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Irreversibility analysis for flow 
of nanofluids with aggregation 
in converging and diverging 
channel
Muhammad Qadeer1, Umar Khan2*, Sarfraz Ahmad1, Basharat Ullah2, Mohamed Mousa3 & 
Ilyas Khan4

In the current research article, the two-dimensional, incompressible, steady fluid flow is considered. 
The heat transfer rate of water-based aggregated fluid between converging/diverging channels of 
shrinking/stretching walls due to the effects of thermal radiation has been examined. The strong static 
magnetic field is applied perpendicular to the radial direction. The modeled governing equations are 
transformed into non-linear dimensionless ordinary differential equations by considering appropriate 
similarity transformations. Since the obtained ODEs are strongly non-linear and the exact solution 
of these equations is not possible, thus we applied the numerical method RK4 combined with the 
shooting technique to handle the equations. The impacts of several influential parameters on velocity, 
temperature, and entropy generation profiles are examined graphically.

A channel whose cross section decreases (increases) along the path of fluid flow until the minimum (maximum) 
area is obtained is known as convergent (divergent) channel. The incompressible, viscid 2D fluid flow between 
convergent/divergent channels whose walls are separated through fixed angle and determined by sink or source 
at the apex is defined as the Jaffery-Hamel flow. It has large number of applications in mechanical, civil, chemical, 
and aerospace engineering as well as in physical and biological fields. Blood flow through capillaries and arteries, 
flow of rivers and canals are also the examples of convergent/divergent channel flow. The innovative work about 
convergent/divergent flow was initiated by Jeffery and  Shaw1,2.

Alam3 examined the impacts of incompressible MHD flow of copper nanoparticles on entropy generation 
by using joule heating effects and viscous dissipation passing through convergent/divergent channels. They 
investigated that by augmenting the values of volume fraction by nanoparticles, the values of Reynold’s number 
upsurges. They also observed the opposite behavior of flow in converging and diverging channels by giving dif-
ferent values to the influential parameters. The convergent/divergent channels of stretched walls were considered 
by Gerdroodbary et al.4 in which they discussed the effects of thermal radiations on Jaffery-Hamel flow. They 
used nonlinear boundary layer theory for the governing equations. They also discussed the skin friction and heat 
transferring phenomenon. They investigated the improvement in the temperature field by incrementing thermal 
radiation parameter. Asghar et al.5 considered MHD Jaffery-Hamel flow in converging/diverging channels due 
to the effects of boundary stresses. They used traction BCs to solve the governing equations. They developed 
some analytical scheme to obtain the solution of nonlinear 3rd ordered ODE’s. They observed that the bound-
ary stresses support the boundary layers. They also examined the properties of slip and non-slip conditions of 
inertial flow. Khan et al.6 considered the stretched convergent/divergent channel and analyzed the effects of 
Soret and Dafour impacts on Jaffery-Hamel flow of 2nd grade fluid. They solved the problem numerically as 
well as analytically. For analytical solution they used HAM procedure and for numerical purpose they used RKF. 
The effects of different pertinent parameters on Nusselt number, skin fraction and Sherwood numbers are also 
discussed. The study of converging/diverging channels in case of MHD Jeffery-Hamel flow was considered by 
Asadullah et al.7. Several research articles about convergent/divergent channel are available in which various 
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flow properties have been inspected under the effects of MHD and other external forces. Enough material about 
this topic is available  in8–11 and the references therein.

Polymers are the complex structure of non-Newtonian fluids which exhibits rheological effects. Hydrogen, 
hydrocarbons, and different mixtures of carbon materials are used for the manufacturing of polymers. It has lot 
of applications in biological, chemical, and mechanical fields. In chemical engineering polymer films are used 
for the conservation/generation of energy. Different polymer structures are used for the transportation of small 
molecules through polymeric materials. In biological field polymers are used for the growth of multi-functional 
bio-interfaces, which are applicable to a range of biomedical applications. Formation of sensors, new optical 
and biomedical tools is also the applications of polymers. Polymers also play an important role to overcome the 
consumption of energy in case of turbulent flow.

