
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15188  | https://doi.org/10.1038/s41598-022-19179-4

www.nature.com/scientificreports

Non‑relativistic molecular modified 
shifted Morse potential system
C. A. Onate1*, I. B. Okon2, U. E. Vincent3,4, E. S. Eyube5, M. C. Onyeaju6, E. Omugbe7,8 & 
G. O. Egharevba1

A shifted Morse potential model is modified to fit the study of the vibrational energies of some 
molecules. Using a traditional technique/methodology, the vibrational energy and the un‑normalized 
radial wave functions were calculated for the modified shifted Morse potential model. The condition 
that fits the modified potential for molecular description were deduced together with the expression 
for the screening parameter. The vibrational energies of SiC, NbO, CP, PH, SiF, NH and  Cs2 molecules 
were computed by inserting their respective spectroscopic constants into the calculated energy 
equation. It was shown that the calculated results for all the molecules agreement perfectly with the 
experimental RKR values. The present potential performs better than Improved Morse and Morse 
potentials for cesium dimer. Finally, the real Morse potential model was obtained as a special case of 
the modified shifted potential.

The solutions of wave equations under different potential models are of great interest in sciences since the study 
of their solutions give the conceptual understanding in quantum systems. These solutions generate valuable 
means to check and improve models as well as numerical techniques developed to simplify complicated systems. 
Over the years, certain solvable techniques like Nikiforov-Uvarov  method1, asymptotic iteration  method2–4, 
proper/exact quantization  rule5–7, 1/N shifted expansion  method8, supersymmetric  method9–15 factorization 
 method16, formula method for bound state  problems17,18 and others, were developed to solve the wave equations 
with various physical potential terms. The choice of any method depends on the nature of the problem under 
consideration as well as the ease in handling complicated situations that may arise. For instance, some potential 
terms cannot be solved in the absence of the angular momentum quantum state, hence, the solution under these 
potential models can be obtained by employing a suitable approximation scheme. On the other hand, certain 
potential models even when they admit a solution for j = 0, they cannot be used to completely describe the 
diatomic molecules due to the absence of molecular constants like the dissociation energy, equilibrium bond 
separation and vibrational frequency. Therefore, some potential models that have spectroscopic constants or 
diatomic constants have been given much attention in the recent time. One of such potentials that possess the 
spectroscopic constants is the Morse potential function. The Morse potential function was proposed by Philip 
 Morse19 in 1929 as a three-parameter empirical potential energy function. The Morse potential is a convenient 
interatomic interaction model for the potential energy of a diatomic molecule that can be use to describe inter-
action between an atom and a surface. This potential exists as the simplest representative of the potentials and 
actually results to dissociation, bringing its important over other popular potentials like Harmonic potential. 
The three-parameter empirical Morse potential model proposed in 1929 is given by

where  De is the dissociation energy,  re is the equilibrium bond separation and r is the internuclear separation. The 
Morse potential given in Eq. (1), has received attentions on different  molecules20,21.  In22,23. The Morse potential 
model in Eq. (1) was reduced to the form

(1)V(r) = De(1− 2e−α(r−re) + e−2α(r−re)),

(2)De(e
−2α(r−re) − 2e−α(r−re)).
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The authors obtained the ro-vibrational energy levels for hydrogen molecule at various states. According to 
ref.21, the Morse potential has been used to calculate the transition frequencies, intensities of diatomic molecules 
and in dynamics. The authors also pointed out that the theoretical results deduced under Morse potential devi-
ated from the experimental data. In ref.20, a new form of Morse potential model

called shifted Morse potential was studied, where ℓ is a constant and β is always one (1). This form of Morse 
potential model cannot be used to describe any molecule completely due to the absence of the spectroscopic 
parameters. Similarly, the parameters ℓ, β and x lack clear physical definition in the study of molecules. The 
authors clearly pointed out that the three-parameter empirical Morse potential or the reduced Morse potential 
in Eq. (2), cannot be recovered from the Morse potential in Eq. (3) by change of variable. This state thus, draw 
the attention of the authors. Thus, to study any molecule under the shifted Morse potential model, it becomes 
expedient to construct a reparametise shifted Morse potential function that its mathematical parameters match 
molecular parameters. It is also necessary to condition some of the potential parameters in the shifted Morse 
potential such that the real Morse potential model can be retrieve. Therefore, in the present study, a dissociation 
energy  De a constant γ are introduced. A transformation x = α(r − re), is also made in Eq. (3) to have

