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Review Article

IntroductIon

Gliomas are the most common neoplasm of the central 
nervous system (CNS), and poorly differentiated gliomas 
present invasive growth patterns. Patients with glioblastomas, 
the most malignant type, have been reported to exhibit a 
very low 5‑year survival rate, and median survival times 
are only 12–24 months.[1] Compared to the breakthroughs 
in the treatment of many other cancers, the progresses of 
glioma therapies remain almost stagnant. The combination 
of microsurgery, with the latest chemotherapy such as 
temozolomide and radiation therapy with optimized 
designs, have not further significantly postponed disease 
recurrence in glioblastoma patients.[2,3] Clinical evidence 
suggests that 80–90% of glioma recurrences occur within 
the original resection field.[4] Instead of removing the entire 
anatomical unit of the malignant organ, modern oncological 
neurosurgery focuses on maximizing the resection of the 
tumor by its subjectively judged margins, while protecting 
as many neural functions as possible. To obtain maximal 
resection and maximal protection, there is an urgent need 
for advances to be made to push the imaging accuracy of 
the lesions to a higher level for better treatment outcomes. 

Most recent examples of such advances have originated from 
the adoption of advanced imaging techniques to replace 
or reinforce the traditional ones, such as the integration of 
intraoperative magnetic resonance imaging (MRI), nuclear 
imaging, and fluorescence imaging modalities into surgeries. 
On the other hand, as the core of various types of imaging 
modalities, breakthroughs in the field of study of imaging 
agents to provide more accurate signals of the malignancies 
could extensively increase the efficacy of the treatment.

Nanoparticles of 1–100 nm in diameter[5] can be tailored 
and utilized as contrast agents for gliomas. The growth of 
glioma cells actively affects the integrity of the blood‑brain 
barrier (BBB)[6] and invades the neurovasculature to cause 
these blood vessels to have a leaky nature during glioma 
development. Nanoparticles with tunable properties regarding 
their size, shape, and surface functionalization can greatly 
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improve the factors affecting the contrast efficacy. With their 
controllable size, nanoparticles can gain a higher passage 
through a compromised BBB[7] and, together with shape and 
functionalization tailoring, can lead to a drastically increased 
circulation for an enhanced permeability and retention effect. 
Certain nanoparticles such as iron‑based nanoparticles have 
an additional biological effect because iron metabolism itself 
is a normal physiological process; thus, contrast elimination 
follows normal physiology as well. Moreover, compared 
with traditional contrast agents such as gadolinium, they have 
shown advantages in terms of a slower elimination, more 
effective magnetic resonance relaxation, a better safety profile 
due to metabolization through the normal iron metabolism 
pathway, and better delineation of tumor margins possibly 
resulting from cellular uptake and aggregation of iron.[8‑10]

Heterogeneity is a very important hallmark of high‑grade 
gliomas as well as the trickiest problem in glioma management. 
Similar to glioma cell heterogeneity, the vasculature 
and BBB impairment throughout the entire tumor are 
inhomogeneous.[11,12] This leaves a fatal flaw for conventional 
methods of nanoparticle contrast agent administration, 
as there always will be portions of gliomas without BBB 
impairment for nanoparticles to reach the tumor efficiently.[13] 
Studies that focus on facilitating the passage of nanoparticles 
through the BBB via receptor‑mediated transcytosis[14] 
and adsorptive‑mediated transcytosis[15] targeting specific 
glioma cell ligand molecules still lack the ability to cope 

efficiently with glioma cell heterogeneity, mutations, and 
evolution. One possible solution to the current limitations 
of nanoparticle‑based glioma imaging contrast agents is the 
incorporation of cellular carriers to generate a dual‑system 
platform. The rationale of this system originates from the 
discovery that stem cells, including neural stem cells (NSCs) 
and mesenchymal stem cells (MSCs), have an intrinsic ability 
to migrate to different pathologies such as inflammation, 
infarction, and tumors.[16‑19] Furthermore, there is also 
evidence that NSCs efficiently track glioma stem cells;[20] 
thus, the inability of nanoparticle contrast agents to reach 
escaped glioma stem cells could potentially be solved by the 
application of stem cells such as NSCs for active tracking. This 
review aims to describe the mechanism of this combination 
and to summarize its preclinical applications with the major 
imaging modalities for a more precise imaging of gliomas, 
which might potentially augment the current surgical protocol 
for the management of this disease [Figure 1].

