

OPEN d ACCESS

2. Experimental

Crystal structure of 2-methylpiperazine-1,4-diium bis(hydrogen maleate)

Intissar Wecharine,^a Arto Valkonen,^b Mohamed Rzaigui^a and Wajda Smirani Sta^a*

^aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna Bizerte, Tunisia, and ^bDepartment of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, 33101 Tampere, Finland. *Correspondence e-mail: wajda_sta@yahoo.fr

Received 29 January 2015; accepted 13 February 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title salt, $C_5H_{14}N_2^{2+} \cdot 2C_4H_3O_4^{-}$, the asymmetric unit contains two independent 2-methylpiperazinium dications, which comprise a racemic pair, and four hydrogen maleate monoanions. In the roughly planar hydrogen maleate anions, intramolecular $O-H\cdots O$ hydrogen bonds generate S(7)rings. In the crystal, the four independent anions are linked to the 2-methylpiperazinium cations through N-H···O hydrogen bonds, forming two-dimensional layered structures lying parallel to (001).

Keywords: crystal structure; 2-methylpiperazine-1,4-diium; hydrogen maleate; hydrogen bonding.

CCDC reference: 1049285

1. Related literature

For maleate geometry and its S(7) ring formation, see: Anitha et al. (2012). For background on 2-methylpiperazine salts, see: Hajlaoui et al. (2011); Wilkinson & Harrison (2007). For a similar structure, see: Mathlouthi et al. (2014). For puckering parameters, see: Cremer & Pople (1975).

2.1. Crystal data

$C_5H_{14}N_2^{2+} \cdot 2C_4H_3O_4^{-1}$ $\gamma = 74.303 \ (7)^{\circ}$ $M_r = 332.31$ V = 1580.7 (2) Å³ Triclinic, $P\overline{1}$ Z = 4a = 11.4678 (9) Å Mo $K\alpha$ radiation b = 11.4919 (9) Å $\mu = 0.12 \text{ mm}^{-1}$ c = 13.3404 (13) Å T = 170 K $\alpha = 71.692 \ (8)^{\circ}$ $0.33 \times 0.14 \times 0.07 \text{ mm}$ $\beta = 75.572$ (8)

2.2. Data collection

Agilent SuperNova (single source at offset, Eos) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)

 $T_{\min} = 0.970, T_{\max} = 0.990$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.133$ S = 1.066990 reflections 451 parameters 8 restraints

H atoms treated by a mixture of independent and constrained refinement

10102 measured reflections

 $R_{\rm int} = 0.020$

6990 independent reflections

5127 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm max} = 0.27$ e Å⁻³ $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table	1			
Hydro	gen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1 C ···O4 C^{i}	0.93 (1)	1.91 (2)	2.802 (2)	162 (2)
$N1 - H1D \cdots O1$	0.93 (2)	1.89 (2)	2.801 (2)	166 (2)
$N2-H2E\cdots O1A$	0.94 (2)	1.80 (2)	2.723 (2)	168 (2)
$N2 - H2F \cdot \cdot \cdot O3B^{ii}$	0.95 (2)	2.50(2)	3.187 (2)	129 (2)
$N2 - H2F \cdots O4B^{ii}$	0.95 (2)	1.82 (2)	2.760 (2)	169 (2)
$N1A - H1E \cdots O3$	0.96 (1)	2.59 (2)	3.279 (2)	129 (2)
$N1A - H1E \cdots O4$	0.96(1)	1.86 (2)	2.811 (2)	169 (2)
$N1A - H1F \cdots O1C^{iii}$	0.92 (2)	1.90 (2)	2.787 (2)	162 (2)
$N2A - H2G \cdots O4A$	0.92(2)	1.81 (2)	2.710 (2)	164 (2)
$N2A - H2H \cdot \cdot \cdot O1B^{iv}$	0.95(2)	1.82(2)	2.764 (2)	168 (2)
$N2A - H2H \cdot \cdot \cdot O2B^{iv}$	0.95 (2)	2.51 (2)	3.191 (2)	128 (2)
$O2 - H2 \cdots O3$	1.15 (3)	1.28 (3)	2.4258 (19)	174 (2)
$O2A - H2I \cdots O3A$	1.21 (2)	1.22 (2)	2.4240 (19)	175 (2)
$O3B - H2J \cdots O2B$	1.18 (2)	1.24 (2)	2.4174 (18)	177 (2)
$O2C - H2K \cdots O3C$	1.20 (2)	1.22 (2)	2.4192 (19)	174 (2)

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x + 1, y, z; (iv) x, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008, 2015) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2325).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Anitha, R., Athimoolam, S., Bahadur, S. A. & Gunasekaran, M. (2012). Acta Cryst. E68, 0959–0960.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hajlaoui, F., Naili, H., Yahyaoui, S., Turnbull, M., Mhiri, T. & Bataille, T. (2011). Dalton Trans. 40, 11613–11620.
- Mathlouthi, M., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, o1183-o1184.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m900-m901.