The rheological effects of polymers with spherical solid structures known as micropolar fluids were debated 
by Nayak et al.12. They used nonlocal lubrication theory of fluids with microstructures and calculated the liquid 
draining rate of thin film between two solid smooth surfaces. They observed that for all film thicknesses down to 
zero, the proposed viscosity model of nonlocal lubrication theory has the best settlement with the experimental 
results. The thermal radiation effects of MHD micropolar nanofluids channel flow with porous walls was explored 
by Alizadeh et al.13. They inspected the properties of nanoparticles volume fraction parameter, micro-polar 
parameter, radiation parameter and magnetic parameter on temperature field, velocity field and Nusselt number. 
 Khan14 analyzed the effects of shear stresses and the rate of heat transferring through the hybrid nano polymers 
(CuO-TiO2-polymers) by using novel models of hybrid nanoparticles. He also observed that the resistive effects 
due to permeability decreases in case of nano polymers with CuO as compared to the hybrid nano polymers 
(CuO-TiO2-polymers) and by increasing the values of vortex viscosity parameter, the angular velocity decreases. 
It is also noted that the change in angular velocity is more effective in case of hybrid nano polymers as compared 
to nano polymers. Nadeem et al.15 considered 3D micropolar fluid flow on Riga plate and observed the behavior 
of heat transferring and thermal conductivity through the fluid. They considered the flow through exponentially 
stretched surface. They divided their analysis in two parts i.e., PEST (Prescribed exponentially ordered surface 
temperature) and PEHF (prescribed exponentially ordered heat flux). They observed that by enhancing the 
radiation parameter both PEST and PEHF reduces. Iram et al.16 considered joule effects, viscous dissipation 
and 1st ordered chemical reaction in micropolar fluid flow and noticed the changes in thermal conductivity and 
concentration gradient. They perceived that for positive values of chemical reaction, the concentration field rises 
and vice versa. A number of  studies17–20 on polymers are presented in which various aspects have been discussed.

Aggregates are the groups of large number of colloidal inertial particles. The addition of such aggregates shows 
significant role to the shear forces and thermal conductivity of the fluid flow. e.g., sedimentation of particles in 
oceans, separation of solid liquid particles, flocculation of cells etc. Flow characteristics of nanoparticles also 
enhances with aggregation. Brownian motion of the fluid particles plays a significant role in the development 
of aggregates.

Bao et al.21 calculated the viscosity of nanoparticles by stable molecular dynamics under the effects of nano-
particles aggregates on Green–Kubo equation. They observed that the nanoparticles viscosity enhances with 
the nanoparticle’s aggregation. Ritschel and  Totsche22 considered 3D natural fluid flow in permeable system 
and observed the effects of micrometer size aggregates on flow regimes. They considered the networks of typical 
porous medium to model the soil aggregates. They observed that by developing the fundamental aggregation 
properties, the transporting properties of fluid flow from soil pore space upsurges. Thomas Kurobe et al.23 used 
the solutes like  O2,  CO2 mineral nutrients between environment and the aggregates and analyzed the heteroge-
neity of melted substances into the ambient water. They designated the fluid flow and the solute supply around 
sinking aggregates by resolving the governing and advection–diffusion equations numerically. Roberto Camassa 
et al.24 considered the matter aggregation in fluid system under the effects of gravitational forces. They observed 
that particles suspended in stratified fluid self assembles and makes large aggregates without adhesion. They also 
investigated that the particles possessing the same heights results in the attractive horizontal forces. They solved 
the system of equations numerically. A lot of material on aggregation is available in Ref.25–30.

As during any thermal process, a lot of energy losses due to which the production rate decreases. To improve 
the efficiency of any thermal system it is essential to search out the factors of energy losses. Entropy is the meas-
ure of uncertainty (energy losses) in a system. Entropy helps us to identify the factors that are responsible for 
energy losses. The second law of thermodynamics states that all the real processes in the universe are irreversible. 
Entropy generation is an important tool to measure the irreversibility of real systems.

Bejan31 examined several causes for entropy generation in thermal engineering where entropy production 
abolishes available work of a system.  Bejan32 also investigated the entropy generation effects on fluid flow by con-
sidering the force convective heat transfer, temperature gradient and viscosity effects.  Thacher33 considered the 
idea of entropy rate to examine the effectiveness of thermal electrical generators and heat pumping. Mukherjee 
et al.34 discussed the second law of thermodynamics for spinning flow in cylindrical pipe whose walls are at con-
stant temperature. Carrington et al.35 discussed the causes of entropy generation by the heat and mass transferring 
for both inlet and outlet flows by using control volume method. The entropy generation effects on transparent 
plate in permeable medium along with solar radiations effects were analyzed by Dehsara et al.36. They discussed 
the results numerically. Shukla et al.37 considered  Al2O3-Cu water-based hybrid nanofluid through stretching/
contracting walls under the effects of thermal radiations; they noticed that the volume fraction of hybrid nano-
particles shows a significant role for reduction of entropy generation. For solving the modeled problem, they 
used PHAM technique. Many researchers discussed about entropy generation on MHD flow, whose detail can 
be seen in the  articles38–41 and the references therein.

In the current study, we considered the two-dimensional aggregated water-based fluid between converging/
diverging channel of stretching/shrinking walls. The steady and incompressible flow is considered under the 
effects of strong thermal radiative effects. The numerical scheme RK4 is implemented to obtain the solution of 
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nonlinear ODEs. The Bruggeman model is used to obtain the thermal conductivity of aggregation. The effects of 
different parameters like radiation, volume fraction by nanoparticles, Reynolds number, sweep angle, stretching/
shrinking parameter, Eckert number on velocity field, temperature field and entropy generation are discussed 
graphically.