basIc ratIonale for nanoPartIcle steM cell 
carrIers: the troPIsM of steM cells toward 
glIoMa

NSCs and MSCs are currently the focus in the study of 
nanoparticle stem cell carriers in tracking gliomas. NSCs 
are the progenitor cells giving rise to the three major 
lineages of cells in the CNS,[21] and their migration capability 

Figure 1: Nanoparticle‑labeled stem cells migrate across BBB toward glioma cells for imaging. Stem cells such as NSC or MSC could be labeled 
with nanoparticles loaded with imaging agents. Administered via venous or intracerebral injection, the transplanted labeled stem cells could 
transmigrate through BBB and home toward glioma cells and glioma stem cells, while emitting or producing imaging signals which could be 
captured by different imaging techniques including MRI, SPECT, NIR, and confocal microscopy. AuNP: Gold nanoparticle; MSN: Mesoporous silica 
nanoparticle; MNP: Magnetic nanoparticle; BBB: Blood‑brain barrier; NSC: Neural stem cells; MSC: Mesenchymal stem cells; NP: Nanoparticle; 
MRI: Magnetic resonance imaging; SPECT: Single‑photon emission computed tomography; NIR: Near infrared; SDF‑1/CXCR4: Stromal derived 
factor‑1/C‑X‑C chemokine receptor type 4.
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during embryo development[22] is preserved throughout 
adulthood at certain CNS locations, thus retaining their 
neuroplasticity.[23,24] The initial evidence of NSC glioma 
tropism was the striking discovery in the D74 and CNS‑1 
model of intracerebrally or intravenously administered 
migrating NSCs.[25] The phenomenon was later confirmed 
by numerous studies and quantified, with an estimated 
70–90% coverage of the glioma tumor mass and the invasive 
tumor foci.[26‑29] Moreover, one recent study conducted 
an investigation into the quantification of NSC coverage 
in glioma tissue via different administration routes; they 
reported a homing rate of 50–60% of transplanted stem cells 
with intracerebral administration and 1.5% with intravenous 
administration. The coverage in the glioma sections could 
reach as high as 100% with intracerebral administration and 
70% with intravenous administration.[30] Other studies on 
this topic have further developed the research on NSC‑based 
drug administration,[31,32] gene therapy,[33,34] and application 
of the bystander effect.[35‑37] Conversely, the incorporation 
of nanomedicine to NSCs has led to extensive research in 
this realm, including the effect of nanomaterials on NSC 
biology,[38‑41] enhanced material loading,[42‑45] stem cell 
tracking,[46‑51] and tumor treatment.[32,52]

A huge challenge with the broad application of NSCs is 
the scarcity of its source, mainly fetal cells or autologous 
CNS cells from the patient. Immortalized cell lines with 
oncogenes[53] again raise safety concerns in transplantation.[54] 
As an alternative, MSCs with a broader source, including 
bone marrow‑cultured cells[55] and other tissues,[56‑61] and an 
easier expansion protocol[61,62] have been quantified to show 
a similar glioma‑specific migration capability with slightly 
more nonspecific migration in multiple glioma cell lines 
and specimens.[17,63] One drawback of MSCs exists, which is 
their inability to track glioma stem cells at a resting state.[64]