supporting information

Acta Cryst. (2015). E71, o193-o194 [doi:10.1107/S2056989015003102]

Crystal structure of 2-methylpiperazine-1,4-diium bis(hydrogen maleate)

Intissar Wecharine, Arto Valkonen, Mohamed Rzaigui and Wajda Smirani Sta

S1. Comment

Our ongoing studies of novel salts of maleic acid with related substances arises from the fact that hydrogen maleate anions in these systems possess short but highly strained hydrogen bonds in salts with racemic amines (Hajlaoui *et al.*, 2011; Wilkinson & Harrison, 2007). We report herein the synthesis and structure of the title hydrogen maleate salt with 2-methylpiperazine, $(C_5 H_{14} N_2)^{2+} 2(C_4 H_3 O_4^{-})$.

As shown in Fig. 1, the asymmetric unit of the title salt contains two independent 2-methylpipirazinium dications which form a racemic pair [C1(R) and C1A(S)] and four hydrogen maleate anions. In the planar hydrogen maleate anions, short intramolecular O—H···O hydrogen bonds (Table 1) generate S(7) rings. This is common in many structures of maleic acid as the *cis* disposition of the alkene places hydrogen-bonding donors and acceptors in close proximity (Mathlouthi *et al.*, 2014).

In the crystal (Fig. 2), the piperazinium groups of the cation are hydrogen-bonded to the carboxylate O atoms of the anion *via* N—H···O hydrogen bonds, forming a two-dimensional network. The four maleate anions (C6–C9), (C6A–C9A), (C6B–C9B) and (C6C–C9C) are connected to the organic cations, forming two-dimensional layers lying parallel to (001) (Fig. 3).

In the cation, the piperazinium rings adopt distorted chair conformations [puckering parameters Q, θ , and $\varphi = 0.574$ (2) Å, 1.11 (1)° and 73.6 (1)° for the first cation and = 0.577 (2) Å, 1.83 (2)° and 73.83 (1) for the second] (Cremer & Pople, 1975).

S2. Experimental

A mixture of maleic acid (1M) and 2-methylpiperazine dissolved in ethanol (molar ratio 1:1:1) was stirred for 2 h and then kept at room temperature. Transparent crystals of the title compound were obtained one week later.

S3. Refinement

All H atoms bonded to C atoms of organic cations were positioned geometrically and treated as riding on their parent atoms, [C-H = 0.99 Å] with $U_{iso}(H) = 1.2 U_{eq}(C)$. H-atoms attached to O and N atoms were located in difference Fourier maps and the positional parameters for those attached to O were refined, with $U_{iso}(H) = 1.5 U_{eq}(O)$ while the N-H bond distances were allowed to ride with N-H restrained at 0.91 (2) Å and $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figure 1

The two dications and the four anions in the asymmetric unit of the title salt, with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

A view of a layerered structure of the title compound along the c axis showing the two-dimensional layers lying parallel to the (001) plane. Hydrogen bonds are denoted by dashed lines.

Figure 3

The structure of the title compound viewed along the b axis.

2-Methylpiperazine-1,4-diium bis(cis-3-carboxyprop-2-enoate)

Crystal data

 $C_5H_{14}N_2^{2+}\cdot 2C_4H_3O_4^{-}$ $M_r = 332.31$ Triclinic, $P\overline{1}$ *a* = 11.4678 (9) Å *b* = 11.4919 (9) Å *c* = 13.3404 (13) Å $\alpha = 71.692 \ (8)^{\circ}$ $\beta = 75.572 \ (8)^{\circ}$ $\gamma = 74.303 (7)^{\circ}$ $V = 1580.7 (2) \text{ Å}^3$

Data collection

Agilent SuperNova (single source at offset, Eos)	10102 measured
diffractometer	6990 independent
Mirror monochromator	5127 reflections
Detector resolution: 16.0107 pixels mm ⁻¹	$R_{\rm int} = 0.020$
ω scans	$\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} =$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(CrysAlis PRO; Agilent, 2013)	$k = -15 \rightarrow 11$
$T_{\min} = 0.970, \ T_{\max} = 0.990$	$l = -17 \rightarrow 18$