Formulation of governing equations
Here we considered two-dimensional steady flow between converging/diverging channels. The non-parallel walls 
of the channel make a sweep angle of measurement 2α at the intersection of walls. The cylindrical polar coordinate 
system is under consideration and the flow is measured only along the radial direction i.e., ur = [u(r,�), 0, 0] . 
A static magnetic field B0 is imposed in direction at right angle to ur , Thus, the governing equations of fluid flow 
problem along with the appropriate boundary conditions are modeled as follows (Fig. 1)4,42,43,

The appropriate BCs at shrinking/stretching walls are:

To convert the above system into dimensionless form, the following similarity transformations are applied.

In above Eqs. (1–7), uw is velocity at the wall of the channel, st is stretching/shrinking parameter, α is sweep 
angle, uc represents the velocity of the particles along the centerline of channel, ur = (u(r,�), 0, 0) is cylindrical 
form of velocity component along radial direction, B is magnetic field parameter, Tw represents temperature at the 
wall of channel, T∞ is ambient temperature, η is angular coordinate in dimensionless form, f (η) is dimensionless 
velocity, θ(η) is dimensionless temperature and P is pressure. The symbols ρa, σa, va,µa, ka,

(

ρCp

)

a
 represent 

density, electrical conductivity, kinematic viscosity, dynamic viscosity, thermal conductivity, specific heat capacity 
respectively for the aggregated nanoparticles. Which is shown in Table 1.
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Figure 1.  The schematic flow model through convergent (inflow) and divergent (outflow) channels.
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In the above Table 1 φ is (nanoparticles volume fraction), φa = φ

(

ra
rp

)3−D
 is (volume fraction of aggregated 

nanoparticles). The symbols ρf , σf , vf , kf ,µf ,
(

ρCp

)

f
 are density, electrical conductivity, dynamic viscosity, ther-

mal conductivity, kinematic viscosity and specific heat capacity of nanoparticles respectively and 
ρs , σs,µs , vs, ks ,

(

ρCp

)

s
 density, electrical conductivity, kinematic viscosity, dynamic viscosity, thermal conductiv-

ity and specific heat capacity of base fluid respectively. D = 1.8 is (Fractal Index), rarp = 3.34 is (ratio of radii of 
aggregates to nanoparticles), φm = 0.605 is (maximum volume fraction of nanoparticles), [η] = 2.5 is (Einstein 
coefficients).

The Bruggeman model was used for transforming the Maxwell model to obtain the thermal conductivity of 
aggregation. The aggregated thermal conductivity model was displayed  as44:

where φin =

(

ra
rp

)D−3

.
By the applications of transformations (7), Eqs. (1–5) becomes,

The transformed dimensionless boundary conditions corresponding to Eqs. (5) and (6) are as follows:

In Eqs. (9–12) the dimensionless parameters are: χ =
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 (non-dimensional stretching shrinking parameter), 
f  (non-dimensional velocity),
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Entropy analysis
The rate of entropy generation for the recent problem by following  Bejan45 is expressed as:

Using the similarity transformations (7) and Eq. (13), the entropy generation number Ng takes the form:

(8)
ka

kf
=

1

4



(3φin − 1)
ks

kf
+ 3((1− φin)− 1)+

�

�

(3φin − 1)
ks

kf
+ 3((1− φin)− 1)

�2

+ 8
ks

kf

�
1
2



.

(9)C3f
′′′(η)+ 4α2C3f

′(η)+ 2C2Reαf (η)f
′(η) = 0,

(10)

θ ′′(η)+4α2θ(η)+

(

PrEcα

C4ReC3

)

C4

(

4α2
(

f (η)
)2

+
(

θ ′(η)
)2
)

+2
C5

C4

α2Prf (η)θ(η)+
Nr

C4

(

θ ′′(η)+ 4α2θ(η)
)

= 0.

(11)f (0) = 1, f ′(0) = 0, f (1) = χ ,

(12)θ ′(0) = 0, θ(1) = 1.

(13)SG =
kar

4

Tw
2

[

(

1+
16σ1

3kak1

)

{

(

∂T

∂r

)2

+

(

1

r

∂T

∂�

)2
}]

+
µar

2

Tw

[

4

(

∂u

∂r

)2

+
1

r2

(

∂u

∂�

)2
]

+
σaB

2

Tw
u2,

(14)Ng = C4

(

1+
Nr

C4

){

4(θ)2 +
1

α2

(

θ ′
)2

}

+
αC3

C4Re
PrEc

{

4
(

f
)2

+

(

f ′
)2

α2

}

+

{(

αPrEc

C5Re

)

(

f
)2

}

Table 1.  Physical properties and their mathematical  relationship39.
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Solution procedure
In the current exploration the modeled physical problem is based upon conservation laws which appear in the 
form of PDEs. These equations are changed into the set of highly coupled nonlinear ODEs. Since the transformed 
equations are highly nonlinear and exact solution of these coupled equations is not available. To overcome this 
issue, in our work, we applied a famous numerical scheme (RKF) combined with shooting iteration technique to 
compute the solutions of the transformed fluid flow problem. Solutions for temperature, velocity and the entropy 
generation fields are observed graphically, and the impacts of several influential parameters are examined.

