable bowel syndrome; KOA, knee osteoarthritis; LPFC,

lateral prefrontal cortex; MD, mean diffusivity; MITN, midline and intralaminar

thalamic nuclei; MRI, magnetic resonance imaging; OA, osteoarthritis; OFC,

orbital frontal cortex; PFC, prefrontal cortex; QOL, quality of life; RD, radial

diffusivity; TR, repetition time; SAS, self-rating anxiety scale; SDS, self-rating

depression scale; SLF, superior longitudinal fasciculus; TBSS, tract-based spatial

statistics; TE, echo time; TFCE, threshold-free cluster enhancement; VAS,

visual analogue scale; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.

Diffusion tensor imaging (DTI) can provide significant
insight into the diffusion of water molecules and thus quantify
microstructural alterations within the white matter (17, 18).
Tract-based spatial statistics (TBSS) is the most common
method used to analyze DTI data (19) and includes four
metrics: fractional anisotropy (FA), axial diffusivity (AD), radial
diffusivity (RD), and mean diffusivity (MD). FA, as a marker of
axonal membrane circumference and packing density, reflects the
orientation and distribution of the random movements of water-
molecules (20). AD can reflect diffusional directionality along
axons and is related to the degree of myelination in the white
matter (21). RD can characterize the diffusional directionality
perpendicular to axons and is related to the beginning of
demyelination (22) or axonal damage (20). MD reflects the
diffusionmagnitude; this is related to inflammation and edema in
the white matter tracts (20). DTI and TBSS have been used wildly
for detecting abnormal white matter in various disorders, such as
schizophrenia spectrum disorders (23), chronic back pain (24),
osteoarthritis (13, 14), and fibromyalgia syndrome (FMS) (25). In
this study, we used the whole-brain TBSS method to investigate
potential differences in the white matter tracts of patients with
KOA and compared data with that derived from healthy controls
(HCs). We also correlated abnormal FA, MD, AD, and RD values
with clinical variables in patients with KOA to assess the clinical
meaning of our findings.

MATERIALS AND METHODS

Participants
Patients with a diagnosis of KOA at three hospitals (The First
Affiliated Hospital of Chengdu University of Traditional Chinese
Medicine, the Third Affiliated Hospital of Chengdu University
of Traditional Chinese Medicine, and the Orthopedic Hospital
of Sichuan Province) were enrolled from September 2016 to
September 2021. Brain magnetic resonance imaging (MRI) scans
were obtained on a GE 3.0T MRI scanner (GE 3.0T MR750,
Wauwatosa, WI) using a 16-channel head coil in Chengdu,
China. Age- and sex-matched HCs were also recruited. This
study was carried out in accordance with the Declaration of
Helsinki and was approved by the Institutional Review Board and
Ethics Committees of the First Affiliated Hospital of Chengdu
University of Traditional Chinese Medicine (No. 2016KL-017).

The diagnostic symptoms and signs of KOA patients were
assessed by two experienced orthopedists according to the
American College of Rheumatology (ACR) criteria (26). Patients
with KOA were recruited if they met the following inclusion
criteria: (a) aged from 38 to 70 years and right-handed; (b)
were diagnosed with KOA; (c) had a pain intensity >3 on a
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10-point numeric scale; (d) had a knee joint radiological degree
on the Kellgren-Lawrence scale of 0-II (27); and (e) had signed
a written and informed consent form. Patients with KOA were
excluded if they (a) had other major painful, psychiatric, or
neurological diseases; (b) had drug or alcohol addiction; (c) had
contraindications for MRI scans; (d) had taken any pain killer
medicine or complementary and alternative therapies within the
previous month; or (e) were pregnant or lactating.

HCs were recruited if theymet the following inclusion criteria:
(a) aged from 38 to 70 years and right-handed; (b) were free
from any pain disorders; and (c) signed the written and informed
consent form. HCs were excluded if they met the following
exclusion criteria: (a) accompanied by rheumatoid arthritis, high
blood pressure, diabetes, or psychiatric or neurological diseases;
(b) had drug or alcohol addiction; (c) had contraindications
for MRI scans; (d) had taken any medicine or complementary
and alternative therapies within the previous month; or (e) were
pregnant or lactating.

Clinical Data Acquisition
A range of data were collected for each patient, including age,
gender, height, weight, education level, and disease duration.
The average intensity of pain over the previous 2 weeks was
also obtained from all KOA participants using the visual analog
scale (VAS). The Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) was used to assess the symptoms
and QOL of the KOA patients. Anxiety and depression were
evaluated in the KOA patients by using the validated Chinese
version of the self-rating anxiety scale (SAS) and self-rating
depression scale (SDS). The VAS, WOMAC, SAS, and SDS
assessments were administered on the same day when the MRI
scan was performed.