Z = 4F(000) = 704 $D_{\rm x} = 1.396 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3309 reflections $\theta = 2.2 - 28.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 170 KPrism, colourless $0.33 \times 0.14 \times 0.07 \text{ mm}$

reflections t reflections with $I > 2\sigma(I)$ = 1.9°

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.049$	and constrained refinement
$wR(F^2) = 0.133$	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.2961P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
6990 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
451 parameters	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
8 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.47112 (14)	-0.07313 (15)	0.24023 (13)	0.0264 (3)	
H1C	0.4636 (18)	-0.1306 (16)	0.2079 (15)	0.032*	
H1D	0.5432 (16)	-0.0963 (18)	0.2683 (15)	0.032*	
N2	0.24684 (15)	0.10974 (15)	0.21164 (13)	0.0289 (4)	
H2E	0.2571 (19)	0.1670 (17)	0.2438 (15)	0.035*	
H2F	0.1734 (16)	0.1357 (18)	0.1822 (15)	0.035*	
C1	0.36652 (17)	-0.06564 (18)	0.33304 (15)	0.0285 (4)	
H1	0.3764	-0.0068	0.3704	0.034*	
C2	0.24641 (17)	-0.01499 (18)	0.29123 (16)	0.0303 (4)	
H2A	0.2339	-0.0745	0.2569	0.036*	
H2B	0.1773	-0.0068	0.3519	0.036*	
C3	0.35045 (17)	0.10233 (19)	0.11976 (16)	0.0317 (4)	
H3A	0.3505	0.1868	0.0698	0.038*	
H3B	0.3398	0.0471	0.0803	0.038*	
C4	0.47168 (17)	0.05140 (18)	0.15914 (16)	0.0306 (4)	
H4A	0.5394	0.0420	0.0977	0.037*	
H4B	0.4863	0.1112	0.1919	0.037*	
C5	0.3686 (2)	-0.19420 (19)	0.41174 (17)	0.0389 (5)	
H5A	0.4474	-0.2245	0.4372	0.058*	
H5B	0.3588	-0.2526	0.3759	0.058*	
H5C	0.3011	-0.1885	0.4729	0.058*	
N1A	0.94928 (15)	0.40524 (14)	0.23662 (13)	0.0261 (3)	
H1E	0.9556 (18)	0.3171 (14)	0.2709 (15)	0.031*	
H1F	1.0225 (15)	0.4310 (18)	0.2052 (15)	0.031*	
N2A	0.78144 (15)	0.64376 (15)	0.20796 (14)	0.0290 (4)	
H2G	0.7075 (15)	0.6198 (19)	0.2407 (16)	0.035*	
H2H	0.7684 (19)	0.7327 (14)	0.1807 (15)	0.035*	
C1A	0.89052 (18)	0.46035 (17)	0.32972 (15)	0.0294 (4)	
H1A	0.8112	0.4321	0.3635	0.035*	
C2A	0.86258 (18)	0.60249 (17)	0.28913 (16)	0.0306 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2C	0.8216	0.6396	0.3500	0.037*
H2D	0.9404	0.6322	0.2567	0.037*
C3A	0.83774 (19)	0.58864 (17)	0.11580 (15)	0.0319 (4)
H3C	0.9137	0.6198	0.0775	0.038*
H3D	0.7798	0.6150	0.0650	0.038*
C4A	0.86848 (18)	0.44718 (17)	0.15408 (15)	0.0289 (4)
H4C	0.7916	0.4155	0.1853	0.035*
H4D	0.9110	0.4120	0.0924	0.035*
C5A	0.9731 (2)	0.4155 (2)	0.41267 (18)	0.0428 (5)
H5D	0.9892	0.3237	0.4373	0.064*
H5E	0.9325	0.4506	0.4738	0.064*
H5F	1.0511	0.4429	0.3807	0.064*
01	0.66248 (13)	-0.15326(13)	0.35791 (11)	0.0348(3)
02	0.66093 (13)	0.04943 (13)	0.30938 (12)	0.0395 (4)
H2	0.720 (2)	0.116 (2)	0.3089 (19)	0.059*
03	0.79597 (13)	0.18044 (12)	0.30752 (11)	0.0354(3)
04	0.97246 (13)	0.15407 (12)	0.35879 (11)	0.0326 (3)
C6	0.70396 (18)	-0.06453 (18)	0.35806 (15)	0.0296 (4)
C7	0.80662 (18)	-0.09258 (18)	0.41811 (15)	0.0319 (4)
H7	0.8216	-0.1751	0.4640	0.038*
C8	0.88045 (18)	-0.02073(18)	0.41771 (15)	0.0306 (4)
H8	0.9404	-0.0603	0.4626	0.037*
C9	0.88357 (18)	0.11290 (17)	0.35741 (15)	0.0276 (4)
01A	0.26932 (14)	0.25263 (14)	0.33171 (12)	0.0416 (4)
O2A	0.42635 (13)	0.33042 (13)	0.22241 (11)	0.0342 (3)
H2I	0.493 (2)	0.398 (2)	0.2194 (18)	0.051*
O3A	0.55889 (13)	0.46177 (13)	0.22439 (11)	0.0342 (3)
O4A	0.58356 (13)	0.55559 (14)	0.33715 (12)	0.0396 (4)
C6A	0.35063 (19)	0.31324 (18)	0.31199 (16)	0.0311 (4)
C7A	0.3585 (2)	0.36602 (19)	0.39852 (16)	0.0355 (5)
H7A	0.3016	0.3453	0.4632	0.043*
C8A	0.43201 (19)	0.43722 (19)	0.40013 (16)	0.0334 (5)
H8A	0.4193	0.4589	0.4657	0.040*
C9A	0.53077 (18)	0.48811 (18)	0.31542 (16)	0.0300 (4)
O1B	0.73978 (12)	-0.10379 (12)	0.10276 (11)	0.0303 (3)
O2B	0.91092 (12)	-0.12659 (12)	0.16097 (11)	0.0346 (3)
H2J	0.980 (2)	-0.060(2)	0.1591 (18)	0.052*
O3B	1.04304 (13)	0.00525 (12)	0.16145 (11)	0.0340 (3)
O4B	1.05050 (12)	0.20575 (12)	0.10410 (11)	0.0294 (3)
C6B	0.82359 (17)	-0.05937 (17)	0.11055 (15)	0.0258 (4)
C7B	0.81991 (18)	0.07654 (17)	0.05890 (16)	0.0307 (4)
H7B	0.7552	0.1182	0.0193	0.037*
C8B	0.89284 (18)	0.14906 (17)	0.05930 (16)	0.0307 (4)
H8B	0.8715	0.2341	0.0201	0.037*
C9B	1.00213 (16)	0.11871 (17)	0.11108 (14)	0.0243 (4)
01C	0.16316 (13)	0.47339 (14)	0.10385 (12)	0.0409 (4)
O2C	0.18351 (13)	0.57671 (13)	0.21065 (11)	0.0367 (3)
H2K	0.250 (2)	0.640 (2)	0.2150 (18)	0.055*