Results and discussions
This section is divided into three parts to study the variation in temperature, velocity, and entropy generation 
of fluid flow for both converging/diverging channels of shrinking/stretching walls under the effects of different 
parameters like sweep angle (α) , volume fraction of aggregated nanoparticles (φa) , stretching/shrinking param-
eters (χ) , Eckert number (Ec) and the Reynolds number (Re).

The impressions of pertinent parameters on velocity profile are plotted in set of Figs. 2, 3, 4, 5, 6, 7, 8, 9. 
Figure 2 shows that for the increasing values of opening angle α , the velocity profile decreases. Here the change 
is velocity is abrupt for the stretching wall near the central portion. An opposite impact of α on velocity is seen 
in Fig. 3 i.e., for the rise in angle α , velocity profile upsurges for the converging channel and the alteration in 
velocity is on the lower side for stretching wall. The similar behavior is observed for both aggregation and non-
aggregation models. The Figs. 4 and 5 are plotted for the variation in velocity due to the effects of stretching/
shrinking parameter χ . It is noted that for the stretching walls the velocity profiles rise for both converging 
and diverging channel. This rise in velocity closer to walls is more effective as that of central portion. While for 
shrinking walls, the quite opposite behavior for both converging and diverging channels is observed. The vari-
ation in velocity is more prominent near walls as related to center portion as shown in Figs. 4 and 5. Moreover 
the velocity of non-aggregated nanoparticles is slightly higher for the case of diverging channel and a reverse 
impact is noticed for converging channel. The change in velocity field for increasing values of volume fraction 
by nanoparticles is plotted in Figs. 6 and 7. The decline in velocity is perceived for the rising values of volume 

Figure 2.  α varying f  for shrinking/stretching walls (divergent channel).

Figure 3.  α varying f  for shrinking/stretching walls (convergent channel).
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fraction by nanoparticles as shown in Fig. 6. The dominant rise in velocity of stretching wall is observed as likened 
to shrinking walls. The change in velocity for non-aggregation model is negligible as compared to aggregation 
model. All the effects of φ (nanoparticles volume fraction) on velocity in the situation of converging channel 
are quite opposite as related to divergent channel, except the seen that the change is prominent near centre as 
compared to walls as shown in Fig. 7. Figures 8 and 9 illustrate the impact of Reynolds number (Re) on velocity. 

Figure 4.  χ (shrinking/stretching parameter) varying f  (divergent channel).

Figure 5.  χ (shrinking/stretching parameter) varying f  (convergent channel).

Figure 6.  φ varying f  for shrinking/stretching walls (divergent channel).
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It is seen that that the velocity decreases with the growing values of Reynolds number (Re) for stretching/shrink-
ing diverging channel. The rapid change is observed closer to middle part of channel. This alteration in velocity 
is dominant for aggregated nanoparticles as compared to non-aggregated nanoparticles. The effects of Re on 
velocity for convergent shrinking/stretching is quite opposite to that of divergent shrinking/stretching channel. 
This change in the central compartment is more effective as compared to walls.       

Figure 7.  φ varying f  for shrinking/stretching walls (convergent channel).

Figure 8.  Re varying f  for shrinking/stretching walls (divergent channel).

Figure 9.  Re varying f  for shrinking/stretching walls (convergent channel).
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The change in the temperature field due to the impacts of different parameters like opening angle α , nano-
particles volume fraction φa , Reynolds number Re , Eckert number Ec of both divergent and convergent channels 
are plotted in Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33). The 
belongings of stretching and shrinking walls are also discussed for both converging and diverging channels. 
The fixed value of Pr is taken as 6.2. The impact of opening angle α on temperature profile is plotted in the set 
of Figs. 10, 11, 12, 13. Almost similar performance of temperature is observed for mounting values of α for both 

Figure 10.  α varying θ for stretching walls (divergent channel).

Figure 11.  α varying θ for stretching walls (convergent channel).

Figure 12.  α varying θ for shrinking walls (divergent channel).
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converging and diverging channels. For stretched walls the temperature profile is slightly above as related to 
shrinking walls. The similar properties of α for both aggregation and non-aggregation models are observed.

The impressions of Eckert number Ec on temperature field is designed in the set of Figs. 14, 15, 16, 17. It is 
investigated that the temperature field upsurges with the mounting values of Ec for both stretching and shrinking 
walls of diverging channel as shown in Figs. 14 and 16, whereas the temperature decreases for the converging 

Figure 13.  α varying θ for shrinking walls (convergent channel).

Figure 14.  Ec varying θ for stretching walls (divergent channel).

Figure 15.  Ec varying θ for stretching walls (convergent channel).
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channel of stretching/shrinking walls with growing values of Ec as displayed in Figs. 15 and 17. The temperature 
profile for aggregated model is slightly lower as compared to non-aggregated model.