Image Acquisition
Brain MRI scanning sequences including three-dimensional
T1-weighted (3DT1) MRI scans and diffusion-weighted DTI
sequence with single-shot echo-planar imaging were performed
for all participants at baseline. The parameters of the 3DT1 scans
were as follows: repetition time (TR)= 6.008ms, echo time (TE)
= 1.7ms, data matrix= 256× 256, field of view (FOV)= 256×
256 mm2, and voxel size= 1.0× 1.0× 1.0 mm3. The parameters
of DTI scans were: FOV= 256× 256 mm2, TR= 8,500ms, echo
time = minimum, matrix = 128 × 128, number of diffusion-
encoding directions = 64, slice thickness 2mm, layer spacing =
0, and gradient values b= 0 s/mm2 and b= 1,000 s/mm2.

Diffusion Data Process
DTI data preprocessing and statistical analysis were conducted
using the FMRIB software library (FSL; http://www.fmrib.ox.
ac.uk/fsl/) (28). Data preprocessing steps included correction
for eddy current effects and head motion using FDT (FMRIB’s
Diffusion Toolbox), extraction of the brain mask with FSL’s
brain extraction tool (BET), and the calculation of diffusion
tensors by the DTIFIT program. After preprocessing, tract-
based spatial statistical analysis was performed, including non-
linear registration of each participant’s FA image to a 1 ×

1 × 1 mm3 standard space of the FMRIB58-FA template.

These images were affine co-registered to the MNI152 standard
space, and tracts were averaged to create a mean FA skeleton,
extracting the FA skeleton, and projecting each participant’s
aligned FA image back onto the mean FA skeleton with
a 0.2 FA threshold. The MD, AD, and RD images of
individual participants were also projected onto the mean
FA skeleton.

Statistical Analysis
Statistical comparison of the clinical data between patients with
KOA and HCs was performed using SPSS Statistics version 22.0
(IBMCorp., Armonk, NY). Age and bodymass index (BMI) were
compared between the two groups using a non-parametric test.
Gender distribution was analyzed between the two groups using
the chi-squared test.

Voxel-brain skeletal FA, MD, AD, and RD analysis was
performed between the KOA patients and HCs using a
general linear model through the FSL randomize toolkit.
Age, gender, and BMI were used as covariates. A 5,000-
repetition permutation test was conducted between the KOA
patients and HCs, and significant clusters were corrected
by the threshold-free cluster enhancement method (TFCE,
p < 0.05). After correction, only clusters with voxel size
>100 were reported (29). JHU ICBM-DTI-81 White-Matter
Labels in FSL were used to identify white matter tracts
showing significant alterations. Spearman’s correlation analysis
was conducted between the FA, MD, AD, and RD values
of significant clusters and a range of clinical characteristics
including disease duration, VAS scores, and WOMAC scores,
which were corrected by the false discovery rates method (FDR,
p < 0.05).

RESULTS

Clinical Characteristics
A total of 166 patients with a diagnosis of KOA (125 females,
age range: 39–67 years, mean ± SD: 52.87 ± 5.23 years) and 88
HCs (56 females, age range: 42–62 years, mean ± SD: 53.76 ±

TABLE 1 | Clinical and demographic characteristics of KOA and HC.

Items KOA HS P-value

(n = 166) (n = 88)

Age (years) 52.87 ± 5.23 53.76 ± 4.82 0.110

Gender (female/male) 125/41 56/32 0.051

BMI (kg/m2) 23.95 ± 2.85 23.85 ± 2.80 0.843

Duration (months) 45.95 ± 50.18 – –

WOMAC 35.73 ± 28.63 – –

VAS 4.31 ± 1.31 – –

SAS 35.96 ± 8.03 – –

SDS 30.97 ± 5.83 – –

Data were expressed as the Mean ± SD. BMI, body mass index; HC, health control;

KOA, knee osteoarthritis; SAS, self-rating anxiety scale; SDS, self-rating depression

scale; VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.
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FIGURE 1 | Alterations in TBSS parameters in patients with KOA. White matter regions showing increased FA and decreased MD, AD, and RD values in patients with

KOA compared to healthy controls. White matter regions showing overlapping FA, MD, AD, and RD values in the body, the splenium of the corpus callosum (p < 0.05,

TFCE corrected). AD, radial diffusivity; FA, fractional anisotropy; KOA, knee osteoarthritis; MD, mean diffusivity; RD, radial diffusivity; TBSS, tract-based spatial

statistics; TFCE, threshold-free cluster enhancement.