The mechanism of glioma tropism is partly shared by NSCs 
and MSCs. Stromal cell‑derived factor 1, together with its 
receptor C‑X‑C chemokine receptor type 4 (CXCR4), has 
been confirmed as one of the most critical factors mediating 
the tropism.[65] Other mechanisms dictating the tropism 
include glioma extracellular matrix remodeling and hypoxia 
for NSCs[66] as well as glioma interleukin‑8, platelet‑derived 
growth factor‑BB, and transforming growth factor‑beta 
production for MSCs.[67,68] Regarding the alternative sources 
of MSCs, one recent study has compared the migratory 
capacity toward glioma‑conditioned medium between bone 
marrow‑derived, adipose‑derived, and synovial fluid‑derived 
MSCs, among which synovial fluid‑derived MSCs presented 
the strongest migration capacity. Activated lymphocyte 
cell adhesion molecule and N‑cadherin were confirmed as 
participants of the responsible mechanisms, and they could be 
upregulated by microRNA‑192 and ‑218 downregulation.[60]

Stem cells and cancer cells have diverse interactions based on 
the histological origin of the latter. While the cancer‑promoting 
effect of stem cells has been observed in malignancies such 
as breast cancer[69] as well as head and neck cancers,[70] 
the existing evidence has generally supported the use of 

transplanted NSCs and MSCs as safe therapeutic platforms 
to treat gliomas. Several recent studies have suggested their 
inhibitory effects against gliomas, such as the reported study 
of NSCs directly inhibiting the invasion and proliferation of 
gliomas[71] and their association with a survival benefit.[72] 
Transplanted MSCs also have been reported to improve the 
survival of rats with U87MG xenografts, showing a reduction 
in tumor growth, cell proliferation, and microvascular 
density[73] as well as a cytotoxic effect toward C6 glioma 
cells through gap junctions.[74] Contrary to this evidence, 
the tumor‑promoting effect of MSCs from certain sources 
cannot be completely ignored. One study published in 2016 
investigated the effect of the secretome from adipose‑derived 
stem cells on glioblastoma cells, which increased the 
migration capacity of the malignant cells.[75] Hence, caution 
is still needed in order to apply the homing capacity of stem 
cells for glioma treatment.

glIoMa IMagIng ModalItIes and labelIng 
nanoPartIcles for steM cells

Magnetic resonance imaging and magnetic nanoparticles
Magnetic nanoparticles
Upon its first development, iron‑based nanoparticles, 
usually termed magnetic nanoparticles (MNPs), have shown 
potential for a wide range of applications as imaging contrast 
agents and therapeutic carriers. The so‑called MNPs usually 
consist of nanoparticles with a magnetic core composed 
of magnetite (Fe3O4) or maghemite (Fe2O3), containing 
of a type of product termed superparamagnetic iron oxide 
nanoparticles (SPIONs). Miniaturizing the iron oxide 
particles to certain sizes in which each particle consists of 
a single magnetic domain with thermal energy high enough 
to overcome the energy barrier of magnetic flipping could 
generate local interactions with water protons that can induce 
proton dephasing and shorten transverse T2 relaxation.[76,77] 
Thus, the aggravation of these iron oxide particles causes a 
reduced signal that is easily detected on the MRI T2 sequence, 
achieving a contrast effect. Multiple methods to synthesize 
iron oxide nanoparticles exist, including coprecipitation,[78] 
thermal decomposition,[79] and microemulsion,[80] which 
generally yield hydrophobic particles; therefore, different 
coatings to enhance biocompatibility are often needed. In 
the specific scenario of labeling stem cells with MNPs to 
track gliomas, the choice of the labeling agent depends on 
several factors. This often involves the selection of iron cores 
of different sizes and coatings to balance between imaging 
sensitivity and potential toxicity as well as the addition of 
different types of transfection methods to ensure proper 
carriage of the MNPs without leaking to scavengers such 
as macrophages, thus causing false positivity.