The variation of temperature profile due to stretching and shrinking parameter χ is shown in the set of 
Figs. 18, 19, 20, 21. The temperature profile rises for converging as well as diverging channels due to stretching 
parameter ( χ > 0 ) as shown in Figs. 18 and 19. The opposite performance is found in case of shrinking parameter 

Figure 16.  Ec varying θ for shrinking walls (divergent channel).

Figure 17.  Ecvarying θ for shrinking walls (convergent channel).

Figure 18.  χ varying θ for stretching walls (divergent channel).
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( χ < 0 ) i.e. temperature field declines as shown in Figs. 20 and 21. It is also noted that the rapid change is tem-
perature is found for the divergent channel as compared to convergent channel.

The Figs. 22, 23, 24, 25 are portrayed to measure the change in temperature due to growing values of radiation 
parameter Nr . Almost similar behavior for all the cases i.e., stretching/divergent, shrinking/divergent, stretching/
convergent, and shrinking/convergent is observed. For the rising values of radiation parameter ( Nr ), temperature 

Figure 19.  χ varying θ for stretching walls (convergent channel).

Figure 20.  χ varying θ for shrinking walls (divergent channel).

Figure 21.  χ varying θ for shrinking walls (convergent channel).
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profile declines. It is also noted that the change for diverging channel is rapid as likened to convergent channel. 
For all cases, the temperature profile for non-aggregated model is slightly above as compared to aggregated model.

The Impact of volume fraction by nanoparticles on temperature field is designed in the set of Figs. 26, 27, 28, 
29. The temperature profile increases for growing values of φa for all the cases i.e., stretching/divergent, shrinking/

Figure 22.  Nr varying θ for stretching walls (divergent channel).

Figure 23.  Nr varying θ for stretching walls (convergent channel).

Figure 24.  Nr varying θ for shrinking walls (divergent channel).
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divergent, stretching/convergent, and shrinking/convergent. Moreover, the rapid change in temperature profile 
for aggregated model is observed as compared to nan-aggregated model.

The opposite impact of Reynolds number on temperature field is observed for diverging and converging 
channels as displayed in Figs. 30, 31, 32, 33. For divergent channel the declining effect of temperature profile 
is perceived due to growing values of Reynolds number for stretching/shrinking walls. On the other hand, the 

Figure 25.  Nr varying θ for shrinking walls (convergent channel).

Figure 26.  φ varying θ for stretching walls (divergent channel).

Figure 27.  φ varying θ for stretching walls (convergent channel).
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temperature field for converging channel rises for stretching/shrinking walls. This change in temperature for 
aggregation model is rapid as compared to non-aggregation model.

The impacts of different pertinent parameter like opening angle (α) , Eckert number (Ec) , Reynolds number 
(Re) and Radiation parameter (Nr) on entropy generation are portrayed in Figs. 34, 35, 36, 37, 38, 39, 40, 41, 42, 
43, 44, 45, 46, 47, 48, 49. The irreversibility of system (entropy generation) reduces with the mounting values of 

Figure 28.  φ varying θ for shrinking walls (divergent channel).

Figure 29.  φ varying θ for shrinking walls (convergent channel).

Figure 30.  Re varying θ for stretching walls (divergent channel).
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sweep angle α for both converging and diverging channels as shown in Figs. 34, 35, 36, 37. Moreover, the entropy 
generation profile in the system for stretching walls is slightly above as compared to shrinking walls. The change 
in irreversibility of system is more prominent closer to the walls of the channels.

The boost in entropy generation profile due to increasing values of Eckert numbers for divergent channel is 
observed for both stretching/shrinking walls. This alteration in the entropy generation is more prominent near 

Figure 31.  Re varying θ for stretching walls (convergent channel).

Figure 32.  Re varying θ for shrinking walls (divergent channel).

Figure 33.  Re varying θ for shrinking walls (convergent channel).



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10214  | https://doi.org/10.1038/s41598-022-14529-8

www.nature.com/scientificreports/

center of channel for stretching/divergent as shown in Fig. 38, whereas for shrinking/divergent channel this 
change is more effective for aggregated model near center and for non-aggregated model; the change is dominant 
near the walls as shown in Fig. 40. The entropy generation diminishes by growing the values of Ec in case of 
converging channel for both stretching and shrinking walls as shown in Figs. 39 and 41. This change in entropy 
profile is more prominent closer to walls of the channel.

Figure 34.  α varying entropy for stretching walls (divergent channel).

Figure 35.  α varying entropy for stretching walls (convergent channel).

Figure 36.  α varying entropy for shrinking walls (divergent channel).
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The increase in radiation parameter boosts the entropy generation of the system for all the case involved as 
shown in the set of Figs. 42, 43, 44, 45. The increasing values of entropy profile for aggregated model are on upper 
side as compared to non-aggregated model.