4.82 years) were recruited in this study. There were no significant
differences between the two groups in terms of age, gender, and
BMI (p > 0.05). The mean duration of patients with KOA was
45.95 ± 50.18 months (range: 1–241 months) and the mean
WOMAC and VAS scores of patients with KOA were 35.73 ±

28.63 and 4.31± 1.31, respectively. The demographic and clinical
data of the KOA patients and HCs are summarized in Table 1.

Tract-Based Spatial Statistics Analysis
Compared with HCs, patients with KOA showed a significant
increased FA in the body of the corpus callosum (CC), splenium
of CC, bilateral superior corona radiata, right posterior corona
radiata, bilateral superior longitudinal fasciculus (SLF), left
cingulum (cingulate gyrus), and bilateral fornix/stria terminalis
(p < 0.05, TFCE corrected; Figure 1; Table 2).

The MD was significantly reduced in the middle cerebellar
peduncle, genu of CC, body of CC, splenium of CC, right
cerebral peduncle, right posterior limb of internal capsule, right
retrolenticular part of the internal capsule, bilateral superior
corona radiata, bilateral posterior corona radiata, right posterior
thalamic radiation, right sagittal stratum, right external capsule,
left cingulum (cingulate gyrus), right cingulum (hippocampus),
and bilateral SLF in KOA patients (p < 0.05, TFCE corrected;
Figure 1; Table 2).

KOA patients had a reduced AD in the middle
cerebellar peduncle, pontine corticospinal tract, genu of
CC, body of CC, splenium of CC, right corticospinal tract,
bilateral medial lemniscus, bilateral inferior cerebellar
peduncle, bilateral superior cerebellar peduncle, left
anterior corona radiata, right superior corona radiata,
bilateral posterior corona radiata, right posterior thalamic
radiation, and right SLF (p < 0.05, TFCE corrected;
Figure 1; Table 2).

The RD of the middle cerebellar peduncle, genu of CC,
body of CC, splenium of CC, right cerebral peduncle, right
posterior limb of internal capsule, bilateral retrolenticular
part of the internal capsule, bilateral superior corona radiata,
bilateral posterior corona radiata, right posterior thalamic
radiation, right sagittal stratum, right external capsule, bilateral
cingulum (cingulate gyrus), right cingulum (hippocampus), right
fornix/stria terminalis, and bilateral SLF was also significantly
reduced in patients with KOA (p < 0.05, TFCE corrected;
Figure 1; Table 2).

The overlapping white matter tracts of the FA, MD,
AD, and RD were the body of CC and splenium of CC
(Figure 1; Table 2). Using education level, SAS and SDS
scores as covariates for further analysis did not change
these results above with respect to only age, gender, and
BMI as covariates.
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TABLE 2 | Regions with significantly increased FA and decreased MD, AD, and RD in patients with KOA.

WM

(JHU WM)

Cluster size

FA MD AD RD Overlap

Middle cerebellar peduncle – 905 1,068 1,179 –

Pontine crossing tract (a part of MCP) – – 202 – –

Genu of corpus callosum – 396 511 258 –

Body of corpus callosum 1,469 2,764 1,882 2,532 953

Splenium of corpus callosum 156 1,113 995 867 119

Fornix (column and body of fornix) 152 – – – –

Corticospinal tract R – – 131 – –

Medial lemniscus R – – 177 – –

Medial lemniscus L – – 108 – –

Inferior cerebellar peduncle R – – 154 – –

Inferior cerebellar peduncle L – – 161 – –

Superior cerebellar peduncle R – – 115 – –

Superior cerebellar peduncle L – – 131 – –

Cerebral peduncle R – 203 – 283 –

Posterior limb of internal capsule R – 349 – 361 –

Retrolenticular part of internal capsule R – 641 – 661 –

Retrolenticular part of internal capsule L – – – 189 –

Anterior corona radiata L – – 152 – –

Superior corona radiata R 146 566 143 601

Superior corona radiata L 139 141 – 318 –

Posterior corona radiata R 151 736 493 524

Posterior corona radiata L – 443 161 378 –

Posterior thalamic radiation (include optic radiation) R – 745 152 773 –

Sagittal stratum (include inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus)

R – 264 – 232 –

External capsule R – 113 – 137 –

Cingulum (cingulate gyrus) R – – – 180 –

Cingulum (cingulate gyrus) L 233 104 – 386 –

Cingulum (hippocampus) R – 113 – 180 –

Fornix (cres) / Stria terminalis R 223 274 – 249 –

Fornix (cres) / Stria terminalis L 143 – – – –

Superior longitudinal fasciculus R 516 1,170 296 1,073 –

Superior longitudinal fasciculus L 100 292 – 558 –

p < 0.05, TFCE corrected. AD, radial diffusivity; FA, fractional anisotropy; JHU WM, JHU ICBM-DTI-81 White-Matter Labels; KOA, knee osteoarthritis; L, left; MCP, middle cerebellar

peduncle; MD, mean diffusivity; R, right; RD, radial diffusivity; WM, white matter.