From Eq. (4), the original Morse potential function can be recovered as a special case. The dissociation energy 
 De, the equilibrium bond separation  re and the equilibrium harmonic vibrational frequency ωe for diatomic 
molecules are correlated with potential energy function V(r) and defined by the following relations

where c is the speed of light, µ is the reduced mass,ℓ, γ and β are connected by the following relations

After some mathematical simplifications using the relations above, the parameter α for molecular system can 
be calculated by the formula

The present work will study the radial Schrödinger equation under the modified shifted Morse potential 
model in Eq. (4) and recover the solution of the real Morse potential given in Eq. (1) from the solution of the 
Morse potential in Eq. (4). This study will also examine the vibrational energies of some molecules and compared 
with experimental RKR data as an application. To the best of our knowledge, this is the first time this potential 
is receiving attention. The modified shifted Morse potential (blue line) and the Morse potential (black line) are 
shown below.

Parametric Nikiforov‑Uvarov method
The radial Schrödinger equation for any potential model is transformed to the  form24–29

According to Tezcan and  Sever24, the solutions of Eq. (8) are obtained from the following conditions

The values of the constants in Eqs. (9) and (10) are deduce as follows

(3)V(r) = (ℓ+ β)2 − (2ℓ+ 3)e−x + e−2x
,
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According to ref.24, when v3 = 0,

and

Following Eqs. (11a) and (11b), Eq. (10) reduces to

Bound state solutions. The radial Schrödinger equation for any given potential model of interest is given 
 by30–38

where � stands for reduced Planck’s constant,v is vibrational quantum state, j is the vibrational angular momen-
tum quantum state, V(r) is the potential, Ev,j is the energy and Rv,j(r) is the wave function. The term r−2 in 
Eq. (13) can be approximated by the formula

where

Substituting Eqs. (4) and (14) into Eq. (13) and invoking y = e−αr , we obtain the following

Relating Eq. (16) with Eq. (8), we then obtain the parameters in Eq. (11) as follows

Plugging Eq. (18) into Eqs. (9) and (12), the non-relativistic energy equation and its unnormailized wave 
function are obtain as

Discussion
The presentation of the modified shifted Morse and Morse potentials are shown in Fig. 1. It can be seen that the 
modified shifted Morse potential and the Morse potential coincide as r increases. However, for r < 5 Å, the two 
potentials have little discrepancy but have the same shape. The variation could be probably due to the effects of 
the non-molecular parameters in the shifted Morse potential.

Table 1 shows the values of some molecular constants. By imputing these molecular constants into Eq. (7), 
the value of the potential parameter α for each molecule is calculated. All the spectroscopic constants except the 
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 Cs2, are obtained from ref.41. The spectroscopic constants for  Cs2 molecule are obtained from ref.39. The theoreti-
cal values for pure vibrational energies for X1

∏

 state of SiC, X4
∑

 state of NbO, X2
∏

 state of PH, X2
∏

 state 
of NH, X1

∑+ state of SiF, X2
∑+ state of CP and X1

∑+
g  state of  Cs2 are obtained using Eq. (19). Tables 2, 3, 

4, 5 and 6 respectively contained the energies of vibrational levels for different molecules. These tables showed 
the cmparison of the experimental data and the theoretical values for the different molecules listed in Table 1. 
The numerical values for these molecules are obtained using MATLAB 7.5.0 software. The calculated results are 
found to be in good agreement with the experimental RKR values.
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Figure 1.  Shifted Morse potential and Morse potential with α = 0.35  cm−1 re = 0.75 Å,  De = 20  cm−1 γ = 0.3, 
β = 0.65, and ℓ = 0.35.

Table 1.  Spectroscopic constants used for the  study39,40.