The change in entropy generation due to mounting values of Reynolds number is plotted in the set of Figs. 46, 
47, 48, 49. Figure 46 shows that there is a drop of entropy generation for growing values of Reynolds number for 

Figure 37.  α varying entropy for shrinking walls (convergent channel).

Figure 38.  Ec varying Ng for stretching walls (divergent channel).

Figure 39.  Ec varying Ng for stretching walls (convergent channel).
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divergent/stretching channel. This decrement in entropy is prominent near the center of the channel as compared 
to walls. On the other hand, entropy profile upsurges with the mounting values of Reynolds number Re near the 
walls for convergent/stretching channel as shown in Fig. 47. From Fig. 48 it is seen that the entropy generation 
declines for shrinking /divergent channel. It can be observed that for the incrementing values of Reynolds num-
ber, the entropy profile increases for shrinking/convergent channel as displayed in Fig. 49. The values of entropy 

Figure 40.  Ec varying Ng for shrinking walls (divergent channel).

Figure 41.  Ec varying Ng for shrinking walls (convergent channel).

Figure 42.  Nr varying Ng for stretching walls (divergent channel).
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generation for the aggregation model are seems to be on upper side as compared to non-aggregated model for 
all of the cases shown in Figs. 46, 47, 48, 49.

Table 2 compares the outcomes of the R-K-4 method (together with shooting technique) with the results of 
the R-K-4 method. Both options are in perfect agreement with one another.

Figure 43.  Nr varying Ng for stretching walls (convergent channel).

Figure 44.  Nr varying Ng for shrinking walls (divergent channel).

Figure 45.  Nr varying Ng for shrinking walls (convergent channel).
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Conclusion
In the current exploration, the heat transfer and thermal conductivity of steady, incompressible aggregated 
fluid flow under the effects of magnetic force is considered. The flow is considered between two non-parallel 
stretching/shrinking walls. The impacts of radiation parameter (Nr), Reynolds number (Re), volume fraction 

Figure 46.  Re varying Ng for stretching walls (divergent channel).

Figure 47.  Re varying Ng for stretching walls (convergent channel).

Figure 48.  Re varying Ng for shrinking walls (divergent channel).
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of aggregated nanoparticles ( φa ), Eckert number (Ec) etc. are discussed graphically. The following are the main 
points of this study:

• The augmenting values of angle of elevation reduces the velocity profile for stretching/shrinking walls of 
diverging channel, while a reversed performance is detected for the case of converging channel of stretching/
shrinking walls.

• The stretching parameter boosts the velocity profile, whereas the shrinking parameter diminishes the velocity 
field for converging as well as diverging channel.

• The nanoparticles volume friction and Reynolds number declines the velocity profile f  for stretching/shrink-
ing walls of divergent channel and boosts the velocity profile for stretching/shrinking walls of convergent 
channel.

• By mounting the values of sweep angle α , the temperature profile rises for all the case i.e., stretching/divergent, 
shrinking/divergent, stretching/convergent, and shrinking/convergent channels.

• The growing values of Re and Ec upsurges the temperature field for stretching/shrinking divergent channel. 
On the other hand, for stretching/shrinking convergent channel temperature profile declines by mounting 
values of these parameters.

• The temperature profile rises for both converging and diverging channels under the effects of stretching 
parameter, while shrinking parameter diminishes the temperature profile for both converging and diverging 
channels.

• For the growing values of radiation parameter and nanoparticles volume fraction, the temperature profile 
reduces for both converging and diverging channels of stretching/shrinking walls.

• The entropy generation declines for all the values of opening angle α (either positive or negative) for the 
stretching/shrinking walls of channel.

• The increasing values of Eckert number Ec increases the entropy profile for stretching/shrinking divergent 
channel and decreases for stretching/shrinking convergent channel.

• There is direct variation between radiation parameter and the entropy generation profile i.e., by mounting 
the values of radiation parameter, irreversibility of the system increases.

• Reynolds number declines the entropy profile for stretching/shrinking diverging channel and upsurges it for 
stretching/shrinking convergent channel.

Data availability
The data and material used and/or analysed during this study are available from the corresponding author on 
reasonable request.

Figure 49.  Re varying Ng for shrinking walls (convergent channel).

Table 2.  Comparison between present result and Ref.8,42, where φa = 0,φ = 0.05.

α Mosta et al.8 Rana et al.42 Current results

1
o 0.9825 0.9825 0.9825

2
o 0.9316 0.9316 0.9316

3
o 0.8513 0.8513 0.8513

4
o 0.7482 0.7482 0.7482



22

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10214  | https://doi.org/10.1038/s41598-022-14529-8

www.nature.com/scientificreports/

Received: 7 March 2022; Accepted: 8 June 2022

References
 1. Jeffery, G. B. The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin. Philos. Mag. J. Sci. 29(172), 455–465 

(1915).
 2. Shaw, S., Samantaray, S. S., Misra, A., Nayak, M. K. & Makinde, O. D. Hydromagnetic flow and thermal interpretations of cross 

hybrid nanofluid influenced by linear, nonlinear, and quadratic thermal radiations for any Prandtl number. Int. Commun. Heat 
Mass Transf. 130, 105816 (2022).