O3C	0.31604 (13)	0.70898 (14)	0.20988 (11)	0.0373 (3)
O4C	0.47555 (14)	0.78285 (14)	0.10389 (12)	0.0417 (4)
C6C	0.21839 (17)	0.53961 (18)	0.12438 (15)	0.0295 (4)
C7C	0.32705 (17)	0.57784 (17)	0.04445 (15)	0.0282 (4)
H7C	0.3474	0.5450	-0.0162	0.034*
C8C	0.40062 (17)	0.65074 (17)	0.04398 (15)	0.0279 (4)
H8C	0.4646	0.6614	-0.0169	0.033*
C9C	0.39798 (18)	0.71797 (18)	0.12411 (16)	0.0299 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0202 (8)	0.0294 (8)	0.0316 (9)	-0.0010 (7)	-0.0068 (7)	-0.0129 (7)
N2	0.0219 (8)	0.0305 (9)	0.0368 (9)	-0.0005 (7)	-0.0096 (7)	-0.0133 (7)
C1	0.0240 (10)	0.0335 (10)	0.0285 (10)	-0.0021 (8)	-0.0043 (8)	-0.0126 (8)
C2	0.0242 (10)	0.0337 (10)	0.0330 (11)	-0.0051 (8)	-0.0030 (8)	-0.0115 (9)
C3	0.0263 (10)	0.0364 (11)	0.0326 (11)	-0.0048 (8)	-0.0070 (8)	-0.0096 (9)
C4	0.0251 (10)	0.0321 (10)	0.0349 (11)	-0.0045 (8)	-0.0061 (8)	-0.0098 (9)
C5	0.0362 (12)	0.0397 (12)	0.0357 (12)	-0.0023 (9)	-0.0057 (10)	-0.0083 (10)
N1A	0.0256 (8)	0.0214 (8)	0.0313 (9)	-0.0044 (7)	-0.0039 (7)	-0.0084 (7)
N2A	0.0267 (9)	0.0212 (8)	0.0373 (10)	-0.0047 (7)	-0.0024 (7)	-0.0082 (7)
C1A	0.0339 (11)	0.0275 (10)	0.0278 (10)	-0.0070 (8)	-0.0033 (8)	-0.0099 (8)
C2A	0.0314 (10)	0.0274 (10)	0.0347 (11)	-0.0053 (8)	-0.0043 (9)	-0.0126 (8)
C3A	0.0361 (11)	0.0268 (10)	0.0311 (11)	-0.0056 (8)	-0.0049 (9)	-0.0071 (8)
C4A	0.0304 (10)	0.0263 (10)	0.0322 (10)	-0.0046 (8)	-0.0079 (8)	-0.0102 (8)
C5A	0.0502 (14)	0.0408 (12)	0.0428 (13)	-0.0060 (10)	-0.0181 (11)	-0.0137 (10)
01	0.0325 (8)	0.0370 (8)	0.0390 (8)	-0.0134 (6)	-0.0114 (6)	-0.0064 (6)
O2	0.0367 (8)	0.0336 (8)	0.0508 (9)	-0.0078 (7)	-0.0212 (7)	-0.0039 (7)
03	0.0345 (8)	0.0281 (7)	0.0428 (8)	-0.0056 (6)	-0.0155 (7)	-0.0026 (6)
O4	0.0360 (8)	0.0271 (7)	0.0389 (8)	-0.0095 (6)	-0.0129 (6)	-0.0074 (6)
C6	0.0275 (10)	0.0338 (11)	0.0275 (10)	-0.0095 (8)	-0.0040 (8)	-0.0060 (8)
C7	0.0343 (11)	0.0312 (10)	0.0310 (11)	-0.0114 (9)	-0.0124 (9)	-0.0003 (8)
C8	0.0323 (11)	0.0313 (10)	0.0280 (10)	-0.0071 (8)	-0.0123 (9)	-0.0021 (8)
C9	0.0309 (10)	0.0287 (10)	0.0245 (10)	-0.0066 (8)	-0.0058 (8)	-0.0082 (8)
O1A	0.0520 (10)	0.0429 (9)	0.0386 (8)	-0.0252 (8)	-0.0034 (7)	-0.0133 (7)
O2A	0.0387 (8)	0.0358 (8)	0.0315 (8)	-0.0115 (6)	-0.0028 (6)	-0.0131 (6)
O3A	0.0295 (7)	0.0452 (8)	0.0301 (7)	-0.0117 (6)	0.0009 (6)	-0.0142 (6)
O4A	0.0345 (8)	0.0514 (9)	0.0414 (8)	-0.0197 (7)	-0.0025 (7)	-0.0184 (7)
C6A	0.0373 (11)	0.0271 (10)	0.0301 (11)	-0.0092 (9)	-0.0068 (9)	-0.0063 (8)
C7A	0.0437 (12)	0.0416 (12)	0.0248 (10)	-0.0203 (10)	-0.0005 (9)	-0.0085 (9)
C8A	0.0390 (12)	0.0409 (12)	0.0253 (10)	-0.0163 (9)	-0.0037 (9)	-0.0104 (9)
C9A	0.0263 (10)	0.0320 (10)	0.0322 (11)	-0.0040 (8)	-0.0075 (8)	-0.0092 (9)
O1B	0.0281 (7)	0.0263 (7)	0.0397 (8)	-0.0068 (6)	-0.0095 (6)	-0.0099 (6)
O2B	0.0296 (7)	0.0244 (7)	0.0501 (9)	-0.0057 (6)	-0.0167 (7)	-0.0026 (6)
O3B	0.0320 (8)	0.0244 (7)	0.0487 (9)	-0.0039 (6)	-0.0201 (7)	-0.0057 (6)
O4B	0.0255 (7)	0.0275 (7)	0.0369 (8)	-0.0070 (6)	-0.0064 (6)	-0.0091 (6)
C6B	0.0253 (10)	0.0259 (9)	0.0266 (10)	-0.0043 (7)	-0.0031 (8)	-0.0094 (8)
C7B	0.0295 (10)	0.0258 (10)	0.0372 (11)	-0.0042 (8)	-0.0155 (9)	-0.0028 (8)