Molecule De  (cm−1) ωe  (cm−1) re (Å)

SiC (X3
∏

) 27,336.85 954.20 1.7320

NbO (X4
∑

) 50,032.53 989.00 1.6909

PH (X2
∏

) 27,683.75 2382.75 1.4247

NH (X2
∏

) 26,281.82 3047.58 1.0692

SiF (X1
∑

+

) 43,982.17 1050.37 1.5265

CP (X2
∑

+

) 44,092.79 1239.80 1.5619

Cs2 (X1
∑

+

g
) 3649.50 42.020 4.6480

Table 2.  Contains the calculated energy of vibrational levels  (cm−1) and experimental data  (cm−1) of SiC and 
NbO molecules for the modified shifted Morse potential function.

v

SiC (X3
∏
)

NbO (X4
∑

)RKR40 Calculated LTE

0 475.47 475.02 0.45 493.43 493.28 0.15

1 1416.67 1412.57 4.10 1474.88 1472.50 2.38

2 2344.87 2333.46 11.41 2448.56 2441.95 6.61

3 3260.07 3237.70 22.37 3414.58 3401.63 12.95

4 4162.27 4125.29 36.98 4372.94 4351.53 21.41

5 5051.47 4996.22 55.25 5323.64 5291.66 31.98

6 5927.67 5850.50 77.17 6266.68 6222.01 44.67

7 6790.67 6688.13 102.54 7202.06 7142.58 59.48
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To determine the fitting excellence of the shifted Morse potential function, the average absolute percentage 
deviation for each molecule is calculated using the formula

where ER is the experimental data, CR is the calculated values and N is the number of observation. Following the 
formula given in Eq. (21), the average absolute percentage deviation for the molecules studied are calculated to 
be; 0.8234% for SiC, 0.0724% for NbO, 0.2867% for PH, 0.3876% for NH, 0.0852% for SiF, 0.1018% for CP and 
0.0138% for  Cs2. As it can be seen, the average absolute percentage deviation for each of the molecules is less 
than unity. This shows that the calculated values are in good agreement with the experimental data. It has been 
observed that the experimental date are greater than the calculated values for all the molecules studied. The 
computation of the results also revealed that the LTE (the disparity between the experimental data and calculated 
values at each vibration state) for each molecule increases with the vibrational quantum state. It is noted that the 

(21)σa =
100

N

∑

(

ER − CR

ER

)

,

Table 3.  Contains the calculated energy of vibrational levels  (cm−1) and experimental data  (cm−1) of PH and 
NH molecules for the modified shifted Morse potential function.

v

PH (X2
∏
) NH (X2

∏
)

RKR40 Calculated LTE RKR40 Calculated LTE

0 1180.95 1178.56 2.39 1505.74 1501.70 4.04

1 3480.36 3458.77 21.59 4408.94 4372.59 36.35

2 5696.43 5636.43 60.00 7167.76 7066.78 100.98

3 7829.16 7711.55 117.61 9782.20 9584.27 197.93

4 9878.55 9684.14 194.41 12,252.26 11,925.07 327.19

5 11,844.61 11,554.18 290.43 14,577.94 14,089.17 488.77

Table 4.  Contains the calculated energy of vibrational levels  (cm−1) and experimental data  (cm−1) of SiF and 
CP molecules for the modified shifted Morse potential function.

v

SiF (X1
∑

+
) CP (X2

∑
+
)

RKR40 Calculated LTE RKR40 Calculated LTE

0 523.95 523.62 0.33 618.19 617.72 0.47

1 1564.43 1561.44 2.99 1844.32 1840.09 4.23

2 2595.02 2586.73 8.29 3056.76 3045.03 11.73

3 3615.72 3599.47 16.25 4255.53 4232.54 22.99

4 4626.53 4599.67 26.86 5440.62 5402.62 38.00

5 5627.44 5587.33 40.11

Table 5.  Contains the calculated energy of vibrational levels  (cm−1) and experimental data  (cm−1) of cesium 
dimer for the modified shifted Morse and Morse potential models.