 3. Alam, M., Khan, M., Hakim, A., & Makinde, O. D. Magneto-nanofluid dynamics in convergent-divergent channel and its inherent 
irreversibility. In Defect and Diffusion Forum, Vol. 377, 95–110 (Trans Tech Publications Ltd., 2017).

 4. Gerdroodbary, M. B., Takami, M. R. & Ganji, D. D. Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretch-
able convergent/divergent channels. Case Stud. Therm. Eng. 6, 28–39 (2015).

 5. Asghar, Z., Saif, R. S. & Ali, N. Investigation of boundary stresses on MHD flow in a convergent/divergent channel: An analytical 
and numerical study. Alex. Eng. J. 61, 4479–4490 (2021).

 6. Khan, U., Ahmed, N. & Mohyud-Din, S. T. Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between conver-
gent/divergent channel with stretchable walls. Results Phys. 7, 361–372 (2017).

 7. Asadullah, M., Khan, U., Manzoor, R., Ahmed, N. & Mohyud-Din, S. T. MHD flow of a Jeffery fluid in converging and diverging 
channels. Int. J. Mod. Math. Sci 6(2), 92–106 (2013).

 8. Nayak, M. K. et al. Efficacy of diverse structures of wavy baffles on heat transfer amplification of double-diffusive natural convec-
tion inside a C-shaped enclosure filled with hybrid nanofluid. Sustain. Energy Technol. Assess. 52, 102180 (2022).

 9. Nayak, M. K., Mehmood, R., Mishra, S., Misra, A. & Muhammad, T. Thermal and velocity slip effects in mixed convection flow of 
magnetized ceramic nanofluids over a thin needle with variable physical properties. Waves Random Complex Media 1–19 (2021).

 10. Hakeem, A. A. et al. Transverse magnetic effects of hybrid nanofluid flow over a vertical rotating cone with Newtonian/non-
Newtonian base fluids. Waves Random Complex Media 1–18 (2021).

 11. Mohyud-Din, S. T., Khan, U., Ahmed, N. & Bin-Mohsin, B. Heat and mass transfer analysis for MHD flow of nanofluid inconver-
gent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017).

 12. Nayak, M. K. et al. Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under 
altered Fourier theory. J. Taiwan Inst. Chem. Eng. 128, 288–300 (2021).

 13. Alizadeh, M., Dogonchi, A. S. & Ganji, D. D. Micropolar nanofluid flow and heat transfer between penetrable walls in the presence 
of thermal radiation and magnetic field. Case Stud. Therm. Eng. 12, 319–332 (2018).

 14. Khan, M. N. Thermal enhancement in hybrid nano-polymer using novel models for hybrid nanoparticles. Case Stud. Therm. Eng. 
26, 101081 (2021).

 15. Nadeem, S., Malik, M. Y. & Abbas, N. Heat transfer of three-dimensional micropolar fluid on a Riga plate. Can. J. Phys. 98(1), 
32–38 (2020).

 16. Iram, S., Nawaz, M. & Ali, A. Temperature and concentration gradient effects on heat and mass transfer in micropolar fluid. 
Pramana 91(4), 1–11 (2018).

 17. Rout, H. et al. Entropy optimization for Darcy–Forchheimer electro-magneto-hydrodynamic slip flow of ferronanofluid due to 
stretching/shrinking rotating disk. Waves Random Complex Media 1–33 (2021).

 18. Nayak, M. K., Mabood, F., Tlili, I., Dogonchi, A. S. & Khan, W. A. Entropy optimization analysis on nonlinear thermal radiative 
electromagnetic Darcy-Forchheimer flow of SWCNT/MWCNT nanomaterials. Appl. Nanosci. 11(2), 399–418 (2021).

 19. Nayak, M. K., Mabood, F., Dogonchi, A. S. & Khan, W. A. Electromagnetic flow of SWCNT/MWCNT suspensions with optimized 
entropy generation and cubic auto catalysis chemical reaction. Int. Commun. Heat Mass Transf. 120, 104996 (2021).

 20. Nayak, M. K., Akbar, N. S., Pandey, V. S., Khan, Z. H. & Tripathi, D. 3D free convective MHD flow of nanofluid over permeable 
linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017).

 21. Bao, L., Zhong, C., Jie, P. & Hou, Y. The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of 
nanofluids by molecular dynamics simulation. Adv. Mech. Eng. 11(11), 1687814019889486 (2019).

 22. Ritschel, T., & Totsche, K. Aggregate formation dynamics driven by 3D fluid flow in natural porous media. In EGU General Assembly 
Conference Abstracts, 13488 (2020).