Labeling with standard superparamagnetic iron oxide 
nanoparticles
SPIONs can be categorized into three classes: standard 
SPIONs (50–180 nm), ultra‑small superparamagnetic iron 
oxide‑based nanoparticles (USPIONs, 10–50 nm), and 
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very small SPIONs (<10 nm). The earliest application of 
labeling stem cells to track gliomas with SPIONs can be 
dated back to 2005. In this study, a standard SPION was 
applied to label endothelial precursor cells to track local 
glioma angiogenesis. After systemic administration, the 
labeled stem cells were distributed as a hypointensive dark 
ring circumscribing the glioma rim on both in vitro and 
in vivo MRI at about day 10.[81] A similar study imaged 
glioma angiogenesis using SPION‑labeled human cord blood 
endothelial progenitor cell AC133 cells to track C6 gliomas 
in rats, and linear hypointense regions in the tumor could be 
observed at the periphery and the center of the tumor mass 
when reaching 1 cm, or 7 days after transplantation.[82] The 
standard SPION used in these two studies was Ferumoxide, 
which was initially approved by the U.S. Federal Drug 
Administration as an MRI contrast agent. Ferumoxide is 
a type of SPION coated by dextran with a hydrodynamic 
diameter of approximately 100 nm. The particles are 
biodegradable after entering into the body by joining the 
iron metabolism pathway and are eventually incorporated 
into hemoglobin in red cells within 30–40 days.[83,84]

Besides tracking glioma angiogenesis, Ferumoxide also has 
been proven to label gliomas directly with NSCs and MSCs. 
With NSCs, it has been reported that more than 95% of the 
iron cores could be retained in NSCs after tissue culturing for 
96 h, and the threshold reached nine labeled cells per voxel 
or as few as 600 NSCs in 300 µm thick slices to generate 
a detectable signal reduction on 7T T2‑weighted multispin 
multiecho MRI.[85] This enables detecting U251 gliomas 
as small as 200–500 µm (resembling residual gliomas) 
by 7T MRI, with a signal reduction equivalent to that of 
1 × 104–2.5 × 105‑labeled NSCs, which is not possible by 
conventional 7T MRI.[85] Similar to NSCs, Ferumoxide could 
label MSCs with an average uptake of 9 pg of intracellular 
iron in each cell, which could migrate to the U87 glioma 
surrounding the tumor periphery and was distributed 
throughout the main tumor mass, resulting in a significant 
signal change on MRI.[86]

Enhancing the sensitivity of glioma imaging by standard 
SPION‑labeled stem cells has also been studied. These 
enhancements include modifying SPION coating with 
carboxy dextran to enhance cellular uptake,[87] using 
the transfection agent poly‑L‑lysine[81] or protamine,[85] 
increasing the incubation concentration,[86] and doping 
the core of SPIONs.[88] These methods have increased the 
sensitivity of imaging and even the stem cell glioma tropism.

Labeling with ultra‑small superparamagnetic iron 
oxide‑based nanoparticles
In a study of stem cell labeling to track gliomas, 
Ferymoxytol was used because Ferumoxide was removed 
from the market in 2009.[89] Ferymoxytol is a colloidal 
suspension of carbohydrate‑coated second‑generation 
USPIONs and was approved to treat iron deficiency in 
anemic patients with chronic kidney disease. Compared to 
standard SPIONs, USPIONs have a longer half‑life and are 
more often applied as an imaging contrast agent; even with 

gliomas, USPIONs exert a much higher penetration through 
an impaired BBB to enhance gliomas directly.[90] In a study 
using NSCs, Ferymoxytol with heparin and protamine sulfate 
achieved a satisfactory NSC‑labeling efficiency and early 
migration to a U251 glioma xenograft across the midline 
on days 1–4 after intracerebral administration or 4 days 
after intravenous administration.[91] Another study also has 
reported successful transfection of NSCs with USPIONs 
synthesized in the laboratory with different coatings; in 
addition, efficient labeling and retention of NSC viability 
also have been reported.[92]