supporting information

C8B	0.0314 (11)	0.0222 (9)	0.0374 (11)	-0.0042 (8)	-0.0151 (9)	-0.0004 (8)
C9B	0.0216 (9)	0.0262 (9)	0.0255 (9)	-0.0046 (7)	-0.0022 (7)	-0.0091 (8)
O1C	0.0358 (8)	0.0560 (10)	0.0394 (8)	-0.0223 (7)	-0.0057 (7)	-0.0146 (7)
O2C	0.0316 (8)	0.0453 (9)	0.0355 (8)	-0.0138 (7)	0.0037 (6)	-0.0167 (7)
O3C	0.0392 (8)	0.0422 (8)	0.0353 (8)	-0.0133 (7)	0.0011 (7)	-0.0189 (7)
O4C	0.0528 (10)	0.0419 (9)	0.0391 (8)	-0.0253 (8)	-0.0023 (7)	-0.0140 (7)
C6C	0.0253 (10)	0.0316 (10)	0.0311 (10)	-0.0040 (8)	-0.0086 (8)	-0.0067 (8)
C7C	0.0287 (10)	0.0294 (10)	0.0258 (10)	-0.0027 (8)	-0.0063 (8)	-0.0079 (8)
C8C	0.0273 (10)	0.0295 (10)	0.0253 (10)	-0.0046 (8)	-0.0037 (8)	-0.0070 (8)
C9C	0.0322 (11)	0.0266 (10)	0.0314 (11)	-0.0059 (8)	-0.0075 (9)	-0.0071 (8)