Correlations Between White Matter Tracts
and Clinical Characteristics
For the KOA group, AD values of the body of CC (r =−0.249, p
= 0.0098; FDR corrected) and the splenium of CC (r=−0.201, p
= 0.0489; FDR corrected) were correlated with WOMAC scores
(Figure 2). None of the FA, MD, and RD metrics in any of
the brain tracts was related with WOMAC, VAS scores, disease
duration, SAS, or SDS (p > 0.05, FDR corrected).

DISCUSSION

This study featured a large sample size and used TBSS analysis
to investigate alterations in the white matter of patients with

KOA. Several regions in patients with KOA showed increased
FA, and decreased MD, AD, and RD values when compared with
HCs, including the CC, corona radiata, longitudinal fasciculus,
cingulum, and thalamic radiation (Figure 1; Table 2). In patients
with KOA, the AD values of the body of CC and splenium
of CC were both correlated with WOMAC scores (Figure 2).
These results reflected global white matter alterations in the KOA
patients. To our knowledge, this is the first DTI study to detect
alterations in the white matter of neural pathways in patients
with KOA.

Functional changes in the regions of the brain responsible
for perception, affection, and cognition have been detected
in OA patients (12–14). These alterations in functional
plasticity are often accompanied by gray matter remodeling
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FIGURE 2 | Correlations between AD values and WOMAC scores. (A) A

negative correlation was observed between AD values for the body of the

corpus callosum and WOMAC scores. (B) A negative correlation was

observed between the AD values for the splenium of the corpus callosum and

WOMAC scores (p < 0.05, FDR corrected). AD, axial diffusivity; FDR, false

discovery rates; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.

and reorganization of the neurons, axons, and circuits (30, 31),
further inducing the development and persistence of chronic
pain (32). Furthermore, decreased gray matter volume (GMV)
has been detected in the anterior cingulate cortex (ACC), orbital
frontal cortex (OFC), lateral prefrontal cortex (PFC), precentral
cortex, postcentral cortex, caudate nucleus, hippocampus, insula,
thalamus, and amygdala of patients with OA (15, 16, 33). In
this study, we found alterations in the white matter tracts
of the CC, cingulum (cingulate gyrus), corona radiata, and
superior longitudinal fasciculus in patients with KOA. These
are all important components of the somatosensory and pain-
related pathways and participate in the central integration and
modulation of various peripheral perceptions, cognition, and
emotion of pain (34).

The corpus callosum is the largest fiber tract and acts as a
bridge for communicating perceptual, cognitive, volitional, and
motor information between the two hemispheres (35, 36), and
features prefrontal axons crossing the midline in the genu of
the CC, somatosensory and motor axons crossing in the body
of CC, and occipital and temporal axons crossing the midline
in the splenium of CC (37). In the present study, we found
that abnormal microstructure of the white matter spanned the
length of the corpus callosum, thus suggesting alterations in
the integration of cognitive, sensory, and motor information
in KOA patients. Previous studies detected abnormal gray
matter function and volume in the prefrontal, sensory, and
cognitive regions in OA patients (12–16). Alterations in the
CC connecting the sensory gyri might reflect an abnormal

amount of nociceptive information entering the central nervous
system from the peripheral nervous system. These alterations
in motor integration may result from the evasive action evoked
by KOA patients to lessen or avoid knee pain. The results
of our study are in line with several other whole-brain TBSS
studies which also found the abnormalities of the CC in patients
with chronic pain diseases (25, 36, 38, 39). Furthermore, the
AD values for the body of CC and the splenium of CC were
negatively correlated with WOMAC scores in patients with
KOA. Peripheral pathological pain is associated with persistent
traumatic stimuli to the central nervous system and may be
the microstructural basis for central sensitization, thus leading
to central neuroinflammatory processes and edema (40, 41).
Therefore, this correlation suggested that the integrity and
neurofilament phosphorylation of axons in the CC may mediate
individual variations in the clinical knee pain of patients with
KOA. Abnormalities in the CC may be the specific indicator
of maladaptive plastic modifications in KOA patients and CC-
mediated interhemispheric connections might contribute to
clinical sensory pain (42).