In labeling MSCs, USPIONs show advantages of more 
homogenous cell labeling compared with SPIONs as 
the latter are more prone to aggregation in the culture 
medium, resulting in localized uptake and nonhomogeneous 
labeling among the cell population.[93] A recent report has 
confirmed such labeling with MRI, and MSCs labeled with 
Ferymoxytol have been shown to migrate successfully in the 
brain.[94] Furthermore, a quantification study has determined 
the optimal lower limit of 21 h of incubation and 10 µg of 
USPIONs/105 MSCs for positive detection with 1.5 Tesla 
MRI.[95]

non‑MagnetIc resonance IMagIng‑based IMagIng

Nuclear imaging
As a major nuclear imaging technique, single‑photon 
emission computed tomography (SPECT) adopts γ‑rays to 
image biochemical activities with a three‑dimensional output 
of the imaging information. Conventional radionuclides 
for SPECT imaging include 111In (half‑life, 67 h) and 
99 metastable (mTc, half‑life, 6 h), and their applications 
compensate for each other in terms of sensitivity and duration 
of cell tracking. Compared with conventional contrast MRI, 
SPECT has a higher sensitivity because the technique can 
directly record cellular metabolism or other bioactivities as 
long as the radionuclide tracers are marked correspondingly, 
instead of relying totally on vasculature abnormalities in 
the tumors. Some recent studies cover many advances of 
SPECT for the evaluation of gliomas, such as the assessment 
of glioma cell response to chemotherapy,[96] monoclonal 
antibodies,[97] and peptides targeting specific glioma cell 
markers.[97] The published literature regarding SPECT 
tracking stem cells mainly uses the direct application of 
111In. In labeling MSCs and NSCs, their homing behaviors 
have thus been scrutinized in terms of neuroblastoma[98] 
and myocardial infarction.[99] Viability assessment has 
been reported as unaffected cell viability but a significantly 
reduced metabolic activity and migration.[100,101] 111In still 
shows an advantage over 99mTc as clear evidence exists 
that the labeling significantly affects stem cell viability.[102]

Mesoporous silica nanoparticles (MSNs) are a type of 
homogeneously sized porous silica nanoparticles with a 
pore size ranging from 2 nm to 50 nm. MSNs have large 
surface areas and pore sizes to load a variety of agents for 
both therapy and imaging; the pore sizes are adjustable to 
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control the loading and release processes, and the surface can 
be modified to reduce toxicity. MSNs also have shown good 
biocompatibility and thermal/hydrothermal stabilities.[103] 
These features make MSNs another important tool for 
glioma therapy and diagnosis. Currently, several types of 
radioisotopes have been studied for loading MSNs, including 
zirconium‑89,[104] copper‑64,[105] Ho‑165,[106] fluorine‑18,[107] 
and 111In.[108] For 111In as a SPECT isotope, one recent 
study has described the application of 70 nm MSNs in NSC 
labeling and glioma homing. MSNs were radiolabeled with 
111In with a labeling efficiency of 95% and an average 
activity of 21.2 MBq/mg. NSCs were then uploaded with 
MSNs with an efficiency of 58% and a viability slightly 
affected by the 111In component of the MSN complex. 
Three‑dimensional views of SPECT images revealed 
very early signs of NSC migration to the U87MG glioma 
xenograft at 4 h after cerebral injection of the labeled NSCs, 
and the signals were sustained at the tumor site for 2 days. 
Furthermore, systemic administration of MSN‑labeled 
NSCs successfully migrated to the tumor site in 48 h with 
a peritumoral and partial intratumor distribution; compared 
with intracerebral administration, this finding is consistent 
with NSC dynamics crossing the BBB.[108] These results 
clearly indicate a significant sensitivity of SPECT in dynamic 
monitoring of NSC glioma tropism compared to MNP‑based 
MRI monitoring, which has not been reported for very early 
stem cell migration.