Geometric parameters (Å, °)

N1—C4	1.499 (2)	O2—C6	1.287 (2)
N1—C1	1.500 (2)	O2—H2	1.15 (3)
N1—H1C	0.926 (14)	O3—C9	1.281 (2)
N1—H1D	0.932 (15)	O3—H2	1.28 (3)
N2—C3	1.485 (2)	O4—C9	1.241 (2)
N2—C2	1.492 (2)	C6—C7	1.495 (3)
N2—H2E	0.936 (15)	C7—C8	1.331 (3)
N2—H2F	0.953 (15)	С7—Н7	0.9500
C1—C2	1.514 (3)	C8—C9	1.499 (3)
C1—C5	1.518 (3)	C8—H8	0.9500
C1—H1	1.0000	O1A—C6A	1.240 (2)
C2—H2A	0.9900	O2A—C6A	1.284 (2)
C2—H2B	0.9900	O2A—H2I	1.21 (2)
C3—C4	1.510 (3)	O3A—C9A	1.286 (2)
С3—НЗА	0.9900	O3A—H2I	1.22 (2)
C3—H3B	0.9900	O4A—C9A	1.239 (2)
C4—H4A	0.9900	C6A—C7A	1.493 (3)
C4—H4B	0.9900	C7A—C8A	1.332 (3)
С5—Н5А	0.9800	C7A—H7A	0.9500
С5—Н5В	0.9800	C8A—C9A	1.486 (3)
С5—Н5С	0.9800	C8A—H8A	0.9500
N1A—C4A	1.496 (2)	O1B—C6B	1.242 (2)
N1A—C1A	1.498 (2)	O2B—C6B	1.282 (2)
N1A—H1E	0.962 (14)	O2B—H2J	1.24 (2)
N1A—H1F	0.921 (15)	O3B—C9B	1.284 (2)
N2A—C3A	1.484 (2)	O3B—H2J	1.18 (2)
N2A—C2A	1.485 (2)	O4B—C9B	1.238 (2)
N2A—H2G	0.923 (15)	C6B—C7B	1.490 (3)
N2A—H2H	0.954 (15)	C7B—C8B	1.333 (2)
C1A—C5A	1.512 (3)	C7B—H7B	0.9500
C1A—C2A	1.520 (3)	C8B—C9B	1.488 (3)
C1A—H1A	1.0000	C8B—H8B	0.9500
C2A—H2C	0.9900	O1C—C6C	1.238 (2)
C2A—H2D	0.9900	O2C—C6C	1.286 (2)
C3A—C4A	1.512 (3)	O2C—H2K	1.20 (2)

СЗА—НЗС	0.9900	O3C—C9C	1.283 (2)
C3A—H3D	0.9900	O3C—H2K	1.22 (2)
C4A—H4C	0.9900	O4C—C9C	1.238 (2)
C4A—H4D	0.9900	C6C—C7C	1.491 (3)
C5A—H5D	0.9800	C7C—C8C	1.338 (2)
C5A—H5E	0.9800	C7C - H7C	0.9500
C5A—H5E	0.9800	$C_{8}C_{-}C_{9}C$	1 493 (3)
01	1,237(2)		0.9500
01-00	1.257 (2)	666-1166	0.9900
CA N1 C1	111.81 (14)		100.6
$C_4 = N_1 = H_1 C_1$	111.01(14) 1004(12)		109.0
$C_1 = N_1 = H_1 C_1$	109.4(12) 108.5(12)	N1A C C A C C A	100.1
CI-NI-HIC	108.3(13) 107.7(12)	NIA-C4A-UAC	110.55 (15)
C4—NI—HID	107.7(12)	NIA = C4A = H4C	109.5
CI-NI-HID	106.4 (12)	C3A—C4A—H4C	109.5
HIC—NI—HID	113.1 (17)	NIA—C4A—H4D	109.5
C3—N2—C2	111.34 (15)	C3A—C4A—H4D	109.5
C3—N2—H2E	107.0 (13)	H4C—C4A—H4D	108.1
C2—N2—H2E	110.0 (12)	C1A—C5A—H5D	109.5
C3—N2—H2F	106.1 (12)	C1A—C5A—H5E	109.5
C2—N2—H2F	108.9 (12)	H5D—C5A—H5E	109.5
H2E—N2—H2F	113.4 (17)	C1A—C5A—H5F	109.5
N1—C1—C2	109.12 (15)	H5D—C5A—H5F	109.5
N1—C1—C5	109.79 (15)	H5E—C5A—H5F	109.5
C2—C1—C5	111.37 (16)	С6—О2—Н2	111.4 (12)
N1—C1—H1	108.8	С9—О3—Н2	111.6 (11)
C2—C1—H1	108.8	O1—C6—O2	122.17 (17)
C5—C1—H1	108.8	O1—C6—C7	118.00 (17)
N2-C2-C1	110.87 (16)	O2—C6—C7	119.83 (17)
N2—C2—H2A	109.5	C8—C7—C6	130.47 (18)
C1—C2—H2A	109.5	C8—C7—H7	114.8
$N_2 - C_2 - H_2B$	109.5	C6-C7-H7	114.8
C1 - C2 - H2B	109.5	C7 - C8 - C9	129.97 (18)
$H_{2A} = C_2 + H_{2B}$	108.1	C7 C8 H8	115.0
$\frac{112}{112} = \frac{112}{112} = $	110.34 (15)	$C_{1} = C_{2} = H_{2}$	115.0
$N_2 = C_3 = C_4$	100.6	$C_{2} = C_{3} = 113$	113.0 122.40(17)
$N_2 - C_3 - H_3 A$	109.0	04 - 09 - 03	122.40(17)
C4 - C3 - H3A	109.0	04-09-08	117.01(17)
$N_2 - C_3 - H_3 B$	109.0		119.99 (17)
C4—C3—H3B	109.6	C6A—O2A—H2I	111.0 (11)
H3A—C3—H3B	108.1	C9A—O3A—H2I	111.4 (11)
NI-C4-C3	110.65 (16)	01A—C6A—02A	122.80 (18)
N1—C4—H4A	109.5	O1A—C6A—C7A	116.90 (18)
C3—C4—H4A	109.5	O2A—C6A—C7A	120.29 (18)
N1—C4—H4B	109.5	C8A—C7A—C6A	130.79 (19)
C3—C4—H4B	109.5	C8A—C7A—H7A	114.6
H4A—C4—H4B	108.1	С6А—С7А—Н7А	114.6
C1—C5—H5A	109.5	C7A—C8A—C9A	130.13 (18)
C1—C5—H5B	109.5	С7А—С8А—Н8А	114.9
H5A—C5—H5B	109.5	C9A—C8A—H8A	114.9