In the present study, we also detected an abnormal white
matter microstructure in the corona radiata of patients with
KOA. The corona radiata starts from the inner capsule
and connects to the inferior frontal-orbital cortex and ACC,
which is responsible for emotional expression and cognitive
processing transmission between the brain hemispheres (43).
Significant abnormalities in the corona radiata have been found
in other chronic pain diseases, such as trigeminal neuralgia
(39), chronic migraine (44), and chronic complex regional
pain syndrome (CRPS) (45). These findings might suggest that
there are abnormalities of emotional regulation in patients with
chronic pain.

Increased FA values and decreased MD, AD, and RD values
of the SLF were also found in patients with KOA in this study.
Several previous studies have reported alterations in gray matter
and abnormal functional brain activity in the insula, bilateral
precentral gyrus, and frontal cortex in patients with chronic pain
diseases, including chronic back pain (24), osteoarthritis (13, 14),
and fibromyalgia syndrome (FMS) (25). Pain perception ismostly
projected to the primary and secondary somatosensory areas,
including the postcentral gyrus, paracentral lobule, precentral
gyrus, and insula through the SLF (46). Furthermore, alterations
in the microstructure of the white matter in the corticospinal
tract were found in patients with KOA. The motor cortex
may reduce the intensity of pain perception through the
corticospinal tract; these represent the output pathway from
cortical motor efferent to the descending pain modulatory
system (47).

The cingulum is an important white matter pathway
located within the limbic system (48). The midline and
intralaminar thalamic nuclei (MITN) receive differing
amounts of the spinothalamic tract, the pronociceptive
sub-nucleus reticularis dorsalis, the parabrachial nucleus
inputs, and project to the cingulate gyrus through the
cingulum (49–51). In this study, microstructural alterations
were mostly involved in the cingulum (cingulate gyrus) and
cingulum (hippocampus). Persistent perceptive signals of
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pain lead to increased connections between the cingulum-
hippocampal tract and default network, thus leading to
the impairments in the avoidance behaviors provoked by
OA (48).

Findings from TBSS studies of patients with chronic pain
diseases are controversial (38, 52–55). In patients with pediatric
migraine, carpal tunnel syndrome, and neuromyelitis optica
spectrum disorders with neuropathic pain, the FA values were
increased (53–55). Patients with idiopathic trigeminal neuralgia
were found to have a lower FA, along with an increased MD,
AD, and RD, in the white matter of connecting areas (52),
while patients with migraine without aura showed lower MD
and AD values in multiple white matter tracts of the brain
(38). In the present study, we observed increased FA values
but reduced MD, AD, and RD values in several white matter
tracts in patients with KOA. There are several factors that may
responsible for such discordances, including different kinds of
diseases and subjects, sample sizes, research methods, scanning
parameters, and statistical approach. Furthermore, the intensity
and persistency of pain has been proven to be related with
morphological and functional brain regions in patients with OA
(12, 14). In this study, the mean VAS score of KOA patients
was 4.31, which may have a milder effect on white matter than
patients with a high intensity of pain. Also, we should consider
that changes in neural expression of the white matter of patients
with KOA might be related to a longer disease duration and
concomitant neuroplasticity (40, 56). In this study, the mean
disease duration of KOA was about 46 months. It is possible that
central nervous system plasticity may have occurred after nerve
impairment (56, 57). These changes in structural plasticity help
pain-related learning and memory and may further contribute to
the development of chronic pain or minimize the effects of pain
on the body (57). In summary, the reasons for the controversial
values of FA, MD, AD, and RD in white matter tracts reported
in this study may be related to abnormal axonal integrity (axonal
loss or the loss of bundle coherence) (58, 59), neural regeneration,
and plasticity (56, 57).

There are several limitations in this study that need to
be considered. First, this was a preliminary study relating
to abnormalities of the white matter in patients with KOA
compared with healthy controls. Second, correlations between
the injury condition of the local knee joints and white matter
alternations in KOA patients has not been identified. Third,
the causation between alterations in the white matter tracts
and KOA has yet to be elucidated. Longitudinal observation
studies on the relationships between abnormalities in the
white matter tracts and KOA need to be identified in
further study.

CONCLUSION

Patients with KOA showed extensive alterations in the white
matter of the CC, corona radiata, longitudinal fasciculus,
cingulum, and thalamic radiation. Furthermore, the AD values of
the body and the splenium of CC were correlated with WOMAC
scores in patients with KOA. Longitudinal observation studies on
the causation between abnormalities in the white matter tracts
and KOA are needed in the future.
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