Fluorescent imaging
Near‑infrared imaging
Imaging modalities on a subcellular level are not usually a 
capability of conventional clinical imaging techniques such 
as MRI and positron‑emission tomography (PET)/SPECT; 
therefore, they sometimes fail to provide a high‑contrast 
image of pathologies at an early stage. Fluorescence 
imaging captures the light signal emitted by living cells 
with bioluminescent sources at a certain wavelength in 
response to excitation of light of a different wavelength. 
Among this type of imaging technique, near infrared (NIR) 
imaging achieves a higher penetration depth of up to several 
centimeters and provides more specific signals by capturing 
light of a NIR wavelength.[109,110] Thus, this technique 
holds broad application potential in the in vivo imaging of 
physiological, metabolic, and molecular functions. NIR 
imaging requires NIR probes to emit a light signal under 
excitation. Currently, several categories of probes have been 
studied, which generally include organic NIR dyes such as 
cyanine dyes, rhodamine dyes, BODIPY‑based NIR probes, 
squaraine‑based NIR probes, phthalocyanines and porphyrin 
derivatives, and nanoprobes such as NIR dye‑containing 
nonmetallic nanoparticles, gold nanostructures, and quantum 
dots.[111]

Several aspects of stem cell NIR imaging with nanoprobes 
have been described. NIR imaging of cardiac progenitor 
cells has been reported to track ischemic hearts,[112] 
adipose‑derived stem cells in Alzheimer’s disease,[113] 
and MSCs in a Parkinson’s disease model.[114] For glioma 

imaging, a recent report by Kim et al.[115] offers the detailed 
tracking progress under NIR. MSCs labeled with fluorescent 
magnetic NEO‑LIVE™‑Magnoxide 675 nanoparticles 
were administered to a U‑87MG glioma model with 
intravenous delivery. According to the study, the injected 
MSCs predominantly resided in the lung at the early stage, 
and then later migrated to the spleen and liver. Four days 
after MSC administration, the bioluminescence signal 
could be observed in the location of the tumor and was 
maintained until 7 days after injection, indicating MSC 
migration.[115] This successful example shows the value of 
NIR nanoparticle‑labeled stem cells for glioma imaging.

Two‑photon microscopy
Two‑photon microscopy is another imaging modality based 
on fluorescence that uses infrared light. The advantage of 
two‑photon microscopy compared with other fluorescence 
imaging modalities is that it uses the combination of the 
energy of two photons using a pulsed laser of high peak power 
to compact photons, therefore leading to higher chances of 
two photons simultaneously hitting the fluorophore. This 
achieves reduced background noise, photo‑damage/toxicity, 
and photo‑bleaching, which is more commonly encountered 
in NIR, and offers a high three‑dimensional resolution of 
the observed tissue to observe cellular interactions as well 
as cells and structures at much higher depths within the 
tissue.[116] Zhang et al.[117] have reported the utility of MSCs 
with two‑photon microscopy. They used gold nanocages 
to label MSCs. Gold nanoparticles or nanostructures have 
become another interest in the realm of nanomedicine in 
recent years because of their attractive optical properties 
known as localized surface plasmon resonance (LSPR), 
which is the scattering and absorption of light at resonant 
wavelengths due to the excitation of plasmon oscillations. 
Of the different types of gold nanostructures, gold nanocages 
can be readily tuned to have a LSPR peak in the NIR 
region that covers the transparent window of soft tissues to 
maximize the tissue penetration depth, increasing its clinical 
applicability.[118] In a recent report, gold nanocage‑labeled 
MSCs did not significantly affect the cell viability or 
differentiation capacity, while they were distributed in 
the cytoplasm encompassed by endosome‑like structures. 
A significant result of this study was the confirmation of 
the long‑term stable retention of AuCN in the MSCs as the 
particles did not participate in cellular metabolism as with 
iron oxide MNPs. An increased two‑photon intensity could 
be observed after the MSCs were injected into the tail vein 
and migrated to the subcutaneously implanted U87MG 
cells.[117]