C1—C5—H5C	109.5	O4A—C9A—O3A	122.54 (19)
H5A—C5—H5C	109.5	O4A—C9A—C8A	116.96 (17)
H5B—C5—H5C	109.5	O3A—C9A—C8A	120.50 (17)
C4A—N1A—C1A	111.40 (14)	C6B—O2B—H2J	109.4 (11)
C4A—N1A—H1E	110.4 (12)	C9B—O3B—H2J	109.6 (11)
C1A—N1A—H1E	101.4 (12)	O1B—C6B—O2B	122.06 (17)
C4A—N1A—H1F	108.5 (12)	01B—C6B—C7B	117.68 (16)
C1A—N1A—H1F	108.9 (12)	O2B-C6B-C7B	120.26 (16)
H1E—N1A—H1F	1161(18)	C8B-C7B-C6B	130.34(17)
C3A - N2A - C2A	111 72 (15)	C8B-C7B-H7B	114.8
C3A—N2A—H2G	109.8(13)	C6B-C7B-H7B	114.8
$C_2A = N_2A = H_2G$	108.4(13)	C7B-C8B-C9B	130.62(17)
$C_{3}A_{N_{2}}N_{2}A_{H_{2}}H_{2}H$	107.6(12)	C7B $C8B$ $H8B$	114 7
$C_{2A} = N_{2A} = H_{2H}$	107.0(12) 109.1(12)	$C^{0}B$ $C^{0}B$ $H^{0}B$	114.7
$U_{2A} = N_{2A} = H_{2H}$	109.1(12) 110.2(18)	$O_{AB} = C_{BB} = O_{AB}$	117.7
$\frac{1120}{1120} = \frac{112}{1120} = 1$	110.3(16)	O4D = C9D = O3D	122.09(10) 117.02(16)
NIA CIA C2A	110.40(10) 100.12(15)	O4D - C9D - C8D	117.92(10)
NIA = CIA = C2A	109.15 (15)	O_{3B} $-C_{9B}$ $-C_{8B}$	119.99 (16)
CSA—CIA—CZA	111.50 (10)	$C_0C_02C_H2K$	111.3 (11)
NIA—CIA—HIA	108.6	$C_9C_{}O_3C_{}H_2K$	111.7 (11)
CSA—CIA—HIA	108.6	010 - 060 - 020	121.98 (18)
C2A—CIA—HIA	108.6	010	117.87 (17)
N2A—C2A—C1A	110.29 (15)	02C—C6C—C/C	120.14 (17)
N2A—C2A—H2C	109.6	C8C—C7C—C6C	130.72 (18)
C1A—C2A—H2C	109.6	C8C—C7C—H7C	114.6
N2A—C2A—H2D	109.6	С6С—С7С—Н7С	114.6
C1A—C2A—H2D	109.6	C7C—C8C—C9C	130.18 (18)
H2C—C2A—H2D	108.1	C7C—C8C—H8C	114.9
N2A—C3A—C4A	110.50 (15)	C9C—C8C—H8C	114.9
N2A—C3A—H3C	109.6	O4C—C9C—O3C	122.04 (18)
C4A—C3A—H3C	109.6	O4C—C9C—C8C	117.88 (18)
N2A—C3A—H3D	109.6	O3C—C9C—C8C	120.08 (17)
C4—N1—C1—C2	56.7 (2)	C6—C7—C8—C9	0.8 (4)
C4—N1—C1—C5	179.01 (15)	C7—C8—C9—O4	-170.0 (2)
C3—N2—C2—C1	58.3 (2)	C7—C8—C9—O3	10.4 (3)
N1—C1—C2—N2	-57.02 (19)	O1A—C6A—C7A—C8A	-177.6 (2)
C5—C1—C2—N2	-178.38 (15)	O2A—C6A—C7A—C8A	2.9 (3)
C2—N2—C3—C4	-57.0 (2)	C6A—C7A—C8A—C9A	0.2 (4)
C1—N1—C4—C3	-56.6 (2)	C7A—C8A—C9A—O4A	178.0 (2)
N2-C3-C4-N1	55.7 (2)	C7A—C8A—C9A—O3A	-2.2 (3)
C4A—N1A—C1A—C5A	179.32 (16)	O1B—C6B—C7B—C8B	176.1 (2)
C4A—N1A—C1A—C2A	-57.8 (2)	O2B—C6B—C7B—C8B	-3.9 (3)
C3A—N2A—C2A—C1A	-58.2 (2)	C6B—C7B—C8B—C9B	0.1 (4)
N1A—C1A—C2A—N2A	57.7 (2)	C7B—C8B—C9B—O4B	-176.0 (2)
C5A—C1A—C2A—N2A	-179.99 (16)	C7B—C8B—C9B—O3B	3.6 (3)
C2A—N2A—C3A—C4A	56.7 (2)	O1C—C6C—C7C—C8C	177.83 (19)
C1A—N1A—C4A—C3A	57.0 (2)	O2C—C6C—C7C—C8C	-1.2 (3)
N2A—C3A—C4A—N1A	-55.4 (2)	C6C—C7C—C8C—C9C	0.1 (3)
	× /		× /