v RKR 41 ℓ = 1 ℓ = 0 ℓ = −1

0 14.4248 14.42670 14.42670 14.42670 14.42670

1 43.1680 43.16520 43.16520 43.16520 43.16520

2 71.7657 71.75040 71.75040 71.75040 71.75040

3 100.2211 100.1822 100.1822 100.1822 100.1822

4 128.5375 128.4608 128.4608 128.4608 128.4608

5 156.7182 156.5860 156.5860 156.5860 156.5860

6 184.7663 184.5579 184.5579 184.5579 184.5579

7 212.6851 212.3765 212.3765 212.3765 212.3765

8 240.4778 240.0418 240.0418 240.0418 240.0418

9 268.1477 267.5537 267.5537 267.5537 267.5537

10 295.6980 294.9123 294.9124 294.9124 294.9124

11 323.1320 323.1177 323.1177 323.1177 323.1177

12 350.4529 349.1697 349.1697 349.1697 349.1697
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higher the vibrational energies of the molecule, the higher the LTE. Our results also showed that the minimum 
LTE for each molecule is obtained at the lowest vibrational quantum level. To deduce more fitness of the modified 
shifted Morse potential to the study of molecules, the average deviation for cesium dimer is calculated in terms 
of the dissociation energy and compared with the results in ref.42. In the present study, the absolute deviation 
for the  Cs2 is 0.0049% of the observed value while in ref.24, it was 0.036% of  De and 0.121% of  De for improved 
Rosen-Morse potential and Morse potential respectively. Thus, the modified shifted Morse performs better than 
the improved Rosen-Morse potential and Morse potential for cesium dimer.

To assertain the validity of the condition given in Eq. (6), the result for  Cs2 is computed for ℓ = −1, ℓ = 0 
and ℓ = 1. It is observed that the result for the three values of ℓ are the same. This simply shows that the condi-
tion given in Eq. (3) justify the fitness of the shifted Morse potential for the representation of molecules. The 
comparison of the calculated results of cesium dimer for the Morse potential and the results for modified shifted 
Morse are presented Table 5. The calculated results of cesium dimer for the Morse potential and modified shifted 
Morse potential are almost the same except for the 10th vibrational quantum state where the result for the modi-
fied shifted Morse potential is closer to the RKR data by 0.001  cm−1. The comparison of the calculated values of 
nitrogen dimer for Morse potential and modified shifted Morse potential are presented in Table 6 for ten different 
vibrational quantum states. The calculated results for the two potential models agreed with the RKR data. The 
calculated results for the two potential models are almost the same except for the second and sixth vibrational 
states where the results for modified shifted Morse potential are closer to the RKR data. The result for the second 
vibrational quantum state is 0.0001  cm−1 closer to the RKR data while at the sixth vibrational quantum state, it 
is 0.001  cm−1 closer to the RKR data.

The Shifted Morse potential function in this study has Morse potential function given in Eqs. (1) and (2) 
respectively as its special cases. When ℓ = β = 0, and γ = 2/3 the Morse potential given in Eq. (2) is obtained

and the energy Eq. (16) becomes

The result of the vibrational energy equation in Eq. (23) do not agree with the results obtained using Eq. (16). 
This is due to the exclusion of the first dissociation energy in the potential. When ℓ = 0, γ = 2/3 and β = 1, the 
Morse potential given in Eq. (1) is obtained

and the energy equation of Eq. (16) turns to

The results of Eqs. (16) and (25) perfectly aligned with each other.

Conclusion
The solution for modified shifted Morse potential model was obtained for any j− state. The energy eigenvalues 
of some molecules were numerically obtained for the modified shifted Morse potential. The calculated results 
for all the molecules agreed with the experimental RKR values. It was observed that changing the value of ℓ 
has no effect on the numerical result provided the conditions given in Eq. (6) are obeyed. The original Morse 
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Table 6.  Contains the calculated energy of vibrational levels  (cm−1) and experimental values  (cm−1) of 
nitrogen dimer.

RKR 42 Present

0 1184.4539 1174.9477 1174.9477

1 3526.3576 3498.7289 3498.7289

2 5833.4516 5787.6913 5787.6914

3 8107.0460 8041.8351 8041.8351

4 10,348.312 10,261.160 10,261.160

5 12,558.287 12,445.666 12,445.666

6 14,737.876 14,595.353 14,595.354

7 16,887.859 16,710.222 16,710.222

8 19,008.895 18,790.272 18,790.272

9 21,101.519 20,835.503 20,835.503
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potential model was recovered from the modified shifted Morse potential model. It is shown that the modified 
shifted Morse potential performs better than the improved Rosen-Morse and Morse potentials for cesium dimer.

Data availability
All data generated or analysed during this study are included in these published  articles39–41.
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