PersPectIves

In this review, we briefly summarized the basic biology 
and mechanisms of stem cell glioma tropism. Numerous 
studies focusing on different imaging techniques and 
nanoparticle‑labeled stem cells have been successfully 
performed [Table 1]. MNP labeling and imaging by MRI 
was a main focus. In addition, SPECT nuclear imaging, NIR 
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fluorescence imaging, and two‑photon microscopy possibly 
show a higher sensitivity than MRI. The reported studies 
describing these different imaging modalities presented 
different considerations, advantages, and limitations related 
to the complexity the labeling process, the effect of labeling 
on stem cell viability and migration, labeling efficiency, 
time from stem cell administration to the appearance of 
a positive signal at the tumor site, and the duration of 
positive signals in glioma models. These factors support 
the potential combination of these imaging modalities in 
clinical applications at every step of glioma therapy, as the 
whole process provides a gradually deepened understanding 
from gross anatomy to cellular and molecular biology. The 
integration of the applications of these modalities involves 
the combination of MRI and SPECT/PET in preoperative 
diagnosis, choosing the operation procedure, intraoperative 
surgery guidance, and postoperative residual tumor 
evaluation, forming an intact surgical evaluation and useful 
system. Another integration encompasses the combination of 
NIR with surgical microscopy for real‑time optical detection 
of the tumor local infiltration, a concept that has already been 
demonstrated in several studies.[121‑123] For these integrations 
to be effective, the stem cell platform and the nanoparticle 
used for labeling should be selected carefully for specific 
applications based on the different labeling and imaging 
characteristics of nanoparticles as well as the different 
glioma tropism between different stem cells. Therefore, 
studies to compare and quantify each of these factors 
under a standardized study protocol are warranted. Further 
studies focusing on stem cell glioma tropism, especially 
for the ability to cope with glioma heterogeneity and the 
active/quiescent state of glioma stem cells, are needed to 
figure out flaws of the platform and then to deal with these 
issues. Moreover, the development of multifunctional 
nanoparticles is required to enable simplified labeling of 
stem cells to label functions suitable for different imaging 
modalities simultaneously.

The dual‑system imaging platform of stem cells labeled with 
nanoparticles is a powerful imaging tool that is applicable 

for various imaging modalities. Instead of totally relying on 
neurovascular and BBB leakage, nanoparticle‑labeled stem 
cells bypass these restrictions and directly trace glioma cells 
and glioma microenvironment alterations, providing the option 
of nanoparticles and the corresponding imaging modalities to 
determine early glioma development and residual tumors, even 
tracing and imaging single cells. To improve the diagnosis and 
prognosis of gliomas, this platform needs to be further studied 
in clinical trials or used in clinical work.
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纳米颗粒标记干细胞对胶质瘤进行成像的最新进展

摘要

目的：胶质瘤是中枢神经系统最常见的肿瘤，传统的显像方式对其边缘显像欠佳。有学者发现可通过利用具有纳米级别尺寸
和针对特定治疗目的具有多种属性的纳米颗粒与干细胞相结合，从而对胶质瘤进行示踪。本文对利用纳米颗粒标记干细胞作
为胶质瘤成像的显像剂这一策略进行了文献综述，并介绍其基本原理和临床应用。
数据源： 本文利用PubMed数据库对包括2017年以前的文献通过“干细胞”、 “胶质瘤”、 “核磁共振”、 “核成像”以
及“荧光成像”等关键词进行文献筛选。
研究选择： 本文对纳入了有关纳米颗粒标记干细胞对胶质瘤进行成像的基础研究和临床前研究。
结果： 许多研究表明，纳米颗粒可成功地对干细胞进行标记。被标记的干细胞在不同胶质瘤模型中可有效地向胶质瘤迁移、
产生信号并用多种影像学技术进行成像。
结论：利用纳米颗粒标记的干细胞是一种对胶质瘤进行显像和治疗的具有应用前景的技术平台。