supporting information

O1—C6—C7—C8	167.9 (2)	C7C—C8C—C9C—O4C	-178.34 (19)
O2—C6—C7—C8	-12.7 (3)	C7C—C8C—C9C—O3C	0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1C···O4C ⁱ	0.93 (1)	1.91 (2)	2.802 (2)	162 (2)
N1—H1 <i>D</i> …O1	0.93 (2)	1.89 (2)	2.801 (2)	166 (2)
N2—H2 <i>E</i> ···O1 <i>A</i>	0.94 (2)	1.80 (2)	2.723 (2)	168 (2)
N2—H2 <i>F</i> ···O3 <i>B</i> ⁱⁱ	0.95 (2)	2.50 (2)	3.187 (2)	129 (2)
N2—H2 F ···O4 B^{ii}	0.95 (2)	1.82 (2)	2.760 (2)	169 (2)
N1 <i>A</i> —H1 <i>E</i> ···O3	0.96 (1)	2.59 (2)	3.279 (2)	129 (2)
N1 <i>A</i> —H1 <i>E</i> ···O4	0.96 (1)	1.86 (2)	2.811 (2)	169 (2)
N1A— $H1F$ ···O1 C ⁱⁱⁱ	0.92 (2)	1.90 (2)	2.787 (2)	162 (2)
N2 <i>A</i> —H2 <i>G</i> ···O4 <i>A</i>	0.92 (2)	1.81 (2)	2.710(2)	164 (2)
$N2A$ — $H2H$ ···O1 B^{iv}	0.95 (2)	1.82 (2)	2.764 (2)	168 (2)
$N2A$ — $H2H$ ···O2 B^{iv}	0.95 (2)	2.51 (2)	3.191 (2)	128 (2)
O2—H2···O3	1.15 (3)	1.28 (3)	2.4258 (19)	174 (2)
O2 <i>A</i> —H2 <i>I</i> ···O3 <i>A</i>	1.21 (2)	1.22 (2)	2.4240 (19)	175 (2)
O3 <i>B</i> —H2 <i>J</i> ···O2 <i>B</i>	1.18 (2)	1.24 (2)	2.4174 (18)	177 (2)
02 <i>C</i> —H2 <i>K</i> ···O3 <i>C</i>	1.20 (2)	1.22 (2)	2.4192 (19)	174 (2)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*–1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*, *y*+1, *z*.