 23. Kiørboe, T., Ploug, H. & Thygesen, U. H. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and 
heterogeneity of nutrients in the pelagic environment. Mar. Ecol. Prog. Ser. 211, 1–13 (2001).

 24. Camassa, R., Harris, D. M., Hunt, R., Kilic, Z. & McLaughlin, R. M. A first-principle mechanism for particulate aggregation and 
self-assembly in stratified fluids. Nat. Commun. 10(1), 1–8 (2019).

 25. Nayak, M. K. MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous 
dissipation. Int. J. Mech. Sci. 124, 185–193 (2017).

 26. Sadeghi, M. S., Tayebi, T., Dogonchi, A. S., Nayak, M. K. & Waqas, M. Analysis of thermal behavior of magnetic buoyancy-driven 
flow in ferrofluid–filled wavy enclosure furnished with two circular cylinders. Int. Commun. Heat Mass Transf. 120, 104951 (2021).

 27. Dogonchi, A. S., Nayak, M. K., Karimi, N., Chamkha, A. J. & Ganji, D. D. Numerical simulation of hydrothermal features of Cu–
H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater. J. Therm. Anal. Calorim. 
141(5), 2109–2125 (2020).

 28. Nayak, M. K. et al. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber 
of solar energy and intensification of heat transport. Comput. Methods Prog. Biomed. 186, 105131 (2020).

 29. Khan, U. et al. Comparative thermal transport mechanism in Cu-H2O and Cu-Al2O3/H2O nanofluids: Numerical investigation. 
Waves Random Complex Media 1–16 (2022).

 30. Michaels, T. C. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 
12(5), 445–451 (2020).

 31. Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Trans. 101, 718–725 (1979).
 32. Bejan, A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J. Appl. 

Phys. 79(3), 1191–1218 (1996).
 33. Thacher, E. F. Entropy production and thermoelectric device performance (1984).
 34. Mukherjee, P., Biswas, G. & Nag, P. K. Second-law analysis of heat transfer in swirling flow through a cylindrical duct (1987).
 35. Carrington, C. G. & Sun, Z. F. Second law analysis of combined heat and mass transfer in internal and external flows. Int. J. Heat 

Fluid Flow 13(1), 65–70 (1992).
 36. Dehsara, M., Dalir, N. & Nobari, M. R. H. Numerical analysis of entropy generation in nanofluid flow over a transparent plate 

in porous medium in presence of solar radiation, viscous dissipation and variable magnetic field. J. Mech. Sci. Technol. 28(5), 
1819–1831 (2014).

 37. Shukla, N., Rana, P. & Pop, I. Second law thermodynamic analysis of thermo-magnetic Jeffery-Hamel dissipative radiative hybrid 
nanofluid slip flow: Existence of multiple solutions. Eur. Phys. J. Plus 135(10), 1–24 (2020).

 38. Avramenko, A. A., Kobzar, S. G., Shevchuk, I. V., Kuznetsov, A. V. & Iwanisov, L. T. Symmetry of turbulent boundary-layer flows: 
Investigation of different eddy viscosity models. Acta Mech. 151(1), 1–14 (2001).



23

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10214  | https://doi.org/10.1038/s41598-022-14529-8

www.nature.com/scientificreports/

 39. Avramenko, A. A. & Shevchuk, I. V. Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat, 
and mass transfer of nanofluids. J. Therm. Anal. Calorim. 135(1), 223–235 (2019).

 40. Mahian, O., Oztop, H., Pop, I., Mahmud, S. & Wongwises, S. Entropy generation between two vertical cylinders in the presence 
of MHD flow subjected to constant wall temperature. Int. Commun. Heat Mass Transfer 44, 87–92 (2013).

 41. Avramenko, A. A. Modelling of Convective Heat and Mass Transfer in Nanofluids with and Without Boiling and Condensation 
(Springer Nature, 2022).

 42. Rana, P., Shukla, N., Gupta, Y. & Pop, I. Homotopy analysis method for predicting multiple solutions in the channel flow with 
stability analysis. Commun. Nonlinear Sci. Numer. Simul. 66, 183–193 (2019).

 43. Freidoonimehr, N. & Rashidi, M. M. Dual solutions for MHD Jeffery-Hamel nano-fluid flow in non-parallel walls using predictor 
homotopy analysis method. J. Appl. Fluid Mech. 8(4), 911–919 (2015).

 44. Chen, J., Zhao, C. Y. & Wang, B. X. Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: An 
experimental and theoretical study. Int. J. Heat Mass Transf. 154, 119690 (2020).

 45. Bejan, A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and ther-
modynamics. Revue générale de thermique 35(418–419), 637–646 (1996).

Author contributions
M.Q., U.K. (CA), S.A., and B.U. wrote the original draft; M.M. and I.K. revised the manuscript and checked and 
remove the grammatical errors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to U.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Irreversibility analysis for flow of nanofluids with aggregation in converging and diverging channel
	Formulation of governing equations
	Entropy analysis
	Solution procedure
	Results and discussions
	Conclusion
	References


